Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 45(9): 827-838, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29936578

RESUMO

Maltose metabolism of baker's yeast (Saccharomyces cerevisiae) in lean dough is suppressed by the glucose effect, which negatively affects dough fermentation. In this study, differences and interactions among SNF4 (encoding for the regulatory subunit of Snf1 kinase) overexpression and REG1 and REG2 (which encodes for the regulatory subunits of the type I protein phosphatase) deletions in maltose metabolism of baker's yeast were investigated using various mutants. Results revealed that SNF4 overexpression and REG1 and REG2 deletions effectively alleviated glucose repression at different levels, thereby enhancing maltose metabolism and leavening ability to varying degrees. SNF4 overexpression combined with REG1/REG2 deletions further enhanced the increases in glucose derepression and maltose metabolism. The overexpressed SNF4 with deleted REG1 and REG2 mutant ΔREG1ΔREG2 + SNF4 displayed the highest maltose metabolism and strongest leavening ability under the test conditions. Such baker's yeast strains had excellent potential applications.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas de Transporte/genética , Deleção de Genes , Maltose/metabolismo , Proteína Fosfatase 1/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/genética , Simportadores/metabolismo , Fatores de Transcrição/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
2.
Microb Cell Fact ; 16(1): 194, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121937

RESUMO

BACKGROUND: Tup1 is a general transcriptional repressor of diverse gene families coordinately controlled by glucose repression, mating type, and other mechanisms in Saccharomyces cerevisiae. Several functional domains of Tup1 have been identified, each of which has differing effects on transcriptional repression. In this study, we aim to investigate the role of Tup1 and its domains in maltose metabolism of industrial baker's yeast. To this end, a battery of in-frame truncations in the TUP1 gene coding region were performed in the industrial baker's yeasts with different genetic background, and the maltose metabolism, leavening ability, MAL gene expression levels, and growth characteristics were investigated. RESULTS: The results suggest that the TUP1 gene is essential to maltose metabolism in industrial baker's yeast. Importantly, different domains of Tup1 play different roles in glucose repression and maltose metabolism of industrial baker's yeast cells. The Ssn6 interaction, N-terminal repression and C-terminal repression domains might play roles in the regulation of MAL transcription by Tup1 for maltose metabolism of baker's yeast. The WD region lacking the first repeat could influence the regulation of maltose metabolism directly, rather than indirectly through glucose repression. CONCLUSIONS: These findings lay a foundation for the optimization of industrial baker's yeast strains for accelerated maltose metabolism and facilitate future research on glucose repression in other sugar metabolism.


Assuntos
Maltose/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Metabolismo dos Carboidratos , Fermentação , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 288(40): 28581-98, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23950181

RESUMO

Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan acceptor. It has recently been suggested that DPE2 generates a heterogeneous series of terminal glucan chains on the heteroglycan that acts as a "glucosyl buffer" to ensure a constant rate of sucrose synthesis in the leaf at night. Alternatively, DPE2 and/or the heteroglycan may have specific properties important for their function in the plant. To distinguish between these ideas, we compared the properties of DPE2 with those of the Escherichia coli glucanotransferase MalQ. We found that MalQ cannot use the plant heteroglycan as an acceptor for glucosyl transfer. However, experimental and modeling approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed in mutant Arabidopsis plants lacking DPE2. In light of these findings, we discuss the possible evolutionary origins of the complex DPE2-heteroglycan pathway.


Assuntos
Escuridão , Escherichia coli/enzimologia , Glucosiltransferases/metabolismo , Maltose/metabolismo , Folhas de Planta/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Soluções Tampão , Citosol/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Glucosiltransferases/química , Metabolômica , Mutação/genética , Oligossacarídeos/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Food Microbiol ; 37: 2-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24230468

RESUMO

Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds.


Assuntos
Pão/microbiologia , Grão Comestível/enzimologia , Farinha/microbiologia , Lactobacillus/metabolismo , Proteínas de Plantas/metabolismo , Pão/análise , Grão Comestível/química , Grão Comestível/microbiologia , Fermentação , Farinha/análise
5.
Anaerobe ; 30: 199-204, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152227

RESUMO

Clostridium perfringens is a Gram-positive rod that is widely distributed in nature and is the etiological agent of several human and animal diseases. The complete genome sequence of C. perfringens strain 13 has been determined and multiple two-component signal transduction systems identified. One of these systems, designated here as the MalNO system, was analyzed in this study. Microarray analysis was used to carry out functional analysis of a malO mutant. The results, which were confirmed by quantitative reverse-transcriptase PCR, indicated that genes putatively involved in the uptake and metabolism of maltose were up-regulated in the malO mutant. These effects were reversed by complementation with the wild-type malO gene. Growth of these isogenic strains in medium with and without maltose showed that the malO mutant recovered more quickly from maltose deprivation when compared to the wild-type and complemented strains, leading to the conclusion that the MalNO system regulates maltose utilization in C. perfringens. It is postulated that this regulatory network may allow this soil bacterium and opportunistic pathogen to respond to environmental conditions where there are higher concentrations of maltose or maltodextrins, such as in the presence of decaying plant material in rich soil.


Assuntos
Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Regulação Bacteriana da Expressão Gênica , Maltose/metabolismo , Transdução de Sinais , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo
6.
Front Microbiol ; 12: 665261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140941

RESUMO

Glucose repression is a key regulatory system controlling the metabolism of non-glucose carbon source in yeast. Glucose represses the utilization of maltose, the most abundant fermentable sugar in lean dough and wort, thereby negatively affecting the fermentation efficiency and product quality of pasta products and beer. In this study, the focus was on the role of three kinases, Elm1, Tos3, and Sak1, in the maltose metabolism of baker's yeast in lean dough. The results suggested that the three kinases played different roles in the regulation of the maltose metabolism of baker's yeast with differential regulations on MAL genes. Elm1 was necessary for the maltose metabolism of baker's yeast in maltose and maltose-glucose, and the overexpression of ELM1 could enhance the maltose metabolism and lean dough fermentation ability by upregulating the transcription of MALx1 (x is the locus) in maltose and maltose-glucose and MALx2 in maltose. The native level of TOS3 and SAK1 was essential for yeast cells to adapt glucose repression, but the overexpression of TOS3 and SAK1 alone repressed the expression of MALx1 in maltose-glucose and MALx2 in maltose. Moreover, the three kinases might regulate the maltose metabolism via the Snf1-parallel pathways with a carbon source-dependent manner. These results, for the first time, suggested that Elm1, rather than Tos3 and Sak1, might be the dominant regulator in the maltose metabolism of baker's yeast. These findings provided knowledge about the glucose repression of maltose and gave a new perspective for breeding industrial yeasts with rapid maltose metabolism.

7.
Foods ; 7(4)2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614773

RESUMO

Saccharomyces cerevisiae MCD4 is a 2-deoxyglucose (2-DOG)-resistant mutant derived from the wild-type strain, AK46, wherein the 2-DOG resistance improves the maltose fermentative ability. In the MAL gene cluster, mutations were detected in MAL11 and MAL31, which encode maltose permeases, and in MAL13 and MAL33, which encode transcriptional activators. In maltose medium, the expression of MAL11 and MAL31 in MCD4 was 2.1 and 4.2 times significantly higher than that in AK46, respectively. Besides, the expression of MAL13 and MAL33 also tended to be higher than that of AK46. Although no mutations were found in MAL12 and MAL32 (which encode α-glucosidases), their expression was significantly higher (4.9 and 4.4 times, respectively) than that in AK46. Since the expression of major catabolite repression-related genes did not show significant differences between MCD4 and AK46, these results showed that the higher maltose fermentative ability of MCD4 is due to the activation of MAL genes encoding two maltose permeases and two α-glucosidases.

8.
Int J Food Microbiol ; 272: 12-21, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29505955

RESUMO

Lactobacilli derive metabolic energy mainly from carbohydrate fermentation. Homofermentative and heterofermentative lactobacilli exhibit characteristic differences in carbohydrate transport and regulation of metabolism, however, enzymes for carbohydrate transport in heterofermentative lactobacilli are poorly characterized. This study aimed to identify carbohydrate active enzymes in the L. reuteri strains LTH2584, LTH5448, TMW1.656, TMW1.112, 100-23, mlc3, and lpuph by phenotypic analysis and comparative genomics. Sourdough and intestinal isolates of L. reuteri displayed no difference in the number and type of carbohydrate-active enzymes encoded in the genome. Predicted sugar transporters encoded by genomes of L. reuteri strains were secondary carriers and most belong to the major facilitator superfamily. The quantification of gene expression during growth in sourdough and in chemically defined media corresponded to the predicted function of the transporters MalT, ScrT and LacS as carriers for maltose, sucrose, and lactose or raffinose, respectively. The genotype for sugar utilization matched the fermentation profile of 39 sugars for L. reuteri strains, and indicated preference for maltose, sucrose, raffinose and (iso)-malto-oligosaccharides, which are available in sourdough and in the upper intestine of rodents. Pentose utilization in L. reuteri species was strain-specific but independent of the origin or phylogenetic position of isolates. Two glycosyl hydrolases, licheninase (EC 3.2.1.73) and endo-1, 4-ß-galactosidase (EC 3.2.1.89) were identified based on conserved domains. In conclusion, the study identified the lack of PTS systems, preference for secondary carriers for carbohydrate transport, and absence of carbon catabolite repression as characteristic features of the carbohydrate metabolism in the heterofermentative L. reuteri.


Assuntos
Glicosídeo Hidrolases/genética , Limosilactobacillus reuteri , Maltose/metabolismo , Rafinose/metabolismo , Sacarose/metabolismo , beta-Galactosidase/genética , Transporte Biológico/genética , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Metabolismo Energético/genética , Fermentação/genética , Fermentação/fisiologia , Genômica , Limosilactobacillus reuteri/enzimologia , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Fenótipo , Filogenia
9.
J Food Sci ; 80(12): M2879-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26580148

RESUMO

Maltose metabolism of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression, thereby delaying the dough fermentation. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. The Snf1 protein kinase is well known to be essential for the response to glucose repression and required for transcription of glucose-repressed genes including the maltose-utilization genes (MAL). In this study, the SNF1 overexpression and deletion industrial baker's yeast strains were constructed and characterized in terms of maltose utilization, growth and fermentation characteristics, mRNA levels of MAL genes (MAL62 encoding the maltase and MAL61 encoding the maltose permease) and maltase and maltose permease activities. Our results suggest that overexpression of SNF1 was effective to glucose derepression for enhancing MAL expression levels and enzymes (maltase and maltose permease) activities. These enhancements could result in an 18% increase in maltose metabolism of industrial baker's yeast in LSMLD medium (the low sugar model liquid dough fermentation medium) containing glucose and maltose and a 15% increase in leavening ability in lean dough. These findings provide a valuable insight of breeding industrial baker's yeast for rapid fermentation.


Assuntos
Pão , Fermentação , Manipulação de Alimentos , Maltose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microbiologia de Alimentos , Genes Fúngicos , Glucose/metabolismo , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Simportadores/genética , Simportadores/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
10.
J Biotechnol ; 209: 1-6, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26073997

RESUMO

Maltose metabolism and leavening ability of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. In this study, we focus on the effects of regulators (GLC7 encoding the catalytic and REG1 encoding the regulatory subunits of protein phosphatase type 1) of glucose repression on maltose metabolism and leavening ability of baker's yeast in lean dough. To this end, GLC7 and/or REG1 deletions were constructed and characterized in terms of the growth characteristics, maltose metabolism, leavening ability, and enzyme activities. The results suggest that GLC7 and/or REG1 deletions increased maltose metabolism and leavening ability at different level with glucose derepression and increased enzymes (maltase and maltose permease) activities. In a medium containing glucose and maltose, at the point of glucose exhaustion the maltose metabolized and the leavening ability were increased 59.3% and 23.1%, respectively, in the case of a REG1 single gene deletion.


Assuntos
Deleção de Genes , Maltose/biossíntese , Proteína Fosfatase 1/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fermentação , Farinha/microbiologia , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteína Fosfatase 1/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA