Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
New Phytol ; 240(3): 1246-1258, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37668195

RESUMO

Biocrusts are phototroph-driven communities inhabiting arid soil surfaces. Like plants, most photoautotrophs (largely cyanobacteria) in biocrusts are thought to exchange fixed carbon for essential nutrients like nitrogen with cyanosphere bacteria. Here, we aim to compare beneficial interactions in rhizosphere and cyanosphere environments, including finding growth-promoting strains for hosts from both environments. To examine this, we performed a retrospective analysis of 16S rRNA gene sequencing datasets, host-microbe co-culture experiments between biocrust communities/biocrust isolates and a model grass (Brachypodium distachyon) or a dominant biocrust cyanobacterium (Microcoleus vaginatus), and metabolomic analysis. All 18 microbial phyla in the cyanosphere were also present in the rhizosphere, with additional 17 phyla uniquely found in the rhizosphere. The biocrust microbes promoted the growth of the model grass, and three biocrust isolates (Bosea sp._L1B56, Pseudarthrobacter sp._L1D14 and Pseudarthrobacter picheli_L1D33) significantly promoted the growth of both hosts. Moreover, pantothenic acid was produced by Pseudarthrobacter sp._L1D14 when grown on B. distachyon exudates, and supplementation of plant growth medium with this metabolite increased B. distachyon biomass by over 60%. These findings suggest that cyanobacteria and other diverse photoautotrophic hosts can be a source for new plant growth-promoting microbes and metabolites.


Assuntos
Plantas , Rizosfera , RNA Ribossômico 16S/genética , Estudos Retrospectivos , Biomassa , Solo , Microbiologia do Solo
2.
J Phycol ; 59(5): 939-949, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572353

RESUMO

Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood. Cyanobacteria are ubiquitous and abundant engineers of cryoconite hole ecosystems. This study tested whether cyanobacteria may be responsible for cryoconite granulation as a sole biotic element. Incubation of Greenlandic, Svalbard, and Scandinavian cyanobacteria in different nutrient availabilities and substrata for growth (distilled water alone and water with quartz powder, furnaced cryoconite without OM, or powdered rocks from glacial catchment) revealed that cyanobacteria bind mineral particles into granules. The structures formed in the experiment resembled those commonly observed in natural cryoconite holes: they contained numerous cyanobacterial filaments protruding from aggregated mineral particles. Moreover, all examined strains were confirmed to produce extracellular polymeric substances (EPS), which suggests that cryoconite granulation is most likely due to EPS secretion by gliding cyanobacteria. In the presence of water as the only substrate for growth, cyanobacteria formed mostly carpet-like mats. Our data empirically prove that EPS-producing oscillatorialean cyanobacteria isolated from the diverse community of cryoconite microorganisms can form granules from mineral substrate and that the presence of the mineral substrate increases the probability of the formation of these important and complex biogeochemical microstructures on glaciers.


Assuntos
Cianobactérias , Microbiota , Camada de Gelo/química , Camada de Gelo/microbiologia , Clima Frio , Cianobactérias/metabolismo , Minerais/metabolismo , Água
3.
Environ Sci Technol ; 56(19): 13837-13844, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36125920

RESUMO

Toxic benthic cyanobacterial mats are increasingly reported worldwide as being responsible for animal mortalities due to their production of the potent neurotoxin anatoxin-a (ATX) and its analogues. Improved analytical methods for anatoxins are needed to address public health and watershed management challenges arising from extremely high spatial and temporal variability within impacted systems. We present the development, validation, and application of a direct analysis in real-time-high-resolution tandem mass spectrometry (DART-HRMS/MS) method for analysis of anatoxins in cyanobacterial field samples, including a simplified sample preparation approach. The method showed excellent sensitivity and selectivity for ATX, homoanatoxin-a, and dihydroanatoxin-a. Isotopically labeled ATX was used as an internal standard for all three analogues and successfully corrected for the matrix effects observed (86 ± 16% suppression). The limit of detection and recovery for ATX was estimated as 5 ng/g and 88%, respectively, using spiked samples. The total analysis time was ∼2 min, and excellent agreement was observed with results from a liquid chromatography-HRMS reference method. Finally, the DART-HRMS/MS method was applied to a set of 45 Microcoleus-dominated benthic cyanobacterial mat samples from the Wolastoq near Fredericton, Canada, demonstrating its power and applicability in enabling broad-scale field studies of ATX distribution.


Assuntos
Cianobactérias , Espectrometria de Massas em Tandem , Animais , Cianobactérias/química , Toxinas de Cianobactérias , Neurotoxinas , Rios/química , Tropanos
4.
J Phycol ; 57(5): 1563-1579, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289106

RESUMO

Cyanobacteria classified as Microcoleus steenstrupii play a significant role as pioneers of biological soil crusts (biocrusts), but this taxon is recognized to constitute a diverse complex of strains and field populations. With the aim of clarifying its systematics, we conducted a polyphasic characterization of this and allied taxa. A 16S ribosomal gene meta-analysis of published environmental sequences showed that the complex encompasses a variety of well supported genus-level clades with clade-specific environmental preferences, indicating significant niche differentiation. Fifteen strains in the M. steenstrupii complex were selected as representative of naturally occurring clades and studied using 16S rRNA gene phylogeny, morphology, and niche delineation with respect to temperature and rainfall. Bayesian phylogenetic reconstructions within a comprehensive, curated database of long 16S rRNA cyanobacterial sequences (1,000 base pairs or more) showed that they all belonged in a monophyletic, family-level clade (91.4% similarity) that included some other known genera of desiccation-resistant, largely terrestrial, filamentous, nonheterocystous cyanobacteria, including Coleofasciculus, the type genus for the family Coleofasciculaceae. To accommodate this biodiversity, we redescribe the Coleofasciculaceae, now composed of 11 genera, among which six are newly described herein (Funiculus, Parifilum, Arizonema, Crassifilum, Crustifilum, and Allocoleopsis), and five were previously recognized (Porphyrosiphon, Coleofasciculus, Pycnacronema, Potamolinea, and Wilmottia). We provide an evaluation of their respective niches and global distributions within biocrusts based on published molecular data. This new systematics treatment should help simplify and improve our understanding of the biology of terrestrial cyanobacteria.


Assuntos
Cianobactérias , Dessecação , Teorema de Bayes , Cianobactérias/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681936

RESUMO

The membrane glycerolipids of four phototrophs that were isolated from an edaphic assemblage were determined by UPLC-MS after cultivation in a laboratory growth chamber. Identification was carried out by 18S and 16S rDNA sequencing. The algal species were Klebsormidium flaccidum (Charophyta), Oocystis sp. (Chlorophyta), and Haslea spicula (Bacillariophyta), and the cyanobacterium was Microcoleus vaginatus (Cyanobacteria). The glycerolipid profile of Oocystis sp. was dominated by monogalactosyldiacylglycerol (MGDG) species, with MGDG(18:3/16:4) accounting for 68.6%, whereas MGDG(18:3/16:3) was the most abundant glycerolipid in K. flaccidum (50.1%). A ratio of digalactosyldiacylglycerol (DGDG) species to MGDG species (DGDG/MGDG) was shown to be higher in K. flaccidum (0.26) than in Oocystis sp. (0.14). This ratio increased under high light (HL) as compared to low light (LL) in all the organisms, with its highest value being shown in cyanobacterium (0.38-0.58, LL-HL). High contents of eicosapentaenoic acid (EPA, C20:5) and hexadecenoic acid were observed in the glycerolipids of H. spicula. Similar Fourier transform infrared (FTIR) and Raman spectra were found for K. flaccidum and Oocystis sp. Specific bands at 1629.06 and 1582.78 cm-1 were shown by M. vaginatus in the Raman spectra. Conversely, specific bands in the FTIR spectrum were observed for H. spicula at 1143 and 1744 cm-1. The results of this study point out differences in the membrane lipid composition between species, which likely reflects their different morphology and evolutionary patterns.


Assuntos
Carofíceas/metabolismo , Clorófitas/metabolismo , Cianobactérias/metabolismo , Diatomáceas/metabolismo , Lipídeos/análise , Lipídeos de Membrana/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
6.
J Biol Chem ; 290(47): 28502-28514, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26405033

RESUMO

Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Genoma Bacteriano , Raios Ultravioleta , Cianobactérias/metabolismo , Fotobiologia
7.
J Phycol ; 50(4): 698-710, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26988453

RESUMO

The cyanobacterial diversity of soils of the Atacama Desert (Chile) was investigated using 16S rRNA gene cloning/sequencing directly from soil samples and 16S rRNA gene sequencing from unialgal cultures. Within the hyper-arid Atacama Desert, one of the driest parts of the world, 10 sites with differing altitude and distance to the shore were sampled along a total air-line distance (from south to north) of ~1,100 km. Filamentous cyanobacteria belonging to Nostocophycideae and Synechococcophycideae were present. Oscillatoriophycideae exhibited the highest species richness among the subclasses of cyanobacteria, and included mostly filamentous species along with some coccoids (e.g., Chroococcidiopsis). Thirty species-level phylotypes could be recognized using a cut-off of 99% 16S rRNA sequence similarity within the 22 genera defined at 97% 16S rRNA sequence similarity. Eight of the 30 taxa could be detected by both clonal and culture sequences. Five taxa were observed only in cultures, whereas the cloning approach revealed 17 additional taxa, which might be in the collection but unsequenced, hard-to-cultivate, or entirely unculturable species using standard cultivation media. The Atacama Desert soils have a high diversity of phylotypes, among which are likely both new genera and new species awaiting characterization and description.

8.
Phytochemistry ; 223: 114137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734043

RESUMO

Exploring the chemical diversity present in cyanobacterial mats increasingly frequent in fresh and marine waters is imperative for both evaluating risks associated with these diverse biofilms and their potential for biodiscovery. During a project aimed at the study of the (eco)toxicity of benthic cyanobacteria blooming in some lakes of the West of Ireland, three previously undescribed ahp-cyclodepsipeptides micropeptin LOF941 (1), micropeptin LOF925 (2) and micropeptin LOF953 (3) were isolated from the Microcoleus autumnalis-dominated benthic cyanobacterial biofilm collected from the shore of Lough O'Flynn, Co. Roscommon, Ireland. Their structures remain consistent in their amino acid sequence with the presence of an unusual methionine, and differ by their exocyclic side chains. The planar structures of the previously undescribed micropeptins were elucidated by 1D and 2D NMR and HRESIMS analyses, and their 3D configurations assessed by ROESY NMR and Marfey's analyses. The three isolated compounds showed no cytotoxic effects and all three compounds were shown to exhibit antioxidant properties, with 1 showing the highest bioactivity. Additionally, several micropeptin analogues are proposed from the methanolic fraction of the biofilm extract by UHPLC-HRESIMS/MS analysis and molecular networking. Notably, the known cyanotoxins anatoxin-a and dihydroanatoxin-a were annotated in the molecular network therefore raising issues about the toxicity of this cyanobacterial mat.


Assuntos
Antioxidantes , Cianobactérias , Depsipeptídeos , Cianobactérias/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Irlanda , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacologia , Biofilmes/efeitos dos fármacos , Estrutura Molecular , Humanos
9.
Water Res X ; 24: 100252, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39308956

RESUMO

Over the last two decades, proliferations of benthic cyanobacteria producing derivatives of anatoxin-a have been reported in rivers worldwide. Here, we follow up on such a toxigenic event happening in the Areuse river in Switzerland and investigate the diversity and genomics of major bloom-forming riverine benthic cyanobacteria. We show, using 16S rRNA-based community profiling, that benthic communities are dominated by Oscillatoriales. We correlate the detection of one Microcoleus sequence variant matching the Microcoleus anatoxicus species with the presence of anatoxin-a derivatives and use long-read metagenomics to assemble complete circular genomes of the strain. The main dihydro-anatoxin-a-producing strain in the Areuse is distinct from strains isolated in New Zealand, the USA, and Canada, but forms a monophyletic strain cluster with them with average nucleotide identity values close to the species threshold. Compared to the rest of the Microcoleus genus, the toxin-producing strains encode a 15 % smaller genome, lacking genes for the synthesis of some essential vitamins. Toxigenic mats harbor a distinct microbiome dominated by proteobacteria and bacteroidetes, which may support cyanobacterial growth by providing them with essential nutrients. We recommend that strains closely related to M. anatoxicus be monitored internationally in order to help predict and mitigate similar cyanotoxic events.

10.
Braz J Microbiol ; 55(3): 2453-2461, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922531

RESUMO

Aerosol emission by wind erosion in the arid and semi-arid areas of the world, is of environmental and health significance. Different methods have been used to mitigate aerosol emission among which the biological methods may be the most efficient ones. Although previously investigated, more research is essential to determine how the use of exopolysaccharide (biocrust)-producing cyanobacteria may affect soil physical properties. The objective was to investigate the effects of the cyanobacteria, Microcoleus vaginatus ATHK43 (identified and registered by the NCBI accession number MW433686), on soil physical properties of a sandy soil 15, 30, 60, and 90 d after inoculation. The effects of cyanobacterial biocrust on soil properties including shear strength, soil resistance, aggregate stability (mean weight diameter (MWD) and geometric mean diameter (GMD)), and wind erosion were determined in trays using a wind tunnel. Cyanobacterial inoculation significantly increased MWD (0-1 cm depth, from 0.12 mm to 0.47 mm) and GMD (from 0.3 to 0.5 mm) after a period of 90 d. Biocrust production significantly decreased soil erosion from 55.7 kgm- 2 to 0.3 kgm- 2 (wind rate of 50 kmh- 1), and from 116.42 kgm- 2 to 0.6 kgm- 2 (wind rate of 90 kmh- 1) after 90 d. In conclusion, cyanobacterial biocrust can significantly improve soil physical properties in different parts of the world including the deserts, and reduce aerosol emission by mitigating the destructive effects of wind erosion on soil physical properties.


Assuntos
Aerossóis , Cianobactérias , Microbiologia do Solo , Solo , Solo/química , Aerossóis/análise , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Vento
11.
Ying Yong Sheng Tai Xue Bao ; 35(2): 516-522, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523110

RESUMO

Biological soil crusts are of great significance for environment health and sustainable development in arid and semi-arid areas. Cyanobacteria, Microcoleus vaginatus, Scytonema sp., Nostoc sp., and Anabaena sp. are the dominant species in microbial community of biological soil crusts worldwide. Considering their broad application prospect, it is meaningful to cultivate them extensively. We examined the effects of temperature (10, 20, 25, 30, 35 ℃) and initial pH (4, 6, 8, 10, 12) on biomass and solution pH towards the four species of cyanobacteria with liquid culture in laboratory. The results showed that the biomass of the four cyanobacterial species grew slowly under 20 ℃, and that all species could grow in 25-35 ℃, with the highest growth rate at 25 and 30 ℃. The optimum culture temperature of different cyanobacterial species was slightly different. The optimum culture temperature was 25-30 ℃ for Scytonema sp. and Nostoc sp., and 30 ℃ for M. vaginatus and Anabaena sp. The four cyanobacterial species had a strong ability to adjust solution pH and proliferate in five different initial pH conditions. The highest maximum biomass and specific growth rate were recorded in the culture environment with initial pH of 4, while the lowest maximum biomass and specific growth rate were observed in initial pH of 12. Our results would provide scientific basis for the propagation of dominant cyanobacteria in biological soil crusts.


Assuntos
Cianobactérias , Clima Desértico , Temperatura , Solo , Concentração de Íons de Hidrogênio , Microbiologia do Solo
12.
Sci Total Environ ; 858(Pt 1): 159433, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244489

RESUMO

Fatal dog poisoning after uptake of neurotoxic cyanobacteria associated with aquatic macrophytes in Tegeler See (Berlin, Germany) raised concerns about critical exposure of humans, especially children, to cyanotoxins produced by macrophyte associated cyanobacteria during recreational activity. From 2017 to 2021 a total of 398 samples of macrophytes washed ashore at bathing sites located at 19 Berlin lakes were analysed for anatoxins, microcystins, and cylindrospermopsins, as were 463 water samples taken in direct proximity to macrophyte accumulations. Cyanotoxins were detected in 66 % of macrophyte samples and 50 % of water samples, with anatoxins being the most frequently detected toxin group in macrophyte samples (58 %) and cylindrospermopsins in water samples (41 %). Microcoleus sp. associated with the water moss Fontinalis antipyretica was identified as anatoxin producing cyanobacterium in isolated strains as well as in field samples from Tegeler See. Anatoxin contents in macrophyte samples rarely exceeded 1 µg/g macrophyte fresh weight and peaked at 9. 2 µg/g f.w. Based on established toxicological points of departure, a critical anatoxin content of macrophyte samples of 3 µg/g f.w. is proposed. Five samples, all taken in Tegeler See and all associated with the water moss Fontinalis antipyretica, exceeded this value. Contents and concentrations of microcystins and cylindrospermopsins did not reach critical levels. The potential exposure risks to anatoxins for children and dogs are assessed and recommendations are given.


Assuntos
Toxinas Bacterianas , Cianobactérias , Criança , Humanos , Cães , Animais , Microcistinas/análise , Toxinas de Cianobactérias , Berlim , Toxinas Bacterianas/análise , Medição de Risco , Água/análise
13.
Harmful Algae ; 124: 102405, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164558

RESUMO

The presence of toxigenic benthic cyanobacteria in riverine ecosystems is an increasing concern around the world. In 2018, the death of three dogs along the Wolastoq (also known as the Saint John River) in New Brunswick, Canada, was attributed to anatoxin exposure after they ingested benthic microbial mats found along the shore. Here, we shotgun sequenced the DNA of 15 non-axenic cyanobacterial isolates derived from four anatoxin-containing benthic mat samples associated with the dog deaths. Anatoxins were produced by some of the isolates, but not all. We retrieved near-complete Microcoleus metagenome-assembled genomes (MAGs) from the isolates that are closely related to anatoxin-producing Microcoleus from the Cardrona River (New Zealand), although the Microcoleus MAGs from the Wolastoq varied in the presence/absence of the anatoxin-a biosynthesis cluster. Sequence similarity at the genomic level suggests that toxigenic and non-toxigenic Microcoleus MAGs from the Wolastoq belong to the same species but are separate subspecies. The toxigenic and nontoxic Wolastoq Microcoleus subspecies coexisted in the mat samples in similar relative abundance. Overall genomic comparisons revealed that toxigenic Microcoleus MAGs are longer and code for more accessory genes than their non-toxigenic relatives, suggesting a differential responsiveness to changing environments, stress conditions and nutrient availability.


Assuntos
Toxinas Bacterianas , Cianobactérias , Animais , Cães , Toxinas Bacterianas/toxicidade , Novo Brunswick , Ecossistema , Cianobactérias/genética , Canadá , Genômica
14.
Toxicon ; 227: 107086, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36914100

RESUMO

In July 2018 three dogs died after visiting the Wolastoq (Saint John River) near Fredericton, New Brunswick, in Atlantic Canada. All showed signs of toxicosis, and necropsies revealed non-specific pulmonary edema and multiple microscopic brain hemorrhages. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of vomitus and stomach contents as well as water and biota from the mortality sites confirmed the presence of anatoxins (ATXs), a class of potent neurotoxic alkaloids. The highest levels were measured in a dried benthic cyanobacterial mat that two of the dogs had been eating before falling ill and in a vomitus sample collected from one of the dogs. Concentrations of 357 and 785 mg/kg for anatoxin-a and dihydroanatoxin-a, respectively, were measured in the vomitus. Known anatoxin-producing species of Microcoleus were tentatively identified using microscopy and confirmed by 16S rRNA gene sequencing. The ATX synthetase gene, anaC, was detected in the samples and isolates. The pathology and experimental results confirmed the role of ATXs in these dog mortalities. Further research is required to understand drivers for toxic cyanobacteria in the Wolastoq and to develop methodology for assessing occurrence.


Assuntos
Toxinas Bacterianas , Cianobactérias , Cães , Animais , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/análise , Novo Brunswick , RNA Ribossômico 16S/genética , Cianobactérias/química , Tropanos/toxicidade , Canadá
15.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028939

RESUMO

Microcoleus vaginatus has been regarded as the important contributor for biocrust formation and ecological services. However, little is known about its living forms in biocrusts, and whether the living form is related to biocrust structure. Therefore, in this study, natural biocrusts collected from the Gurbantunggut Desert were divided into different aggregate/grain fractions, aiming at investigating the living forms of M. vaginatus in biocrusts at fine scale, and exploring its roles in aggregate structure and ecological functions of biocrusts. The results showed that two distinct living forms of M. vaginatus had been identified from the biocrusts. The non-bundling M. vaginatus was mainly distributed in the fractions of > 0.5 mm, forming aggregate structure by cementing sand particles firmly; while the bundling M. vaginatus, distributed mainly among the free sand particles with diameter < 0.5 mm, and easily migrated up to biocrust surface after hydration. Furthermore, the aggregate structure formed by non-bundling M. vaginatus supported a higher biomass, nutrient contents, and enzyme activities. Altogether, our results suggest that the strong migrating ability of bundling M. vaginatus contributes to the environmental adaptation and light resource acquirement, while non-bundling M. vaginatus acts as the constructor of the aggregate structure in biocrusts.


Assuntos
Cianobactérias , Areia , Biomassa , Microbiologia do Solo , Ecossistema , Solo
16.
Toxins (Basel) ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624242

RESUMO

The frequency of dogs becoming ill or dying from accidental exposure to cyanotoxins, produced by cyanobacteria, is increasing throughout the United States. In January and February of 2021, two dogs died and five dogs became ill after swimming in Lake Travis, central Texas, USA; one deceased dog (C1) was subjected to pathological testing. Algal materials, sediment samples, zebra mussel viscera, periphyton from shells, as well as fluids and tissues from the digestive tract of C1 were investigated for the following cyanotoxins: anatoxin-a, homoanatoxin-a, dihydroanatoxin-a (dhATX), cylindrospermopsin, saxitoxin, and microcystins. Necropsy results of C1 indicated neurotoxicosis with significant levels of dhATX in the duodenum tissues (10.51 ng/g dry weight (DW)), jejunum tissue (6.076 ng/g DW), and stomach contents (974.88 ng/g DW). Algae collected near the site of C1's death contained levels of dhATX, ranging from 13 to 33 µg/g. By comparison, dhATX was detected at much lower concentrations in sediment samples (310.23 ng/g DW) and the periphyton on zebra mussel shells (38.45 ng/g DW). While dhATX was suspected in the deaths of canines from an event in Texas in 2019, this is the first report linking dhATX neurotoxicosis through pathological findings in Texas and potentially in the United States.


Assuntos
Dreissena , Síndromes Neurotóxicas , Animais , Cães , Autopsia , Toxinas de Cianobactérias , Texas
17.
Plants (Basel) ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678979

RESUMO

Cyanobacteria mostly rely on the active uptake of hydrated CO2 (i.e., bicarbonate ions) from the surrounding media to fuel their inorganic carbon assimilation. The dehydration of bicarbonate in close vicinity of RuBisCO is achieved through the activity of carboxysomal carbonic anhydrase (CA) enzymes. Simultaneously, many cyanobacterial genomes encode extracellular α- and ß-class CAs (EcaA, EcaB) whose exact physiological role remains largely unknown. To date, the CahB1 enzyme of Sodalinema gerasimenkoae (formerly Microcoleus/Coleofasciculus chthonoplastes) remains the sole described active extracellular ß-CA in cyanobacteria, but its molecular features strongly suggest it to be a carboxysomal rather than a secreted protein. Upon expression of CahB1 in Synechocystis sp. PCC6803, we found that its expression complemented the loss of endogenous CcaA. Moreover, CahB1 was found to localize to a carboxysome-harboring and CA-active cell fraction. Our data suggest that CahB1 retains all crucial properties of a cellular carboxysomal CA and that the secretion mechanism and/or the machinations of the Sodalinema gerasimenkoae carboxysome are different from those of Synechocystis.

18.
Environ Technol ; : 1-9, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796065

RESUMO

Wind erosion is one of the reasons for the formation of desertification in arid and semiarid areas. Many measures are used to achieve sustainable land management. Microcoleus vaginatus can influence and offer limited protection to soils from wind erosion through its impact on controlling threshold friction velocity. Therefore, the study aims to explore the effectiveness and anti-wind erosion ability of Microcoleus vaginatus with the aid of attapulgite-based nanocomposite and to find a method that can act as bioindicators for investigating wind erosion in arid and semiarid areas in the future, for offering a method to prevent desertification and provide a valuable measure for the sustainable development of the environment. In this study, the effects of wind stress on reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione (GSH) and the surface character of the soil were analysed. The results showed that increased ROS and MDA, decreased GSH, changed SOD, POD and CAT, and enhanced soil structure in Microcoleus vaginatus with the aid of attapulgite-based nanocomposites were influenced by 3 and 5 m·s-1 wind erosion. Further analysis demonstrated that increased SOD, POD and CAT and decreased GSH eliminated ROS and MDA through the antioxidant defense response of Microcoleus vaginatus with the aid of attapulgite-based nanocomposites. The results revealed that Microcoleus vaginatus with the aid of attapulgite-based nanocomposite had an important physiological adaptation for the elimination of ROS and lipid peroxidation induced by wind stress and could play a role in alleviating wind erosion.

19.
Chemosphere ; 291(Pt 2): 132878, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780741

RESUMO

As an important carbon (C) storage in biological soil crusts (BSCs), exopolysaccharides (EPSs) are not only a part of the desert C cycle, but also the key materials for cyanobacteria to resist desert stress. In this study, the influence of initial N concentrations (10, 25 and 50 mg L-1 designated as N10, N25 and N50 respectively) on Microcoleus vaginatusis growth and the excretion of EPSs including RPS (released exopolysaccharides) and CPS (capsule exopolysaccharides) were evaluated at different growth periods. In logarithmic period, higher ratio of biomass to EPSs indicated by (DW-CPS)/EPSs was observed in the N50 group with the highest N concentration (about 40 mg L-1) in the medium, while no difference was observed among the three groups in stationary period when the N concentrations of medium were lower than 25 mg L-1. The CPS/RPS showed similar results with (DW-CPS)/EPSs, and stayed higher than 1 in each group. Notably, obvious difference displayed in the monosaccharidic composition and morphologies between CPS and RPS, but not the N levels. The changes of C/N in cells at different growth period indicate that the excretion of EPSs, a mechanism that maintains the balance of cell C/N ratio, only works when the N in the environment is sufficient. Our results showed that, as the raw material and environmental signal, environmental N concentration regulates the elements (C and N) percentage of cyanobacterial cells and its EPSs excretion pattern, but not the monosaccharidic composition or the morphologies. These results also implied that, as the essential self-protecting materials, more EPSs with higher proportion of CPS would be excreted to response the low N environment.


Assuntos
Cianobactérias , Clima Desértico , Nitrogênio , Polissacarídeos Bacterianos , Solo , Microbiologia do Solo
20.
Sci Total Environ ; 764: 142847, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33129532

RESUMO

Shrub encroachment is occurring in many of the world's drylands, but its impacts on ecosystem structure and function are still poorly understood. In particular, it remains unclear how shrub encroachment affects dryland soil surfaces, including biological soil crust (biocrust) communities. In this study, soil surfaces (0-1 cm depth) were sampled from areas of Grewia flava shrubs and Eragrostis lehmanniana and Schmidtia kalahariensis grasses in the southwest Kalahari during two different seasons (March and November). Our hypothesis is that the presence of different vegetation cover types (shrubs versus grasses) alters the microbial composition of soil surfaces owing to their contrasting microenvironments. The results showed that more significant differences in microclimate (light, soil surface temperatures) and soil surface microbial communities were observed between shrubs and grasses than between sampling seasons. Based on high-throughput 16S rRNA gene sequencing, our findings showed that approximately one third (33.5%) of the operational taxonomic units (OTUs) occurred exclusively in soil surfaces beneath shrubs. Soil surfaces with biocrusts in grass areas were dominated by the cyanobacteria Microcoleus steenstrupii, whereas the soil surfaces beneath shrubs were dominated by the proteobacteria Microvirga flocculans. Soil surfaces beneath shrubs are associated with reduced cyanobacterial abundance but have higher total carbon and total nitrogen contents compared to biocrusts in grass areas. These findings infer changes in the relative contributions from different sources of carbon and nitrogen (e.g. cyanobacterial and non-cyanobacterial fixation, plant litter, animal activity). The distinctive microbial composition and higher carbon and nitrogen contents in soil surfaces beneath shrubs may provide a positive feedback mechanism promoting shrub encroachment, which helps to explain why the phenomenon is commonly observed to be irreversible.


Assuntos
Ecossistema , Solo , Animais , Botsuana , Carbono , Cianobactérias , Methylobacteriaceae , Nitrogênio , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA