Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.114
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36206754

RESUMO

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Assuntos
Cobre , Mucinas , Mucinas/metabolismo , Mucina-2 , Cobre/análise , Cobre/metabolismo , Intestinos , Muco/metabolismo , Mucosa Intestinal/metabolismo
2.
Am J Hum Genet ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39079539

RESUMO

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.

3.
Proc Natl Acad Sci U S A ; 121(8): e2315662121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346185

RESUMO

Most of the geologic CO2 entering Earth's atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2 and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite-talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul's transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq) concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of -3.40 ± 0.04‰, and the enrichment of CO2 in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul's Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2.

4.
Proc Natl Acad Sci U S A ; 120(7): e2210044120, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745807

RESUMO

Mineral stabilization of soil organic matter is an important regulator of the global carbon (C) cycle. However, the vulnerability of mineral-stabilized organic matter (OM) to climate change is currently unknown. We examined soil profiles from 34 sites across the conterminous USA to investigate how the abundance and persistence of mineral-associated organic C varied with climate at the continental scale. Using a novel combination of radiocarbon and molecular composition measurements, we show that the relationship between the abundance and persistence of mineral-associated organic matter (MAOM) appears to be driven by moisture availability. In wetter climates where precipitation exceeds evapotranspiration, excess moisture leads to deeper and more prolonged periods of wetness, creating conditions which favor greater root abundance and also allow for greater diffusion and interaction of inputs with MAOM. In these humid soils, mineral-associated soil organic C concentration and persistence are strongly linked, whereas this relationship is absent in drier climates. In arid soils, root abundance is lower, and interaction of inputs with mineral surfaces is limited by shallower and briefer periods of moisture, resulting in a disconnect between concentration and persistence. Data suggest a tipping point in the cycling of mineral-associated C at a climate threshold where precipitation equals evaporation. As climate patterns shift, our findings emphasize that divergence in the mechanisms of OM persistence associated with historical climate legacies need to be considered in process-based models.

5.
Proc Natl Acad Sci U S A ; 120(33): e2300491120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561785

RESUMO

Alkaline hydrothermal vents have become a candidate setting for the origins of life on Earth and beyond. This is due to several key features including the presence of gradients of temperature, redox potential, pH, the availability of inorganic minerals, and the existence of a network of inorganic pore spaces that could have served as primitive compartments. Chemical gardens have long been used as experimental proxies for hydrothermal vents. This paper investigates-10pc]Please note that the spelling of the following author name in the manuscript differs from the spelling provided in the article metadata: Richard J. G. Löffler. The spelling provided in the manuscript has been retained; please confirm. a set of prebiotic interactions between such inorganic structures and fatty alcohols. The integration of a medium-chain fatty alcohol, decanol, within these inorganic minerals, produced a range of emergent 3 dimensions structures at both macroscopic and microscopic scales. Fatty alcohols can be considered plausible prebiotic amphiphiles that might have assisted the formation of protocellular structures such as vesicles. The experiments presented herein show that neither chemical gardens nor decanol alone promote vesicle formation, but chemical gardens grown in the presence of decanol, which is then integrated into inorganic mineral structures, support vesicle formation. These observations suggest that the interaction of fatty alcohols and inorganic mineral structures could have played an important role in the emergence of protocells, yielding support for the evolution of living cells.


Assuntos
Minerais , Origem da Vida , Minerais/química
6.
Plant J ; 119(1): 577-594, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576267

RESUMO

Little millet (Panicum sumatrense Roth ex Roem. & Schult.) is an essential minor millet of southeast Asia and Africa's temperate and subtropical regions. The plant is stress-tolerant, has a short life cycle, and has a mineral-rich nutritional profile associated with unique health benefits. We report the developmental gene expression atlas of little millet (genotype JK-8) from ten tissues representing different stages of its life cycle, starting from seed germination and vegetative growth to panicle maturation. The developmental transcriptome atlas led to the identification of 342 827 transcripts. The BUSCO analysis and comparison with the transcriptomes of related species confirm that this study presents high-quality, in-depth coverage of the little millet transcriptome. In addition, the eFP browser generated here has a user-friendly interface, allowing interactive visualizations of tissue-specific gene expression. Using these data, we identified transcripts, the orthologs of which in Arabidopsis and rice are involved in nutrient acquisition, transport, and response pathways. The comparative analysis of the expression levels of these transcripts holds great potential for enhancing the mineral content in crops, particularly zinc and iron, to address the issue of "hidden hunger" and to attain nutritional security, making it a valuable asset for translational research.


Assuntos
Regulação da Expressão Gênica de Plantas , Panicum , Transcriptoma , Transcriptoma/genética , Panicum/genética , Panicum/metabolismo , Panicum/crescimento & desenvolvimento , Minerais/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Perfilação da Expressão Gênica
7.
Am J Hum Genet ; 109(7): 1242-1254, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35705101

RESUMO

Growth deviating from the norm during childhood has been associated with anorexia nervosa (AN) and obesity later in life. In this study, we examined whether polygenic scores (PGSs) for AN and BMI are associated with growth trajectories spanning the first two decades of life. AN PGSs and BMI PGSs were calculated for participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 8,654). Using generalized (mixed) linear models, we associated PGSs with trajectories of weight, height, body mass index (BMI), fat mass index (FMI), lean mass index (LMI), and bone mineral density (BMD). Female participants with AN PGSs one standard deviation (SD) higher had, on average, 0.004% slower growth in BMI between the ages 6.5 and 24 years and a 0.4% slower gain in BMD between the ages 10 and 24 years. Higher BMI PGSs were associated with faster growth for BMI, FMI, LMI, BMD, and weight trajectories in both sexes throughout childhood. Female participants with both a high AN PGS and a low BMI PGS showed slower growth compared to those with both a low AN PGS and a low BMI PGS. We conclude that AN PGSs and BMI PGSs have detectable sex-specific effects on growth trajectories. Female participants with a high AN PGS and low BMI PGS likely constitute a high-risk group for AN, as their growth was slower compared to their peers with high PGSs on both traits. Further research is needed to better understand how the AN PGS and the BMI PGS co-influence growth during childhood and whether a high BMI PGS can mitigate the effects of a high AN PGS.


Assuntos
Anorexia Nervosa , Adolescente , Adulto , Anorexia Nervosa/genética , Índice de Massa Corporal , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Herança Multifatorial/genética , Obesidade , Adulto Jovem
8.
Eur J Immunol ; : e2350957, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030805

RESUMO

Incomplete Freund's adjuvant (IFA) has been used for many years to induce autoimmune diseases in animal models, including experimental autoimmune encephalitis and collagen-induced arthritis. However, it remains unclear why it is necessary to emulsify autoantigen and heat-killed Mycobacterium tuberculosis (HKMtb) with IFA to induce experimental autoimmune diseases. Here, we found that immunization with self-antigen and HKMtb was insufficient to induce autoimmune diseases in mice. Furthermore, IFA or one of its components, mineral oil, but not mannide monooleate, was required for the development of experimental autoimmune disease. Immunization with autoantigen and HKMtb emulsified in mineral oil facilitated innate immune activation and promoted the differentiation of pathogenic CD4+ T cells, followed by their accumulation in neuronal tissues. Several water-soluble hydrocarbon compounds were identified in mineral oil. Of these, immunization with HKMtb and autoantigen emulsified with the same amount of hexadecane or tridecylcyclohexane as mineral oil induced the development of experimental autoimmune encephalitis. In contrast, immunization with HKMtb and autoantigen emulsified with tridecylcyclohexane, but not hexadecane, at doses equivalent to those found in mineral oil, resulted in neuronal dysfunction. These data indicate that tridecylcyclohexane in mineral oil is a critical component in the induction of experimental autoimmune disease.

9.
Hum Genomics ; 18(1): 53, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802968

RESUMO

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Assuntos
Evolução Molecular , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Homem de Neandertal , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Animais , Homem de Neandertal/genética , Seleção Genética/genética , Hominidae/genética , Haplótipos/genética , Densidade Óssea/genética , Genoma Humano/genética
10.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38216525

RESUMO

Observational studies have reported that osteoporosis is associated with cortical changes in the brain. However, the inherent limitations of observational studies pose challenges in eliminating confounding factors and establishing causal relationships. And previous observational studies have not reported changes in specific brain regions. By employing Mendelian randomization, we have been able to infer a causal relationship between osteoporosis and a reduction in the surficial area (SA) of the brain cortical. This effect is partially mediated by vascular calcification. We found that osteoporosis significantly decreased the SA of global brain cortical (ß = -1587.62 mm2, 95%CI: -2645.94 mm2 to -529.32 mm2, P = 0.003) as well as the paracentral gyrus without global weighted (ß = - 19.42 mm2, 95%CI: -28.90 mm2 to -9.95 mm2, P = 5.85 × 10-5). Furthermore, we estimated that 42.25% and 47.21% of the aforementioned effects are mediated through vascular calcification, respectively. Osteoporosis leads to a reduction in the SA of the brain cortical, suggesting the presence of the bone-brain axis. Vascular calcification plays a role in mediating this process to a certain extent. These findings establish a theoretical foundation for further investigations into the intricate interplay between bone, blood vessels, and the brain.


Assuntos
Osteoporose , Calcificação Vascular , Humanos , Análise da Randomização Mendeliana , Encéfalo/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
11.
Proc Natl Acad Sci U S A ; 119(13): e2118253119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35324330

RESUMO

SignificanceHistorically, two types of twins (I and II) have been categorized for twinning in minerals and metals. When analyzed by the topological model, a crystallographic construction used to define the defect structure of interfaces, triclinic and some other low-symmetry crystals do not fall into either category and instead form two new twinning types, namely, III and IV. Aside from accurately describing twin structures, these concepts are important for understanding the deformation of minerals such as plagioclase and for deriving constitutive models for the deformation.

12.
Proc Natl Acad Sci U S A ; 119(48): e2209399119, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409910

RESUMO

The formation and preservation of compositional heterogeneities inside the Earth affect mantle convection patterns globally and control the long-term evolution of geochemical reservoirs. However, the distribution, nature, and size of reservoirs in the Earth's mantle are poorly constrained. Here, we invert measurements of travel times and amplitudes of seismic waves interacting with mineralogical phase transitions at 400-700-km depth to obtain global probabilistic maps of temperature and bulk composition. We find large basalt-rich pools (up to 60% basalt fraction) surrounding the Pacific Ocean, which we relate to the segregation of oceanic crust from slabs that have been subducted since the Mesozoic. Segregation of oceanic crust from initially cold and stiff slabs may be facilitated by the presence of a weak hydrated layer in the slab or by weakening upon mineralogical transition due to grain-size reduction.

13.
Proc Natl Acad Sci U S A ; 119(36): e2209630119, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044552

RESUMO

The melting point is a fundamental property that is time-consuming to measure or compute, thus hindering high-throughput analyses of melting relations and phase diagrams over large sets of candidate compounds. To address this, we build a machine learning model, trained on a database of ∼10,000 compounds, that can predict the melting temperature in a fraction of a second. The model, made publicly available online, features graph neural network and residual neural network architectures. We demonstrate the model's usefulness in diverse applications. For the purpose of materials design and discovery, we show that it can quickly discover novel multicomponent materials with high melting points. These predictions are confirmed by density functional theory calculations and experimentally validated. In an application to planetary science and geology, we employ the model to analyze the melting temperatures of ∼4,800 minerals to uncover correlations relevant to the study of mineral evolution.

14.
Proc Natl Acad Sci U S A ; 119(32): e2203937119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914127

RESUMO

Carbon dioxide utilization for enhanced metal recovery (EMR) during mineralization has been recently developed as part of CCUS (carbon capture, utilization, and storage). This paper describes fundamental studies on integrating CO2 mineralization and concurrent selective metal extraction from natural olivine. Nearly 90% of nickel and cobalt extraction and mineral carbonation efficiency are achieved in a highly selective, single-step process. Direct aqueous mineral carbonation releases Ni2+ and Co2+ into aqueous solution for subsequent recovery, while Mg2+ and Fe2+ simultaneously convert to stable mineral carbonates for permanent CO2 storage. This integrated process can be completed in neutral aqueous solution. Introduction of a metal-complexing ligand during mineral carbonation aids the highly selective extraction of Ni and Co over Fe and Mg. The ligand must have higher stability for Ni-/Co- complex ions compared with the Fe(II)-/Mg- complex ions and divalent metal carbonates. This single-step process with a suitable metal-complexing ligand is robust and utilizes carbonation processes under various kinetic regimes. This fundamental study provides a framework for further development and successful application of direct aqueous mineral carbonation with concurrent EMR. The enhanced metal extraction and CO2 mineralization process may have implications for the clean energy transition, CO2 storage and utilization, and development of new critical metal resources.

15.
Nano Lett ; 24(1): 386-393, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133588

RESUMO

Phyllosilicates-based nanomaterials, particularly iron-rich vermiculite (VMT), have wide applications in biomedicine. However, the lack of effective methods to activate the functional layer covered by the external inert layer limits their future applications. Herein, we report a mineral phase reconfiguration strategy to prepare novel nanozymes by a molten salt method. The peroxidase-like activity of the VMT reconfiguration nanozyme is 10 times that of VMT, due to the electronic structure change of iron in VMT. Density-functional theory calculations confirmed that the upward shifted d-band center of the VMT reconfiguration nanozyme promoted the adsorption of H2O2 on the active iron sites and significantly elongated the O-O bond lengths. The reconfiguration nanozyme exhibited nearly 100% antibacterial activity toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), much higher than that of VMT (E. coli 10%, S. aureus 21%). This work provides new insights for the rational design of efficient bioactive phyllosilicates-based nanozyme.


Assuntos
Escherichia coli , Staphylococcus aureus , Peróxido de Hidrogênio , Silicatos de Alumínio/farmacologia , Ferro , Antibacterianos/farmacologia , Antibacterianos/química
16.
Nano Lett ; 24(32): 9784-9792, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38990555

RESUMO

In this work, we demonstrate direct evidence of the antiamyloid potential of Cu(II) ions against amyloid formation of insulin. The Cu(II) ions were found to efficiently disassemble the preformed amyloid nanostructures into soluble species and suppress monomer fibrillation under aggregation-prone conditions. The direct interaction of Cu(II) ions with the cross-ß structure of amyloid fibrils causes substantial disruption of both the interchain and intrachain interactions, predominantly the H-bonds and hydrophobic contacts. Further, the Cu(II) ions show a strong affinity for the aggregation-prone conformers of the protein and inhibit their spontaneous self-assembly. These results reveal the possible molecular mechanism for the antiamyloidogenic potential of Cu(II) which could be important for the development of metal-ion specific therapeutic strategies against amyloid linked complications.


Assuntos
Amiloide , Cobre , Insulina , Nanoestruturas , Cobre/química , Insulina/química , Amiloide/química , Nanoestruturas/química , Interações Hidrofóbicas e Hidrofílicas , Humanos , Ligação de Hidrogênio
17.
J Infect Dis ; 229(6): 1803-1811, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366369

RESUMO

BACKGROUND: The relationship between accelerated epigenetic aging and musculoskeletal outcomes in women with HIV (WWH) has not been studied. METHODS: We measured DNA methylation age using the Infinium MethylationEPIC BeadChip in a cohort from the Women's Interagency HIV Study (n = 190) with measures of bone mineral density (BMD) and physical function. We estimated 6 biomarkers of epigenetic aging-epigenetic age acceleration (EAA), extrinsic EAA, intrinsic EAA, GrimAge, PhenoAge, and DNA methylation-estimated telomere length-and evaluated associations of epigenetic aging measures with BMD and physical function. We also performed epigenome-wide association studies to examine associations of DNA methylation signatures with BMD and physical function. RESULTS: This study included 118 WWH (mean age, 49.7 years; 69% Black) and 72 without HIV (mean age, 48.9 years; 69% Black). WWH had higher EAA (mean ± SD, 1.44 ± 5.36 vs -1.88 ± 5.07; P < .001) and lower DNA methylation-estimated telomere length (7.13 ± 0.31 vs 7.34 ± 0.23, P < .001) than women without HIV. There were no significant associations between accelerated epigenetic aging and BMD. Rather, measures of accelerated epigenetic aging were associated with lower physical function. CONCLUSIONS: Accelerated epigenetic aging was observed in WWH as compared with women without HIV and was associated with lower physical function in both groups.


Assuntos
Envelhecimento , Densidade Óssea , Metilação de DNA , Epigênese Genética , Infecções por HIV , Humanos , Feminino , Pessoa de Meia-Idade , Infecções por HIV/genética , Envelhecimento/genética , Densidade Óssea/genética , Adulto , Estudos de Coortes
18.
Plant J ; 116(6): 1748-1765, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715733

RESUMO

The plant citrate transporters, functional in mineral nutrient uptake and homeostasis, usually belong to the multidrug and toxic compound extrusion transporter family. We identified and functionally characterized a rice (Oryza sativa) citrate transporter, OsCT1, which differs from known plant citrate transporters and is structurally close to rice silicon transporters. Domain analysis depicted that OsCT1 carries a bacterial citrate-metal transporter domain, CitMHS. OsCT1 showed citrate efflux activity when expressed in Xenopus laevis oocytes and is localized to the cell plasma membrane. It is highly expressed in the shoot and reproductive tissues of rice, and its promoter activity was visible in cells surrounding the vasculature. The OsCT1 knockout (KO) lines showed a reduced citrate content in the shoots and the root exudates, whereas overexpression (OE) line showed higher citrate exudation from their roots. Further, the KO and OE lines showed variations in the manganese (Mn) distribution leading to changes in their agronomical traits. Under deficient conditions (Mn-sufficient conditions followed by 8 days of 0 µm MnCl2 · 4H2 O treatment), the supply of manganese towards the newer leaf was found to be obstructed in the KO line. There were no significant differences in phosphorus (P) distribution; however, P uptake was reduced in the KO and increased in OE lines at the vegetative stage. Further, experiments in Xenopus oocytes revealed that OsCT1 could efflux citrate with Mn. In this way, we provide insights into a mechanism of citrate-metal transport in plants and its role in mineral homeostasis, which remains conserved with their bacterial counterparts.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Manganês/metabolismo , Fósforo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Cítrico/metabolismo , Minerais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Ecol Lett ; 27(1): e14331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898561

RESUMO

Plant-microbe interactions in the rhizosphere shape carbon and nitrogen cycling in soil organic matter (SOM). However, there is conflicting evidence on whether these interactions lead to a net loss or increase of SOM. In part, this conflict is driven by uncertainty in how living roots and microbes alter SOM formation or loss in the field. To address these uncertainties, we traced the fate of isotopically labelled litter into SOM using root and fungal ingrowth cores incubated in a Miscanthus x giganteus field. Roots stimulated litter decomposition, but balanced this loss by transferring carbon into aggregate associated SOM. Further, roots selectively mobilized nitrogen from litter without additional carbon release. Overall, our findings suggest that roots mine litter nitrogen and protect soil carbon.


Assuntos
Carbono , Solo , Nitrogênio , Microbiologia do Solo , Rizosfera
20.
Am J Physiol Renal Physiol ; 326(4): F622-F634, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420675

RESUMO

Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Baço/metabolismo , Cálcio/metabolismo , Fluoresceína-5-Isotiocianato , Distribuição Tecidual , Ratos Sprague-Dawley , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Minerais , Fígado/metabolismo , Fosfatos , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA