Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240380

RESUMO

Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.


Assuntos
Músculo Esquelético , Músculos Oculomotores , Camundongos , Animais , Músculo Esquelético/metabolismo , Músculos Oculomotores/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Células-Tronco
2.
Mol Ther ; 27(9): 1568-1585, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31327755

RESUMO

CRISPR editing of muscle stem cells (MuSCs) with adeno-associated virus serotype-9 (AAV9) holds promise for sustained gene repair therapy for muscular dystrophies. However, conflicting evidence exists on whether AAV9 transduces MuSCs. To rigorously address this question, we used a muscle graft model. The grafted muscle underwent complete necrosis before regenerating from its MuSCs. We injected AAV9.Cre into Ai14 mice. These mice express tdTomato upon Cre-mediated removal of a floxed stop codon. About 28%-47% and 24%-89% of Pax7+ MuSCs expressed tdTomato in pre-grafts and regenerated grafts (p > 0.05), respectively, suggesting AAV9 efficiently transduced MuSCs, and AAV9-edited MuSCs renewed successfully. Robust MuSC transduction was further confirmed by delivering AAV9.Cre to Pax7-ZsGreen-Ai14 mice in which Pax7+ MuSCs are genetically labeled by ZsGreen. Next, we co-injected AAV9.Cas9 and AAV9.gRNA to dystrophic mdx mice to repair the mutated dystrophin gene. CRISPR-treated and untreated muscles were grafted to immune-deficient, dystrophin-null NSG.mdx4cv mice. Grafts regenerated from CRISPR-treated muscle contained the edited genome and yielded 2.7-fold more dystrophin+ cells (p = 0.015). Importantly, increased dystrophin expression was not due to enhanced formation of revertant fibers or de novo transduction by residual CRISPR vectors in the graft. We conclude that AAV9 effectively transduces MuSCs. AAV9 CRISPR editing of MuSCs may provide enduring therapy.


Assuntos
Dependovirus/genética , Distrofina/genética , Edição de Genes , Vetores Genéticos/genética , Mioblastos/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Distrofina/química , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , RNA Guia de Cinetoplastídeos/genética , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Transdução Genética
3.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155842

RESUMO

Skeletal muscle comprises 30-40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.


Assuntos
Envelhecimento/fisiologia , Senescência Celular , Desenvolvimento Muscular , Músculo Esquelético/citologia , Doenças Musculares/terapia , Regeneração , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/fisiopatologia , Células-Tronco/fisiologia
4.
Indian J Microbiol ; 57(2): 177-187, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28611495

RESUMO

Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115T and M. flava MUSC 78T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

6.
Life (Basel) ; 13(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511804

RESUMO

SEIC is a non-invasive lesion of the endometrial epithelium considered to be the precursor to uterine serous carcinoma (USC) and is just as aggressive as USC. Currently, there are no reliable data about the behavior and prognosis of SEIC; therefore, the therapeutic management approach is not clear. Method: A systematic search of the Pubmed, Scopus and Embase databases was conducted, following the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Of the 296 studies that matched the search criteria, only 9 met the inclusion criteria, covering a total of 81 patients. The main disease-presenting pattern was AUB (abnormal uterine bleeding). In 31 cases, SEIC was associated with extrauterine disease. All patients underwent hysterectomy and salpingo-oophorectomy, while only 15 of the 81 patients received adjuvant treatments. In the patients receiving adjuvant therapy, the RR was 42.67%, the DFS was 35.71% and the OS was 57.13%. In patients subjected to follow-up alone, the RR was only 28.78%, the DFS was 59.1% and the OS was 66.6%. Conclusions: The presence of an extrauterine disease significantly worsens outcomes, regardless of adjuvant treatment. In cases of disease confined to the uterine mucosa alone, the prognosis is good and follow-up allows a good control of the disease; however, adjuvant therapy could further increase survival rates and reduce relapse rates.

7.
Adv Sci (Weinh) ; 10(21): e2301519, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37140179

RESUMO

It is well-known that muscle regeneration declines with aging, and aged muscles undergo degenerative atrophy or sarcopenia. While exercise and acute injury are both known to induce muscle regeneration, the molecular signals that help trigger muscle regeneration have remained unclear. Here, mass spectrometry imaging (MSI) is used to show that injured muscles induce a specific subset of prostanoids during regeneration, including PGG1, PGD2, and the prostacyclin PGI2. The spike in prostacyclin promotes skeletal muscle regeneration via myoblasts, and declines with aging. Mechanistically, the prostacyclin spike promotes a spike in PPARγ/PGC1a signaling, which induces a spike in fatty acid oxidation (FAO) to control myogenesis. LC-MS/MS and MSI further confirm that an early FAO spike is associated with normal regeneration, but muscle FAO became dysregulated during aging. Functional experiments demonstrate that the prostacyclin-PPARγ/PGC1a-FAO spike is necessary and sufficient to promote both young and aged muscle regeneration, and that prostacyclin can synergize with PPARγ/PGC1a-FAO signaling to restore aged muscles' regeneration and physical function. Given that the post-injury prostacyclin-PPARγ-FAO spike can be modulated pharmacologically and via post-exercise nutrition, this work has implications for how prostacyclin-PPARγ-FAO might be fine-tuned to promote regeneration and treat muscle diseases of aging.


Assuntos
Músculo Esquelético , PPAR gama , Epoprostenol , Cromatografia Líquida , Espectrometria de Massas em Tandem , Prostaglandinas I , Regeneração/fisiologia
8.
Cell Metab ; 35(3): 472-486.e6, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36854304

RESUMO

With age, skeletal muscle stem cells (MuSCs) activate out of quiescence more slowly and with increased death, leading to defective muscle repair. To explore the molecular underpinnings of these defects, we combined multiomics, single-cell measurements, and functional testing of MuSCs from young and old mice. The multiomics approach allowed us to assess which changes are causal, which are compensatory, and which are simply correlative. We identified glutathione (GSH) metabolism as perturbed in old MuSCs, with both causal and compensatory components. Contrary to young MuSCs, old MuSCs exhibit a population dichotomy composed of GSHhigh cells (comparable with young MuSCs) and GSHlow cells with impaired functionality. Mechanistically, we show that antagonism between NRF2 and NF-κB maintains this bimodality. Experimental manipulation of GSH levels altered the functional dichotomy of aged MuSCs. These findings identify a novel mechanism of stem cell aging and highlight glutathione metabolism as an accessible target for reversing MuSC aging.


Assuntos
Multiômica , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Senescência Celular , Envelhecimento/fisiologia
9.
Front Cell Dev Biol ; 11: 1187253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645248

RESUMO

Introduction: Muscle wasting in Duchenne Muscular Dystrophy is caused by myofiber fragility and poor regeneration that lead to chronic inflammation and muscle replacement by fibrofatty tissue. Our recent findings demonstrated that Resolvin-D2, a bioactive lipid derived from omega-3 fatty acids, has the capacity to dampen inflammation and stimulate muscle regeneration to alleviate disease progression. This therapeutic avenue has many advantages compared to glucocorticoids, the current gold-standard treatment for Duchenne Muscular Dystrophy. However, the use of bioactive lipids as therapeutic drugs also faces many technical challenges such as their instability and poor oral bioavailability. Methods: Here, we explored the potential of PSB-KD107, a synthetic agonist of the resolvin-D2 receptor Gpr18, as a therapeutic alternative for Duchenne Muscular Dystrophy. Results and discussion: We showed that PSB-KD107 can stimulate the myogenic capacity of patient iPSC-derived myoblasts in vitro. RNAseq analysis revealed an enrichment in biological processes related to fatty acid metabolism, lipid biosynthesis, small molecule biosynthesis, and steroid-related processes in PSB-KD107-treated mdx myoblasts, as well as signaling pathways such as Peroxisome proliferator-activated receptors, AMP-activated protein kinase, mammalian target of rapamycin, and sphingolipid signaling pathways. In vivo, the treatment of dystrophic mdx mice with PSB-KD107 resulted in reduced inflammation, enhanced myogenesis, and improved muscle function. The positive impact of PSB-KD107 on muscle function is similar to the one of Resolvin-D2. Overall, our findings provide a proof-of concept that synthetic analogs of bioactive lipid receptors hold therapeutic potential for the treatment of Duchenne Muscular Dystrophy.

10.
Methods Mol Biol ; 2640: 21-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995585

RESUMO

Adult skeletal musculature experiences continuous physical stress, and hence requires maintenance and repair to ensure its continued efficient functioning. The population of resident muscle stem cells (MuSCs), termed satellite cells, resides beneath the basal lamina of adult myofibers, contributing to both muscle hypertrophy and regeneration. Upon exposure to activating stimuli, MuSCs proliferate to generate new myoblasts that differentiate and fuse to regenerate or grow myofibers. Moreover, many teleost fish undergo continuous growth throughout life, requiring continual nuclear recruitment from MuSCs to initiate and grow new fibers, a process that contrasts with the determinate growth observed in most amniotes. In this chapter, we describe a method for the isolation, culture, and immunolabeling of adult zebrafish myofibers that permits examination of both myofiber characteristics ex vivo and the MuSC myogenic program in vitro. Morphometric analysis of isolated myofibers is suitable to assess differences among slow and fast muscles or to investigate cellular features such as sarcomeres and neuromuscular junctions. Immunostaining for Pax7, a canonical stemness marker, identifies MuSCs on isolated myofibers for study. Furthermore, the plating of viable myofibers allows MuSC activation and expansion and downstream analysis of their proliferative and differentiative dynamics, thus providing a suitable, parallel alternative to amniote models for the study of vertebrate myogenesis.


Assuntos
Células Satélites de Músculo Esquelético , Peixe-Zebra , Animais , Músculo Esquelético , Diferenciação Celular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas
11.
Stem Cell Reports ; 18(6): 1325-1339, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315524

RESUMO

Skeletal muscle function and regenerative capacity decline during aging, yet factors driving these changes are incompletely understood. Muscle regeneration requires temporally coordinated transcriptional programs to drive myogenic stem cells to activate, proliferate, fuse to form myofibers, and to mature as myonuclei, restoring muscle function after injury. We assessed global changes in myogenic transcription programs distinguishing muscle regeneration in aged mice from young mice by comparing pseudotime trajectories from single-nucleus RNA sequencing of myogenic nuclei. Aging-specific differences in coordinating myogenic transcription programs necessary for restoring muscle function occur following muscle injury, likely contributing to compromised regeneration in aged mice. Differences in pseudotime alignment of myogenic nuclei when comparing aged with young mice via dynamic time warping revealed pseudotemporal differences becoming progressively more severe as regeneration proceeds. Disruptions in timing of myogenic gene expression programs may contribute to incomplete skeletal muscle regeneration and declines in muscle function as organisms age.


Assuntos
Núcleo Celular , Células-Tronco , Animais , Camundongos , Envelhecimento/genética , Músculo Esquelético , Expressão Gênica
12.
Cell Regen ; 11(1): 40, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456659

RESUMO

Skeletal muscle plays a critical role in human health. Muscle stem cells (MuSCs) serve as the major cell type contributing to muscle regeneration by directly differentiating to mature muscle cells. MuSCs usually remain quiescent with occasionally self-renewal and are activated to enter cell cycle for proliferation followed by differentiation upon muscle injury or under pathological conditions. The quiescence maintenance, activation, proliferation, and differentiation of MuSCs are tightly regulated. The MuSC cell-intrinsic regulatory network and the microenvironments work coordinately to orchestrate the fate transition of MuSCs. The heterogeneity of MuSCs further complicates the regulation of MuSCs. This review briefly summarizes the current progress on the heterogeneity of MuSCs and the microenvironments, epigenetic, and transcription regulations of MuSCs.

13.
Front Cell Dev Biol ; 10: 917771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669509

RESUMO

Adult skeletal muscle is mainly composed of post-mitotic, multinucleated muscle fibers. Upon injury, it has the unique ability to regenerate thanks to the activation of a subset of quiescent muscle stem cells (MuSCs). Activated MuSCs either differentiate to repair muscle, or self-renew to maintain the pool of MuSC. MuSC fate determination is regulated by an intricate network of intrinsic and extrinsic factors that control the expression of specific subsets of genes. Among these, the myogenic regulatory factors (MRFs) are key for muscle development, cell identity and regeneration. More globally, cell fate determination involves important changes in the epigenetic landscape of the genome. Such epigenetic changes, which include DNA methylation and post-translational modifications of histone proteins, are able to alter chromatin organization by controlling the accessibility of specific gene loci for the transcriptional machinery. Among the numerous epigenetic modifications of chromatin, extensive studies have pointed out the key role of histone methylation in cell fate control. Particularly, since the discovery of the first histone demethylase in 2004, the role of histone demethylation in the regulation of skeletal muscle differentiation and muscle stem cell fate has emerged to be essential. In this review, we highlight the current knowledge regarding the role of histone demethylases in the regulation of muscle stem cell fate choice.

14.
Skelet Muscle ; 12(1): 5, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151369

RESUMO

BACKGROUND: Lifelong regeneration of the skeletal muscle is dependent on a rare population of resident skeletal muscle stem cells, also named 'satellite cells' for their anatomical position on the outside of the myofibre and underneath the basal lamina. Muscle stem cells maintain prolonged quiescence, but activate the myogenic programme and the cell cycle in response to injury to expand a population of myogenic progenitors required to regenerate muscle. The skeletal muscle does not regenerate in the absence of muscle stem cells. MAIN BODY: The notion that lifelong regeneration of the muscle is dependent on a rare, non-redundant population of stem cells seems contradictory to accumulating evidence that muscle stem cells have activated multiple stress response pathways. For example, muscle stem cell quiescence is mediated in part by the eIF2α arm of the integrated stress response and by negative regulators of mTORC1, two translational control pathways that downregulate protein synthesis in response to stress. Muscle stem cells also activate pathways to protect against DNA damage, heat shock, and environmental stress. Here, we review accumulating evidence that muscle stem cells encounter stress during their prolonged quiescence and their activation. While stress response pathways are classically described to be bimodal whereby a threshold dictates cell survival versus cell death responses to stress, we review evidence that muscle stem cells additionally respond to stress by spontaneous activation and fusion to myofibres. CONCLUSION: We propose a cellular stress test model whereby the prolonged state of quiescence and the microenvironment serve as selective pressures to maintain muscle stem cell fitness, to safeguard the lifelong regeneration of the muscle. Fit muscle stem cells that maintain robust stress responses are permitted to maintain the muscle stem cell pool. Unfit muscle stem cells are depleted from the pool first by spontaneous activation, or in the case of severe stress, by activating cell death or senescence pathways.


Assuntos
Mioblastos , Células Satélites de Músculo Esquelético , Diferenciação Celular/genética , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco
15.
Cell Metab ; 34(6): 902-918.e6, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584694

RESUMO

Short-term fasting is beneficial for the regeneration of multiple tissue types. However, the effects of fasting on muscle regeneration are largely unknown. Here, we report that fasting slows muscle repair both immediately after the conclusion of fasting as well as after multiple days of refeeding. We show that ketosis, either endogenously produced during fasting or a ketogenic diet or exogenously administered, promotes a deep quiescent state in muscle stem cells (MuSCs). Although deep quiescent MuSCs are less poised to activate, slowing muscle regeneration, they have markedly improved survival when facing sources of cellular stress. Furthermore, we show that ketone bodies, specifically ß-hydroxybutyrate, directly promote MuSC deep quiescence via a nonmetabolic mechanism. We show that ß-hydroxybutyrate functions as an HDAC inhibitor within MuSCs, leading to acetylation and activation of an HDAC1 target protein p53. Finally, we demonstrate that p53 activation contributes to the deep quiescence and enhanced resilience observed during fasting.


Assuntos
Jejum , Proteína Supressora de Tumor p53 , Ácido 3-Hidroxibutírico , Jejum/fisiologia , Músculos , Mioblastos
16.
Cell Regen ; 11(1): 13, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35366685

RESUMO

Long non-coding (lnc) RNA plays important roles in many cellular processes. The function of the vast majority of lncRNAs remains unknown. Here we identified that lncRNA-1700113A16RIK existed in skeletal muscle stem cells (MuSCs) and was significantly elevated during MuSC differentiation. Knockdown of 1700113A16RIK inhibits the differentiation of muscle stem cells. In contrast, overexpression of 1700113A16RIK promotes the differentiation of muscle stem cells. Further study shows the muscle specific transcription factor Myogenin (MyoG) positively regulates the expression of 1700113A16RIK by binding to the promoter region of 1700113A16RIK. Mechanistically, 1700113A16RIK may regulate the expression of myogenic genes by directly binding to 3'UTR of an important myogenic transcription factor MEF2D, which in turn promotes the translation of MEF2D. Taken together, our results defined 1700113A16RIK as a positive regulator of MuSC differentiation and elucidated a mechanism as to how 1700113A16RIK regulated MuSC differentiation.

17.
Contemp Clin Trials Commun ; 28: 100940, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35664505

RESUMO

Prolonged Exposure (PE) therapy is one of the most efficacious, evidence-based treatments for posttraumatic stress disorder (PTSD). A key component of PE involves in vivo exposures (IVEs) during which patients approach situations or activities in "real life" that are safe but avoided because they elicit a fear response. Despite their critical role in treatment, little research has focused on IVEs. This gap in knowledge is primarily due to the fact that IVEs are typically conducted by patients in between therapy sessions, leaving clinicians reliant upon patient self-report. This approach has numerous shortcomings, which the current study addresses by leveraging technology to develop an innovative device that allows for physiological, biomarker-driven, therapist-guided IVEs. The new system enables clinicians to virtually accompany patients during IVEs and provides real-time physiological (heart rate, skin conductance) and self-report (subjective units of distress) data that clinicians can use to modify the exposure and optimize therapeutic value. This Small Business Innovation Research (SBIR) Phase I project aims to: (1) integrate physiological sensors and live audio/visual streaming into a system for clinicians to guide patients during IVEs; (2) determine feasibility and acceptability of the system; and (3) conduct a pilot randomized clinical trial among veterans with PTSD (N = 40) to evaluate the preliminary efficacy of the system in reducing PTSD symptoms during PE. This paper describes the rationale, design, and methodology of the Phase I project. The findings from this study have the potential to innovate clinical practice, advance the science of exposure therapy, and improve clinical outcomes.

18.
Mult Scler Relat Disord ; 56: 103324, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34656933

RESUMO

OBJECTIVE: This study aimed to report the severity of COVID-19 in a cohort of Egyptian patients with multiple sclerosis (MS) with particular attention on the impact of disease modifying drugs (DMDs). METHODS AND STUDY POPULATION: We included 119 MS patients recruited from two centers, Ain-Shams university and Cairo university with confirmed or suspected COVID-19 during the period from May to September 2020 as a part of the MuSC-19 project. Univariate logistic regression was fitted to assess risk factors for severe COVID-19 (at least one outcome among hospitalization, ICU admission and death). RESULTS: Females were 77%, mean age was 34 years, mean duration of MS was 5.28 years, median EDSS was 3, most of the patients (83%) had RRMS, while 15% and 2% had respectively SPMS and PPMS. Only eleven patients (9% of study population) had a severe outcome and 3 patients (3%) died. Headache was the only symptom significantly associated with the severity of COVID-19 (OR=10.85, P = 0.001). There was no association between any of the DMDs and severe COVID-19 outcome. CONCLUSION: This study showed an acceptable safety profile of DMDs in Egyptian MS patients who developed COVID-19, as 91% of the cohort had a favorable outcome. Headache as a symptom associated with severe outcome in Egyptian patients' needs further validation.


Assuntos
COVID-19 , Esclerose Múltipla , Adulto , Estudos de Coortes , Egito/epidemiologia , Feminino , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/epidemiologia , SARS-CoV-2
19.
Bio Protoc ; 11(17): e4149, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34604454

RESUMO

Skeletal muscles generate force throughout life and require maintenance and repair to ensure efficiency. The population of resident muscle stem cells (MuSCs), termed satellite cells, dwells beneath the basal lamina of adult myofibres and contributes to both muscle growth and regeneration. Upon exposure to activating signals, MuSCs proliferate to generate myoblasts that differentiate and fuse to grow or regenerate myofibres. This myogenic progression resembles aspects of muscle formation and development during embryogenesis. Therefore, the study of MuSCs and their associated myofibres permits the exploration of muscle stem cell biology, including the cellular and molecular mechanisms underlying muscle formation, maintenance and repair. As most aspects of MuSC biology have been described in rodents, their relevance to other species, including humans, is unclear and would benefit from comparison to an alternative vertebrate system. Here, we describe a procedure for the isolation and immunolabelling or culture of adult zebrafish myofibres that allows examination of both myofibre characteristics and MuSC biology ex vivo. Isolated myofibres can be analysed for morphometric characteristics such as the myofibre volume and myonuclear domain to assess the dynamics of muscle growth. Immunolabelling for canonical stemness markers or reporter transgenes identifies MuSCs on isolated myofibres for cellular/molecular studies. Furthermore, viable myofibres can be plated, allowing MuSC myogenesis and analysis of proliferative and differentiative dynamics in primary progenitor cells. In conclusion, we provide a comparative system to amniote models for the study of vertebrate myogenesis, which will reveal fundamental genetic and cellular mechanisms of MuSC biology and inform aquaculture. Graphic abstract: Schematic of Myofibre Isolation and Culture of Muscle Stem Cells from Adult Zebrafish.

20.
Curr Protoc Mouse Biol ; 8(3): e47, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30106515

RESUMO

Muscle stem cells (MuSCs) are essential for maintaining muscle homeostasis by providing progenitor cells for muscle regeneration after injury and in muscular diseases. MuSC properties dynamically change, reflecting physiology or pathological status. For instance, MuSCs are activated after muscle injury, but become exhausted in late stages of Duchenne Muscular Dystrophy (DMD) disease and senescent during aging. Therefore, characterization of MuSCs, including proliferation, activation, senescence, and apoptosis, etc., is very important in applying MuSC knowledge to regenerative medicine, such as in the treatment of DMD and to improve muscle function in aging. Here, we describe a detailed method for characterizing MuSCs in situ using immunostaining techniques in the mouse. This method can also be easily adapted to analyze other skeletal muscle properties. © 2018 by John Wiley & Sons, Inc.


Assuntos
Mioblastos/citologia , Mioblastos/fisiologia , Coloração e Rotulagem/métodos , Animais , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA