Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biochem Biophys Res Commun ; 661: 64-74, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37087800

RESUMO

Myocardial infarction (MI) contributes to an increased risk of incident heart failure and sudden death, but there is still a lack of effective treatment in clinic. Recently, growing evidence has indicated that abnormal expression of microRNAs (miRNAs) plays a crucial role in cardiovascular diseases. In this research, the involvement of miRNA-214-3p in MI was explored. A mouse model of MI was established by ligation of the left anterior descending coronary artery, and primary cultures of neonatal rat cardiomyocytes (NRCMs) were submitted to hypoxic treatment to stimulate cellular injury in vitro. Our results showed that miR-214-3p level was significantly upregulated in the infarcted region of mouse hearts and in NRCMs exposed to hypoxia, accompanying with an obvious elevation of ferroptosis. Inhibition of miR-214-3p by antagomir injection improved cardiac function, decreased infarct size, and attenuated iron accumulation and oxidant stress in myocardial tissues. MiR-214-3p could also promote ferroptosis and cellular impairments in NRCMs, while miR-214-3p inhibitor effectively protected cells from hypoxia. Furthermore, dual luciferase reporter gene assay revealed that malic enzyme 2 (ME2) is a direct target of miR-214-3p. In cardiomyocytes, overexpression of ME2 ameliorated the detrimental effects and excessive ferroptosis induced by miR-214-3p mimic, whereas ME2 depletion compromised the protective role of miR-214-3p inhibitor against hypoxic injury and ferroptosis. These findings suggest that miR-214-3p contributes to enhanced ferroptosis during MI at least partially via suppressing ME2. Inhibition of miR-214-3p may be a new approach for tackling MI.


Assuntos
Ferroptose , MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Ratos , Apoptose , Hipóxia/metabolismo , MicroRNAs/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
2.
Mol Cell Biochem ; 478(3): 597-608, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35980563

RESUMO

A list of microRNAs (miRs) has been referred to involve in the development of hypoxic-ischemic brain damage (HIBD). Based on that, we probed the concrete role of miR-214-3p regulating thioredoxin-interacting protein (TXNIP) in the illness. A neonatal HIBD mouse model was established using the Rice-Vannucci method, followed by measurements of miR-214-3p and TXNIP levels in brain tissues. After modeling, mice were given brain injection of the compounds that could alter miR-214-3p and TXNIP expression. Afterward, neurological function, neuronal inflammation, neuronal apoptosis, neuron morphology, and the number of Nissl body were assessed in HIBD mice. The binding of miR-214-3p to TXNIP was analyzed. Lower miR-214-3p and higher TXNIP were analyzed in brain tissues of mice with HIBD. Up-regulating miR-214-3p or depleting TXNIP improved neurological function, reduced neuronal inflammation and neuronal apoptosis, attenuated morphological damage of neurons, and increased the number of Nissl bodies in mice with HIBD. TXNIP was targeted by miR-214-3p and overexpressing TXNIP reversed the therapeutic effect of miR-214-3p on HIBD mice. It is noted that promotion of miR-214-3p relieves HIBD in mice through inhibiting TXNIP expression.


Assuntos
Hipóxia-Isquemia Encefálica , MicroRNAs , Animais , Camundongos , Hipóxia-Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Encéfalo/metabolismo , Apoptose , Animais Recém-Nascidos , Proteínas de Transporte/metabolismo , Tiorredoxinas/metabolismo
3.
Ren Fail ; 45(2): 2261552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37782276

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are promising biomarkers and therapeutic targets for acute kidney injury (AKI). In this study, we investigated the mechanism by which circRNA itchy E3 ubiquitin protein ligase (circ-ITCH) regulates sepsis-induced AKI. METHODS: A sepsis-induced AKI mouse model was created using LPS induction and circ-ITCH overexpression. Circ-ITCH levels were confirmed via RT-qPCR. Kidney tissue changes were examined through various stains and TUNEL. Enzyme-linked immunosorbent assay (ELISA) gauged oxidative stress and inflammation. Mitochondrial features were studied with electron microscopy. RT-qPCR and western blotting assessed mitochondrial function parameters. Using starBase, binding sites between circ-ITCH and miR-214-3p, as well as miR-214-3p and ABCA1, were predicted. Regulatory connections were proven by dual-luciferase assay, RT-qPCR, and western blotting. RESULTS: Circ-ITCH expression was downregulated in LPS-induced sepsis mice. Overexpression of circ-ITCH ameliorates indicators of renal function (serum creatinine [SCr], blood urea nitrogen [BUN], neutrophil gelatinase-associated lipocalin [NGAL], and kidney injury molecule-1 [Kim-1]), reduces renal cell apoptosis, mitigates oxidative stress markers (reactive oxygen species [ROS] and malondialdehyde [MDA]), and diminishes inflammatory markers (interleukin [IL]-1ß, IL-6, and tumor necrosis factor [TNF-α]). Moreover, circ-ITCH overexpression alleviated mitochondrial damage and dysfunction. Furthermore, circ-ITCH acts as a sponge for miR-214-3p, thereby upregulating ABCA1 expression. In addition, the miR-214-3p inhibitor repressed oxidative stress, inflammation, and mitochondrial dysfunction, which was reversed by circ-ITCH knockdown. Further cellular analysis in HK-2 cells supported these findings, highlighting the protective role of circ-ITCH against sepsis-induced AKI, particularly through the miR-214-3p/ABCA1 axis. CONCLUSION: The novel circ-ITCH/miR-214-3p/ABCA1 pathway plays an essential role in the regulation of oxidative stress and mitochondrial dysfunction in sepsis-induced AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Animais , Camundongos , RNA Circular/genética , Lipopolissacarídeos , Injúria Renal Aguda/genética , Sepse/complicações , Apoptose , Trifosfato de Adenosina
4.
J Gene Med ; 24(1): e3391, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612550

RESUMO

BACKGROUND: Circular RNA itchy E3 ubiquitin protein ligase (circ-ITCH) has previously been reported to play a key role in carcinogenesis. Nevertheless, the role of circ-ITCH in nasopharyngeal carcinoma (NPC) remains to be explored. METHODS: Gene expression analysis was performed using a quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. The role of circ-ITCH in NPC was explored using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, colony formation, transwell invasion, scratch healing and xenograft tumor assays. Furthermore, luciferase reporter assay was carried out to assess the interactions among circ-ITCH, microRNA-214 (miR-214) and phosphatase and tensin homolog (PTEN). RESULTS: The levels of circ-ITCH and PTEN were decreased, whereas the level of miR-214 was increased in NPC tissues collected from 28 subjects compared to normal nasopharynx tissues collected from 15 subjects. Moreover, a negative correlation between circ-ITCH and miR-214 expression and a positive correlation between circ-ITCH and PTEN expression were observed in NPC tissues. Downregulation of circ-ITCH expression was also observed in NPC cell lines. In addition, upregulation of circ-ITCH markedly inhibited NPC cell proliferation, migration and invasion. Furthermore, circ-ITCH was confirmed to exert its function by sponging miR-214. PTEN was found to be a direct target gene of miR-214 and its expression was negatively correlated with miR-214 expression in NPC tissues. Moreover, our results showed that the circ-ITCH/miR-214 axis regulated NPC proliferation, migration and invasion through regulating the expression of PTEN. Upregulation of circ-ITCH or PTEN blocked miR-214-mediated promotion of NPC tumorigenesis in vitro. Additionally, upregulation of circ-ITCH also suppressed NPC tumorigenesis in vivo. CONCLUSIONS: The present study demonstrated that circ-ITCH suppressed NPC tumorigenesis by upregulating PTEN expression through interacting with miR-214, thus proposing a novel mechanism for NPC inhibition.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , RNA Circular , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Circular/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
5.
Pediatr Surg Int ; 38(1): 115-122, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34546403

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play an important role in regulating fibrogenesis in the liver. The current study examined the ability of microRNA-214 (miR-214) level in liver and serum samples obtained from patients with BA to predict progressive liver fibrosis in patients with biliary atresia (BA). METHODS: We examined miR-214 level in relation to conventional markers of liver fibrosis, with liver and serum samples from BA patients. Fifty-two patients with BA who underwent Kasai portoenterostomy and four control patients underwent liver biopsy. In 28 patients with BA, blood samples were collected to analyze circulating serum miR-214. RESULTS: MiR-214 levels in liver tissue were significantly upregulated in patients with BA who had severe liver fibrosis (F3-4) compared to those with none to mild fibrosis (F0-2), whereas suppressors-of-fused homolog (Sufu) mRNA levels were significantly suppressed in F3-4. Serum miR-214 levels were significantly higher in patients with F3-4 compared with F0-2. Area under the curve analysis showed that the serum miR-214 cut-off level for predicting F3-4 was 0.805 (p = 0.0046). CONCLUSION: Hepatic overexpression of miR-214 is associated with progression of liver fibrosis in patients with BA, and the circulating miR-214 level may serve as a non-invasive predictor of liver fibrosis.


Assuntos
Atresia Biliar , MicroRNAs , Atresia Biliar/cirurgia , Biomarcadores , Humanos , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , MicroRNAs/genética , Portoenterostomia Hepática
6.
J Cell Mol Med ; 25(8): 3714-3723, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33635564

RESUMO

Genetic variations in the 3'UTR of mRNAs as well as sequences of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) can affect gene expression by interfering with the binding between them. In this study, we investigated the role of the following polymorphisms in the risk of hypertension: the 774T > C (rs17337023) polymorphism located in the EGFR 3' untranslated region (3'UTR), the rs884225 polymorphism located in the sequence of miR-214, and the single nucleotide polymorphisms (SNPs) rs325797437, rs344501106, rs81286029 and rs318656749 located in the promoter of lncRNA MEG3. Taqman genotyping assays and haplotype analysis tools were used to measure the MEG3 haplotypes and the rs17337023 and rs884225 polymorphisms genotypes. The relationship between MEG3, miR-214 and EGFR was validated using computational analysis and luciferase assays. Unlike other polymorphisms, only patients grouped according to their rs884225 genotypes exhibited varied EGFR mRNA and protein levels, which indicated that the rs884225 genotype is associated with the expression of EGFR mRNA and protein levels. MiR-214 was confirmed to bind to MEG3 and 3'UTR of EGFR by showing that the transfection of exogenous miR-214 significantly down-regulated the luciferase activity of A549 and H460 cells transfected with wild-type MEG3 or wild-type EGFR 3' UTR. Additionally, MEG3 overexpression inhibited miR-214 expression while elevating the EGFR mRNA and protein expressions. Meanwhile, MEG3 down-regulation demonstrated an opposite result, thus establishing the MEG3/miR-214/EGRF signalling pathway. Our study confirmed that the T > C substitution of rs884225 polymorphism located in miR-214 binding site in the 3'UTR of EGFR is associated with increased risk of primary hypertension.


Assuntos
Regiões 3' não Traduzidas/genética , Hipertensão Essencial/genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/metabolismo , Adulto , Sítios de Ligação , Estudos de Casos e Controles , Receptores ErbB/genética , Receptores ErbB/metabolismo , Hipertensão Essencial/metabolismo , Hipertensão Essencial/patologia , Feminino , Genótipo , Humanos , Masculino , MicroRNAs/genética , Prognóstico , RNA Longo não Codificante/genética
7.
J Cell Mol Med ; 25(4): 2025-2039, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33393160

RESUMO

Studies have shown that long non-coding RNA (lncRNA) MEG3 plays a key role in osteoporosis (OP), but its regulatory mechanism is somewhat incompletely clear. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA-214 (miR-214) and thioredoxin-interacting protein (TXNIP). Rat models of OP were established. MEG3, miR-214 and TXNIP mRNA expression in rat femoral tissues were detected, along with TXNIP, OPG and RANKL protein expression. BMD, BV/TV, Tb.N and Tb.Th in tissue samples were measured. Ca, P and ALP contents in rat serum were also determined. Primary osteoblasts were isolated and cultured. Viability, COL-I, COL-II and COL-Χ mRNA expression, PCNA, cyclin D1, OCN, RUNX2 and osteolix protein expresion, ALP content and activity, and mineralized nodule area of rat osteoblasts were further detected. Dual-luciferase reporter gene and RNA-pull down assays verified the targeting relationship between MEG3, miR-214 and TXNIP. MEG3 and TXNIP were up-regulated while miR-214 was down-regulated in femoral tissues of OP rats. MEG3 silencing and miR-214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, trabecular bone area, collagen area and OPG expression, and down-regulated RANKL of femoral tissues in OP rats. MEG3 silencing and miR-214 overexpression elevated Ca and P and reduced ALP in OP rat serum, elevated osteoblast viability, differentiation ability, COL-I and COL-Χ expression and ALP activity, and reduced COL-II expression of osteoblasts. MEG3 specifically bound to miR-214 to regulate TXNIP. MEG3 silencing and miR-214 overexpression promote proliferation and differentiation of osteoblasts in OP by down-regulating TXNIP, which further improves OP.


Assuntos
Proteínas de Ciclo Celular/genética , Inativação Gênica , MicroRNAs/genética , Osteoporose/genética , Osteoprotegerina/genética , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas , Animais , Biomarcadores , Diferenciação Celular/genética , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Modelos Biológicos , Osteoblastos/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Interferência de RNA , Ratos
8.
Mol Med ; 27(1): 109, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530740

RESUMO

BACKGROUND: Recently, the role of several microRNAs (miRNAs or miRs) in pulmonary diseases has been described. The molecular mechanisms by which miR-214 is possibly implicated in bronchopulmonary dysplasia (BPD) have not yet been addressed. Hence, this study aimed to investigate a putative role of miR-214 in alveolarization among preterm neonates with BPD. METHODS: Microarray-based gene expression profiling data from BPD was employed to identify differentially expressed genes. A BPD neonatal rat model was induced by hyperoxia. Pulmonary epithelial cells were isolated from rats and exposed to hyperoxia to establish cell injury models. Gain- and loss-of-function experiments were performed in BPD neonatal rats and hyperoxic pulmonary epithelial cells. MiR-214 and PlGF expression in BPD neonatal rats, and eNOS, Bcl-2, c-myc, Survivin, α-SMA and E-cadherin expression in hyperoxic pulmonary epithelial cells were measured using RT-qPCR and Western blot analysis. The interaction between PlGF and miR-214 was identified using dual luciferase reporter gene and RIP assays. IL-1ß, TNF-a, IL-6, ICAM-1 and Flt-1 expression in the rat models was measured using ELISA. RESULTS: The lung tissues of neonatal rats with BPD showed decreased miR-214 expression with elevated PlGF expression. PlGF was found to be a target of miR-214, whereby miR-214 downregulated PlGF to inactivate the STAT3 pathway. miR-214 overexpression or PlGF silencing decreased the apoptosis of hyperoxic pulmonary epithelial cells in vitro and restored alveolarization in BPD neonatal rats. CONCLUSION: Overall, the results demonstrated that miR-214 could facilitate alveolarization in preterm neonates with BPD by suppressing the PlGF-dependent STAT3 pathway.


Assuntos
Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Fator de Crescimento Placentário/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Apoptose , Biomarcadores , Displasia Broncopulmonar/diagnóstico , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Imuno-Histoquímica , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/ultraestrutura , Ratos
9.
J Gene Med ; 23(9): e3366, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34032330

RESUMO

BACKGROUND: Stromal cell-derived factor-1 (SDF-1) plays an important role in the osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMMSCs), but the specific mechanism remains unclear. Our study aimed to clarify the role of the lncRNA-H19/miR-214-5p/BMP2 axis in the osteoblastic differentiation of hBMMSCs induced by SDF-1. METHODS: We used reverse-transcriptase polymerase chain reaction, western blotting, alkaline phosphatase activity test, and Alizarin red staining to evaluate the osteoblastic differentiation of primary hBMMSCs and the luciferase reporter assay to determine if lncRNA-H19 binds with miR-214-5p. RESULTS: Our results indicated that SDF-1 (50 ng/mL) promotes the osteoblastic differentiation of hBMMSCs, significantly upregulates osteoblastogenic genes (OCN, OSX, RUNX2, and ALP), and increases Alizarin red staining, alkaline phosphatase activity, and lncRNA-H19 expression. Luciferase reporter assay verified that lncRNA-H19 binds with and represses miR-214-5p, thereby upregulating BMP2 expression. Use of miR-214-5p inhibitor or overexpression of lncRNA-H19 can promote the osteoblastic differentiation of hBMMSCs, but miR-214-5p or shH19 inhibits the osteoblastic differentiation of hBMMSCs. Treatment with an miR-214-5p inhibitor could rescue the inhibitory effect of shH19 on the osteoblastic differentiation of hBMMSCs. CONCLUSIONS: Taken together, SDF-1 promotes the osteoblastic differentiation of hBMMSCs through the lncRNA-H19/miR-214-5p/BMP2 axis. Increased osteoblastic differentiation by an miR-214-5p inhibitor reveals a new possible strategy for the treatment of bone defect and osteoporosis.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Quimiocina CXCL12/fisiologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese , RNA Longo não Codificante/metabolismo , Idoso , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Pessoa de Meia-Idade
10.
FASEB J ; 34(10): 14042-14054, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910484

RESUMO

Diabetes mellitus (DM) patients are at a higher risk of developing brain injury characterized by neuronal death. Melatonin, a hormone produced by the pineal gland, exerts neuroprotective effects against brain damage. However, the effect of melatonin on diabetes-induced brain injury has not been elucidated. This study was to evaluate the role of melatonin against neuronal death in DM and to elucidate the underlying mechanisms. Herein, we found that melatonin administration significantly alleviated the neuronal death in both streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-treated neuronal cells. Melatonin inhibited neuronal pyroptosis and excessive autophagy, as evidenced by decreased levels of NLRP3, cleaved caspase-1, GSDMD-N, IL-1ß, LC3, Beclin1, and ATG12 both in vivo and in vitro. MicroRNA-214-3p (miR-214-3p) was decreased in DM mice and HG-treated cells, and such a downregulation was corrected by melatonin, which was accompanied by repression of caspase-1 and ATG12. Furthermore, downregulation of miR-214-3p abrogated the anti-pyroptotic and anti-autophagic actions of melatonin in vitro. Our results indicate that melatonin exhibits a neuroprotective effect by inhibiting neuronal pyroptosis and excessive autophagy through modulating the miR-214-3p/caspase-1 and miR-214-3p/ATG12 axes, respectively, and it might be a potential agent for the treatment of brain damage in the setting of DM.


Assuntos
Autofagia , Neuropatias Diabéticas/tratamento farmacológico , Melatonina/uso terapêutico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Piroptose , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 1/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Melatonina/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas de Ligação a Fosfato/metabolismo
11.
Lung ; 199(1): 63-72, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389067

RESUMO

PURPOSE: Ventilator-induced lung injury (VILI) is an additional inflammatory injury caused by mechanical ventilation (MV). This study aimed to determine the effects of microRNA-214 (miR-214) on VILI and its underlying mechanism of action. METHODS: To develop a VILI mouse model, mice were subjected to MV. The expression of miR-214 was detected by qRT-PCR. The macrophages, fibroblasts, epithelial cells, and endothelial cells were isolated from lung tissues by fluorescence-activated cell sorting. The histopathological changes of lung, lung wet/dry weight (W/D) ratio, and myeloperoxidase (MPO) activity were used to evaluate the degree of lung injury. The levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was performed to determine the interactions between miR-214 and FGFR1. Western blot was used to detect the protein expression of FGFR1, p-AKT, and p-PI3K. RESULTS: The expression of miR-214 was increased in lung tissues and macrophages, fibroblasts, epithelial cells, and endothelial cells isolated from lung tissues in VILI mice. MiR-214 inhibition decreased the histopathological changes of lung, lung W/D ratio, MPO activity, and pro-inflammatory cytokines levels in BALF in VILI mice. FGFR1 was targeted by miR-214. The protein expression of FGFR1 was decreased in VILI mice. Ponatinib (FGFR1 inhibitor) reversed the suppressive effects of miR-214 inhibition on lung injury and inflammation of VILI mice. MiR-214 increased the activity of PI3K/AKT pathway by regulating FGFR1. CONCLUSIONS: Inhibition of miR-214 attenuated lung injury and inflammation in VILI mice by increasing FGFR1 expression, providing a novel therapeutic target for VILI.


Assuntos
Lesão Pulmonar Aguda/terapia , Imidazóis/farmacologia , Inflamação/terapia , MicroRNAs/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica
12.
BMC Anesthesiol ; 21(1): 203, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399695

RESUMO

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is a complication of surgical procedure associated with high mortality. The protective effect of dexmedetomidine (DEX) on CIRI has been explored in previous works, yet the underlying molecular mechanism remains unclear. Our study explored the protective effect of DEX and its regulatory mechanism on CIRI. METHODS: A CIRI rat model was established using middle cerebral artery occlusion (MCAO). Neurological deficit scores for rats received MCAO modeling or DEX treatment were measured. Cerebral infarction area of rats was detected by TTC staining, while damage of neurons in hippocampal regions of rats was determined by hematoxylin-eosin (HE) staining. Apoptosis rate of neurons in hippocampal regions was examined by TUNEL staining. The dual-luciferase assay was performed to detect the binding of microRNA-214 (miR-214) to Rho-associated kinase 1 (ROCK1). RESULTS: DEX treatment significantly reduced infarction area of MCAO rats and elevated miR-214 expression. Injection of miR-214 inhibitor attenuated the effect of DEX in MCAO rats by increasing the area of cerebral infarction in rats and apoptosis rate of hippocampal neurons. ROCK1 was targeted and negatively regulated by miR-214. The overexpression of ROCK1 led to activation of NF-κB to aggravate CIRI. CONCLUSION: Therapeutic effects of DEX on CIRI was elicited by overexpressing miR-214 and impairing ROCK1 expression and NF-κB activation. Our finding might provide novel insights into the molecular mechanism of DEX in rats with CIRI.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Dexmedetomidina/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Infarto da Artéria Cerebral Média , Masculino , MicroRNAs , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia , Quinases Associadas a rho/metabolismo
13.
Am J Respir Cell Mol Biol ; 62(4): 440-453, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697569

RESUMO

Abnormal activation of lung fibroblasts contributes to the initiation and progression of idiopathic pulmonary fibrosis (IPF). The objective of the present study was to investigate the role of fetal-lethal noncoding developmental regulatory RNA (FENDRR) in the activation of lung fibroblasts. Dysregulated long noncoding RNAs in IPF lungs were identified by next-generation sequencing analysis from the two online datasets. FENDRR expression in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis was determined by quantitative real-time PCR. IRP1 (iron-responsive element-binding protein 1), a protein partner of FENDRR, was identified by RNA pulldown-coupled mass spectrometric analysis and confirmed by RNA immunoprecipitation. The interaction region between FENDRR and IRP1 was determined by cross-linking immunoprecipitation. The in vivo role of FENDRR in pulmonary fibrosis was studied using adenovirus-mediated gene transfer in mice. The expression of FENDRR was downregulated in fibrotic human and mouse lungs as well as in primary lung fibroblasts isolated from bleomycin-treated mice. TGF-ß1 (transforming growth factor-ß1)-SMAD3 signaling inhibited FENDRR expression in lung fibroblasts. FENDRR was preferentially localized in the cytoplasm of adult lung fibroblasts and bound IRP1, suggesting its role in iron metabolism. FENDRR reduced pulmonary fibrosis by inhibiting fibroblast activation by reducing iron concentration and acting as a competing endogenous RNA of the profibrotic microRNA-214. Adenovirus-mediated FENDRR gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that FENDRR is an antifibrotic long noncoding RNA and a potential therapeutic target for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/genética , RNA Longo não Codificante/genética , Animais , Bleomicina/farmacologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/genética
14.
J Cell Mol Med ; 24(23): 13589-13599, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33147380

RESUMO

Duration of surgical general anaesthesia is associated with severe brain injury and neurological deficits. The specific mechanisms underlying post-general anaesthesia brain injury, however, still remain to be elucidated. Herein, we explore the role of microRNA-214 (miR-214) in the occurrence of brain injury after general anaesthesia and its underlying mechanism. Hippocampal tissues and neurons were isolated from rats exposed to 2% sevoflurane. TUNEL stains reflect hippocampal neuron apoptosis. Cultured hippocampal neurons stained with JC-1 and MitoTracker dyes were imaged by fluorescence microscope to visualize changes of mitochondrial membrane potential and mitochondrial fusion. Mitochondrial function was evaluated. Mitofusin 2 (Mfn2) binding to miR-214 or pyruvate kinase M2 (Pkm2) was confirmed by co-immunoprecipitation, immunofluorescence, dual luciferase reporter gene and RNA immunoprecipitation assays. After exposure to 2% sevoflurane, up-regulated miR-214 expression and impaired interaction between Mfn2 and Pkm2 were found in rat hippocampal tissues. Rats exposed to 2% sevoflurane also experienced neuronal injury, mitochondrial defects and deficits in the brain-derived neurotrophic factor (Bdnf) signalling. miR-214 was shown to target Mfn2 by impairing its binding with Pkm2. Inhibiting miR-214 expression using its specific inhibitor improved mitochondrial membrane potential, enhanced mitochondrial fusion, maintained mitochondrial function, restored interaction between Mfn2 and Pkm2, and activated the Bdnf signalling in cultured hippocampal neurons. Adenovirus infection of miR-214 inhibitor reduced neuron apoptosis and maintained mitochondrial function in the hippocampus of rats exposed to 2% sevoflurane. Taken together, the study demonstrates inhibition of miR-214 is cerebral protective against brain injury following general anaesthesia.


Assuntos
Anestesia Geral/efeitos adversos , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , MicroRNAs/genética , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Piruvato Quinase/metabolismo , Anestesia Geral/métodos , Animais , Lesões Encefálicas/prevenção & controle , Respiração Celular , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , Expressão Gênica , Regulação da Expressão Gênica , Hipocampo/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Oxirredução , Fosforilação Oxidativa , Ligação Proteica , Interferência de RNA , Ratos
15.
J Biol Chem ; 294(31): 11665-11674, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31217281

RESUMO

Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication that have the potential to improve cardiac function when used in cell-based therapy. However, the means by which cardiomyocytes respond to EVs remains unclear. Here, we sought to clarify the role of exosomes in improving cardiac function by investigating the effect of cardiomyocyte endocytosis of exosomes from mesenchymal stem cells on acute myocardial infarction (MI). Exposing cardiomyocytes to the culture supernatant of adipose-derived regenerative cells (ADRCs) prevented cardiomyocyte cell damage under hypoxia in vitro. In vivo, the injection of ADRCs into the heart simultaneous with coronary artery ligation decreased overall cardiac infarct area and prevented cardiac rupture after acute MI. Quantitative RT-PCR-based analysis of the expression of 35 known anti-apoptotic and secreted microRNAs (miRNAs) in ADRCs revealed that ADRCs express several of these miRNAs, among which miR-214 was the most abundant. Of note, miR-214 silencing in ADRCs significantly impaired the anti-apoptotic effects of the ADRC treatment on cardiomyocytes in vitro and in vivo To examine cardiomyocyte endocytosis of exosomes, we cultured the cardiomyocytes with ADRC-derived exosomes labeled with the fluorescent dye PKH67 and found that hypoxic culture conditions increased the levels of the labeled exosomes in cardiomyocytes. Chlorpromazine, an inhibitor of clathrin-mediated endocytosis, significantly suppressed the ADRC-induced decrease of hypoxia-damaged cardiomyocytes and also decreased hypoxia-induced cardiomyocyte capture of both labeled EVs and extracellular miR-214 secreted from ADRCs. Our results indicate that clathrin-mediated endocytosis in cardiomyocytes plays a critical role in their uptake of circulating, exosome-associated miRNAs that inhibit apoptosis.


Assuntos
Clatrina/metabolismo , Endocitose , MicroRNAs/metabolismo , Doença Aguda , Animais , Antagomirs/metabolismo , Apoptose/efeitos dos fármacos , Hipóxia Celular , Células Cultivadas , Clorpromazina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Endocitose/efeitos dos fármacos , Exossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/veterinária , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Am J Physiol Renal Physiol ; 318(4): F878-F887, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003595

RESUMO

Disruption of mitochondrial dynamics is an important pathogenic event in both acute and chronic kidney diseases, but the underlying mechanism remains poorly understood. Here, we report the regulation of mitofusin-2 (Mfn2; a key mitochondrial fusion protein) by microRNA-214 (miR-214) in renal ischemia-reperfusion that contributes to mitochondrial fragmentation, renal tubular cell death, and ischemic acute kidney injury (AKI). miR-214 was induced, whereas Mfn2 expression was decreased, in mouse ischemic AKI and cultured rat kidney proximal tubular cells (RPTCs) following ATP depletion treatment. Overexpression of miR-214 decreased Mfn2. Conversely, inhibition of miR-214 with anti-miR-214 prevented Mfn2 downregulation in RPTCs following ATP depletion. Anti-miR-214 further ameliorated mitochondrial fragmentation and apoptosis, whereas overexpression of miR-214 increased apoptosis, in ATP-depleted RPTCs. To test regulation in vivo, we established a mouse model with miR-214 specifically deleted from kidney proximal tubular cells (PT-miR-214-/-). Compared with wild-type mice, PT-miR-214-/- mice had less severe tissue damage, fewer apoptotic cells, and better renal function after ischemic AKI. miR-214 induction in ischemic AKI was suppressed in PT-miR-214-/- mice, accompanied by partial preservation of Mfn2 in kidneys. These results unveil the miR-214/Mfn2 axis that contributes to the disruption of mitochondrial dynamics and tubular cell death in ischemic AKI, offering new therapeutic targets.


Assuntos
Injúria Renal Aguda/metabolismo , Apoptose , GTP Fosfo-Hidrolases/metabolismo , Túbulos Renais Proximais/metabolismo , MicroRNAs/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Trifosfato de Adenosina/deficiência , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , GTP Fosfo-Hidrolases/genética , Túbulos Renais Proximais/patologia , Camundongos Knockout , MicroRNAs/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais
17.
Mol Med ; 26(1): 46, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410577

RESUMO

BACKGROUND: MicroRNAs control gene expression by post-transcriptional inhibition. Dysregulation of the expressions of miR-199a/214 cluster has been linked to cardiovascular diseases. This study aimed at identifying potential microRNAs related to vascular senescence. METHODS: Seven candidate microRNAs (miR-19a, -20a, -26b, -106b, - 126, - 214, and - 374) related to cell proliferation were tested for their expressions under CoCl2-induced hypoxia in vascular smooth muscle cells (VSMCs). After identification of miR-214 as the candidate microRNA, telomere integrity impairment and cell cycle arrest were examined in VSMCs by using miR-214 mimic, AntagomiR, and negative controls. To investigate the clinical significance of miR-214 in vascular diseases, its plasma level from patients with carotid artery stenosis (CAS) was assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS: CoCl2 treatment for 48 h suppressed cell proliferation and angiogenesis as well as enhanced cell senescence in VSMCs. Besides, miR-214 level was elevated in both intracellular and exosome samples of VSMCs after CoCl2 treatment. Manipulating miR-214 in VSMCs demonstrated that miR-214 not only inhibited angiogenic and proliferative capacities but also promoted senescence through the suppression of quaking. Additionally, circulating miR-214 level was upregulated in CAS patients with high low-density lipoprotein cholesterol (LDL-C) value. CONCLUSION: Our findings suggested that miR-214 plays a role in the modulation of VSMC angiogenesis, proliferation, and senescence with its plasma level being increased in CAS patients with elevated LDL-C value, implying that it may be a vascular senescence marker and a potential therapeutic target for vascular diseases.


Assuntos
Estenose das Carótidas/etiologia , Estenose das Carótidas/metabolismo , Senescência Celular/genética , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Biomarcadores , Estenose das Carótidas/patologia , Proliferação de Células , Células Cultivadas , LDL-Colesterol/metabolismo , Suscetibilidade a Doenças , Exossomos/metabolismo , Feminino , Humanos , Hipóxia , Masculino , Músculo Liso Vascular/patologia , Ratos
18.
FASEB J ; 33(4): 5411-5424, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30698996

RESUMO

The epithelial-mesenchymal transition (EMT) is crucial for cancer progression. Evidence has shown that miR-22 and miR-214 play a key role in colon cancer progression; however, the underlying mechanism remains to be known. The effects of miR-22 and miR-214 on EMT are contradictory in different cancers, and whether miR-22 and miR-214 are involved in the colon cancer EMT process needs to be elucidated. In this study, we evaluated the exact role and the regulation mechanism of miR-22 and miR-214 in colon cancer. After transfection with miR-22 expression vector, the cell proliferation and migration capacity of HCT116 and RKO cells were significantly suppressed. Also, E-cadherin was increased and vimentin was decreased by miR-22 overexpression. Similar effects were also observed after miR-214 expression vector transfection. Dual-luciferase reporter confirmed that BCL9L is the target gene of both miR-22 and miR-214. Silencing of BCL9L inhibits cell proliferation and migration, and the expression of E-cadherin and vimentin was also altered by BCL9L knockdown, which was consistent with miR-22 or miR-214 transfection. Furthermore, miR-22 and miR-214 inhibited tumor growth in nude mice. Moreover, although the association between BCL9L's lower expression and longer survival time was statistically nonsignificant, a trend existed; further studies in a larger cohort are needed. Collectively, these data suggest that miR-22 and miR-214 inhibit cell proliferation, migration, and EMT of colon cancer, most likely by targeting BCL9L.-Sun, R., Liu, Z., Han, L., Yang, Y., Wu, F., Jiang, Q., Zhang, H., Ma, R., Miao, J., He, K., Wang, X., Zhou, D., Huang, C. miR-22 and miR-214 targeting BCL9L inhibit proliferation, metastasis, and epithelial-mesenchymal transition by down-regulating Wnt signliang in colon cancer.


Assuntos
Proliferação de Células/genética , Neoplasias do Colo/genética , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , Animais , Apoptose/genética , Caderinas/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Colo/patologia , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Vimentina/genética
19.
J Cell Biochem ; 120(9): 14791-14803, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31090954

RESUMO

Diabetes and periodontal diseases have a mutual promoting relationship that induces severe tissue damage and cell death. The potential roles of microRNAs (miRNAs) and the type of cell death involved in diabetes-associated periodontitis are obscure. The gingival tissues of patients were obtained and MC3T3-E1 cells were costimulated with high glucose and lipopolysaccharide (LPS). Osseous morphometric analysis was evaluated with micro-CT, and histological characteristics were measured by hematoxylin/eosin and immunohistochemical staining. Cytokine secretion was confirmed by enzyme-linked immunosorbent assay, and reactive oxygen species (ROS) was measured using a DCFH-DA probe kit. Gene expression was measured by real-time quantitative reverse transcription PCR (qRT-PCR), and protein expression was assessed by Western blot and immunofluorescence analysis. The miR-214 level, receptor-interacting serine-threonine protein (RIP) 1, RIP3, and phospho-mixed lineage kinase domain-like (p-MLKL) protein expression were elevated in the inflamed gingival tissues of diabetes-associated periodontitis patients, with activating transcription factor 4 (ATF4) expression showing the opposite effect. The high glucose (22 mM) could not induce significant increase of RIP1, RIP3, and p-MLKL; however, the high glucose and LPS (500-1000 ng/mL) cotreatment resulted in increase in the number of RIP1, RIP3, and p-MLKL in MC3T3-E1 cells. NAC (ROS inhibitor) inhibited RIP1, RIP3, and increased ATF4; however, necrostatin-1 (Nec-1) (RIP1 inhibitor) specifically inhibited the protein expression of RIP1 and RIP3 and had no influence on ATF4. The use of antagomir-214 suppressed the expression of miR-214, RIP1, RIP3, and p-MLKL, but increased ATF4 protein level in glucose and LPS-induced cells. ATF4 knockdown by ATF4 small interfering RNA offset the effect of antagomir-214. RIP1- and RIP3-dependent necroptosis was confirmed in the inflamed gingival tissues of diabetes-associated periodontitis patients and high glucose- and LPS- cotreated cells. It was suggested that miR-214-targeted ATF4 participated in the regulation of necroptosis in vivo and in vitro.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose , Diabetes Mellitus Tipo 2/complicações , Glucose/efeitos adversos , MicroRNAs/genética , Necrose , Periodontite/patologia , Fator 4 Ativador da Transcrição/genética , Adolescente , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Células Cultivadas , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Periodontite/etiologia , Periodontite/metabolismo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Edulcorantes/efeitos adversos , Adulto Jovem
20.
J Cell Biochem ; 120(8): 12887-12903, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938885

RESUMO

Acute liver failure (ALF) is a disease resulted from diverse etiology, which generally leads to a rapid degenerated hepatic function. However, transplantation bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been suggested to relieve ALF. Interestingly, microRNA-214 (miR-214) could potentially regulate differentiation and migration of BMSCs. The present study aims to inquire whether miR-214 affects therapeutic potential of BMSCs transplantation by targeting PIM-1 in ALF. 120 male Wistar rats were induced as ALF model rats and transplanted with BMSCs post-alteration of miR-214 or PIM-1 expression. Further experiments were performed to detect biochemical index (alanine aminotransferase [ALT], aspartate transaminase [AST], total bilirubin [TBiL]), and expression of miR-214, PIM-1, hepatocyte growth factor (HGF), caspase 3, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) in rat serum. Apart from the above detection, apoptosis of hepatocytes and Ki67 protein expression in hepatic tissues of rats were additionally assessed. After BMSCs transplantation with miR-214 inhibition, a decreased expression of ALT, AST, and TBiL yet an increased expression of HGF was shown, coupled with a decline in the expression of caspase 3, TNF-α, and IL-10. Meanwhile, alleviated hepatic injury and decreased apoptotic index of hepatic cells were observed and the positive rate of Ki67 protein expression was significantly increased. Moreover, miR-214 and caspase 3, TNF-α, and IL-10 decreased notably, while PIM-1 was upregulated in response to miR-214 inhibition. Strikingly, the inhibition of PIM-1 reversed effects triggered by miR-214 inhibition. These findings indicated that downregulation of miR-214 improves therapeutic potential of BMSCs transplantation by upregulating PIM-1 for ALF.


Assuntos
Células da Medula Óssea/citologia , Falência Hepática Aguda/terapia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/química , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA