Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Curr Issues Mol Biol ; 45(7): 5613-5630, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504270

RESUMO

Skeletal muscle disuse leads to pathological muscle activity as well as to slow-to-fast fiber-type transformation. Fast-type fibers are more fatigable than slow-type, so this transformation leads to a decline in muscle function. Prochlorperazine injections previously were shown to attenuate autonomous rat soleus muscle electrical activity under unloading conditions. In this study, we found that prochlorperazine blocks slow-to-fast fiber-type transformation in disused skeletal muscles of rats, possibly through affecting calcium and ROS-related signaling.

2.
J Anat ; 243(5): 826-841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37420120

RESUMO

To build on the existing data on the pattern of myosin heavy chain (MyHC) isoforms expression in the human muscle spindles, we aimed to verify whether the 'novel' MyHC-15, -2x and -2b isoforms are co-expressed with the other known isoforms in the human intrafusal fibres. Using a set of antibodies, we attempted to demonstrate nine isoforms (15, slow-tonic, 1, α, 2a, 2x, 2b, embryonic, neonatal) in different regions of intrafusal fibres in the biceps brachii and flexor digitorum profundus muscles. The reactivity of some antibodies with the extrafusal fibres was also tested in the masseter and laryngeal cricothyreoid muscles. In both upper limb muscles, the expression of slow-tonic isoform was a reliable marker for differentiating positive bag fibres from negative chain fibres. Generally, bag1 and bag2 fibres were distinguished in isoform 1 expression; the latter consistently expressed this isoform over their entire length. Although isoform 15 was not abundantly expressed in intrafusal fibres, its expression was pronounced in the extracapsular region of bag fibres. Using a 2x isoform-specific antibody, this isoform was demonstrated in the intracapsular regions of some intrafusal fibres, particularly chain fibres. To the best of our knowledge, this study is the first to demonstrate 15 and 2x isoforms in human intrafusal fibres. However, whether the labelling with an antibody specific for rat 2b isoform reflects the expression of this isoform in bag fibres and some extrafusal ones in the specialised cranial muscles requires further evaluation. The revealed pattern of isoform co-expression only partially agrees with the results of previous, more extensive studies. Nevertheless, it may be inferred that MyHC isoform expression in intrafusal fibres varies along their length, across different muscle spindles and muscles. Furthermore, the estimation of expression may also depend on the antibodies utilised, which may also react differently with intrafusal and extrafusal fibres.

3.
Fish Physiol Biochem ; 49(5): 1043-1061, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782384

RESUMO

Skeletal muscle myoblastic cell lines can provide a valuable new in vitro model for the exploration of the mechanisms that control skeletal muscle development and its associated molecular regulation. In this study, the skeletal muscle tissues of grass carp were digested with trypsin and collagenase I to obtain the primary myoblast cell culture. Myoblast cells were obtained by differential adherence purification and further analyzed by cryopreservation and resuscitation, chromosome analysis, immunohistochemistry, and immunofluorescence. A continuous grass carp myoblast cell line (named CIM) was established from grass carp (Ctenopharyngodon idellus) muscle and has been subcultured > 100 passages in a year and more. The CIM cells revived at 79.78-95.06% viability after 1-6 months of cryopreservation, and shared a population doubling time of 27.24 h. The number of modal chromosomes of CIM cells was 48, and the mitochondrial 12S rRNA sequence of the CIM cell line shared 99% identity with those of grass carp registered in GenBank. No microorganisms (bacteria, fungi, or mycoplasma) were detected during the whole study. The cell type of CIM cells was proven to be myoblast by immunohistochemistry of specific myogenic protein markers, including CD34, desmin, MyoD, and MyHC, as well as relative expression of key genes. And the myogenic rate and fusion index of this cell line after 10 days of induced differentiation were 8.96 ~ 9.42% and 3-24%, respectively. The telomerase activity and transfection efficiency of CIM cell line were 0.027 IU/mgprot and 23 ~ 24%, respectively. These results suggest that a myoblast cell line named CIM with normal biological function has been successfully established, which may provide a valuable tool for related in vitro studies.


Assuntos
Carpas , Mioblastos Esqueléticos , Animais , Sequência de Aminoácidos , Diferenciação Celular , Linhagem Celular
4.
J Physiol ; 600(20): 4421-4438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36069036

RESUMO

Fibre type-specific analyses are required for broader understanding of muscle physiology, but such analyses are difficult to conduct due to the extreme time requirements of dissecting and fibre typing individual fibres. Investigations are often confined to a small number of fibres from few participants with low representativeness of the entire fibre population and the participant population. To increase the feasibility of conducting large-scale fibre type-specific studies, a valid and rapid method for high-throughput fibre typing of individually dissected fibres was developed and named THRIFTY (for high-THRoughput Immunofluorescence Fibre TYping). Employing THRIFTY, 400 fibre segments were fixed onto microscope slides with a pre-printed coordinated grid system, probed with antibodies against myosin heavy chain (MyHC)-I and MyHC-II and classified using a fluorescence microscope. The validity and speed of THRIFTY was compared to a previously validated protocol (dot blot) on a fibre-to-fibre basis. Fibre pool purity was evaluated using 'gold standard' SDS-PAGE and silver staining. A modified THRIFTY-protocol using fluorescence western blot equipment was also validated. THRIFTY displayed excellent agreement with the dot blot protocol, κ = 0.955 (95% CI: 0.928, 0.982), P < 0.001. Both the original and modified THRIFTY protocols generated type I and type II fibre pools of absolute purity. Using THRIFTY, 400 fibres were typed just under 11 h, which was approximately 3 times faster than dot blot. THRIFTY is a novel and valid method with high versatility for very rapid fibre typing of individual fibres. THRIFTY can therefore facilitate the generation of large fibre pools for more extensive mechanistic studies into skeletal muscle physiology. KEY POINTS: Skeletal muscle is composed of different fibre types, each with distinct physiological properties. To fully understand how skeletal muscle adapts to external cues such as exercise, nutrition and ageing, fibre type-specific investigations are required. Such investigations are very difficult to conduct due to the extreme time requirements related to classifying individually isolated muscle fibres. To bypass this issue, we have developed a rapid and reliable method named THRIFTY which is cheap as well as versatile and which can easily be implemented in most laboratories. THRIFTY increases the feasibility of conducting larger fibre type-specific studies and enables time-sensitive assays where measurements need to be carried out in close connection with tissue sampling. By using THRIFTY, new insights into fibre type-specific muscle physiology can be gained which may have broad implications in health and disease.


Assuntos
Fibras Musculares Esqueléticas , Cadeias Pesadas de Miosina , Western Blotting , Exercício Físico , Humanos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia
5.
J Biol Chem ; 296: 100694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895132

RESUMO

Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, ß-myosin heavy chain (ß-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike ß-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of ß-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate ß-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.


Assuntos
Miosinas Cardíacas/metabolismo , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , RNA Longo não Codificante/genética , Miosinas Cardíacas/química , Humanos , Células-Tronco Pluripotentes Induzidas , MicroRNAs/genética , Simulação de Dinâmica Molecular , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/química , Conformação Proteica
6.
Int J Food Sci Nutr ; 73(5): 630-637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35042437

RESUMO

Sarcopenia starts around the age of 40, causes the loss of 8% of muscle mass every 10 years, and is accompanied by functional deficit, chronic low-grade inflammation, and can result in several negative health outcomes. Considering the early and gradual onset of sarcopenia, the time window of the potential interventions could be crucial for the exertion of a beneficial effect. We recently showed that the long-term supplementation with Resveratrol contrasts sarcopenia in naturally ageing C57BL/6 mice. Aiming to understand the effects of a short term treatment, we administered intraperitoneally middle aged male mice with 20 mg/kg body weight Resveratrol daily for 5 weeks. Although we could not observe major differences in the histological properties of SKMs, we detected a significant decrease of Cox-2 in RES-treated muscles, confirming the anti-inflammatory action of Resveratrol, and suggesting that its anti-inflammatory action precedes modifications to SKM fibres.


Assuntos
Sarcopenia , Envelhecimento , Animais , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Resveratrol/farmacologia , Sarcopenia/tratamento farmacológico
7.
J Biol Chem ; 295(15): 4937-4949, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152230

RESUMO

Mammalian skeletal muscles comprise different types of muscle fibers, and this muscle fiber heterogeneity is generally characterized by the expression of myosin heavy chain (MyHC) isoforms. A switch in MyHC expression leads to muscle fiber-type transition under various physiological and pathological conditions, but the underlying regulator coordinating the switch of MyHC expression remains largely unknown. Experiments reported in this study revealed the presence of a skeletal muscle-specific antisense transcript generated from the intergenic region between porcine MyHC IIa and IIx and is referred to here as MyHC IIA/X-AS. We found that MyHC IIA/X-AS is identified as a long noncoding RNA (lncRNA) that is strictly expressed in skeletal muscles and is predominantly distributed in the cytoplasm. Genetic analysis disclosed that MyHC IIA/X-AS stimulates cell cycle exit of skeletal satellite cells and their fusion into myotubes. Moreover, we observed that MyHC IIA/X-AS is more enriched in fast-twitch muscle and represses slow-type gene expression and thereby maintains the fast phenotype. Furthermore, we found that MyHC IIA/X-AS acts as a competing endogenous RNA that sponges microRNA-130b (miR-130b) and thereby maintains MyHC IIx expression and the fast fiber type. We also noted that miR-130b was proved to down-regulate MyHC IIx by directly targeting its 3'-UTR. Together, the results of our study uncovered a novel pathway, which revealed that lncRNA derived from the skeletal MyHC cluster could modulate local MyHC expression in trans, highlighting the role of lncRNAs in muscle fiber-type switching.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Desenvolvimento Muscular , Fibras Musculares de Contração Rápida/fisiologia , Músculo Esquelético/citologia , Cadeias Pesadas de Miosina/genética , RNA Longo não Codificante/genética , Animais , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Isoformas de Proteínas , Suínos
8.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573052

RESUMO

It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the "switching-off" of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading.


Assuntos
Pé/fisiologia , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Óxido Nítrico/metabolismo , Miosina não Muscular Tipo IIA/genética , Animais , Fenômenos Biomecânicos , Regulação para Baixo , Epigênese Genética , Elevação dos Membros Posteriores , Masculino , Ratos Wistar , Transdução de Sinais , Simulação de Ausência de Peso
9.
Biochem Biophys Res Commun ; 525(2): 406-411, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32093891

RESUMO

Skeletal muscle is divided into type 1 and type 2 fibers. Type 1 fibers are rich in mitochondria, have high oxidative metabolism, and are resistant to fatigue. Muscle-specific overexpression of peroxisome proliferator-activated receptor (PPAR)δ drastically increases the number of type 1 fibers. We focused on oleic acid, an omega-9 monounsaturated fatty acid, as a factor that activates PPARδ. In this study, we examined the effects of oleic acid on the muscle fiber type of C2C12 myotubes and its relationship with PPARδ. Our results showed that oleic acid treatment increased the levels of myosin heavy chain (MyHC)1, a known type 1 fiber marker, as well as mitochondrial mass and maximum respiration in C2C12 cells. To confirm the relationship between PPARδ activation and oleic acid-induced MyHC1 increase, we examined the effects of oleic acid in PPARδ knockdown C2C12 myoblasts. We found that oleic acid supplementation increased the mRNA expression of MyHC1 in PPARδ-knockdown C2C12 cells. Our data suggest that oleic acid increases type 1 fiber levels in C2C12 myotubes in a PPARδ-independent manner.


Assuntos
Mitocôndrias/metabolismo , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Ácido Oleico/metabolismo , Regulação para Cima , Animais , Linhagem Celular , Respiração Celular , Camundongos , Mitocôndrias/genética , Mioblastos/citologia , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/metabolismo
10.
Histochem Cell Biol ; 152(2): 89-107, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31093775

RESUMO

Recently, we evaluated capillary indices without discrimination by fiber type in rat extensor digitorum longus muscle (EDL) 4 weeks after nerve cut (NC), after double nerve crush (double NCR) and in two controls, from the start (CON-1) and the end (CON-2) of the experiment. In the present study, we determined the capillary indices related to specific myosin heavy chain (MyHC) fiber types. Fiber-type composition and local capillarity were assessed from a single, composite, multicolor image, where different MyHC-fiber types and capillaries were shown simultaneously. Applying local capillary indices [the number of capillaries around fiber (CAF) and the CAF scaled to fiber perimeter (CAF/FP)], to specific MyHC-fiber types, we found changes relevant to neuro-muscular studies. In the NC group, only type-2x fibers had a significantly lower CAF, and in the double NCR group, only type-2a fibers had a higher CAF in comparison with both controls. Both types of nerve injury elicited two responses: a coupled regulation of fiber size and capillarity in the oxidative, type 2a fibers and a capillarity independent regulation of fiber size in the glycolytic type-2b fibers. All subtypes of type-2 fibers had a better capillary supply (higher CAF/FP) in the NC and double NCR than in CON-2. The highest improvement was observed in type-2b fibers; this change was mirrored in an oxidative shift only in the double NCR group. Adopting fiber-type-specific capillary indices improves data analysis of rat EDL muscle samples.


Assuntos
Lesões por Esmagamento/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Ação Capilar , Lesões por Esmagamento/patologia , Lesões por Esmagamento/cirurgia , Masculino , Fibras Musculares Esqueléticas/química , Cadeias Pesadas de Miosina/análise , Procedimentos Neurocirúrgicos , Ratos , Ratos Wistar
11.
Br J Nutr ; 121(1): 1-8, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30449288

RESUMO

Muscle fibre types can transform from slow-twitch (slow myosin heavy chain (MyHC)) to fast-twitch (fast MyHC) or vice versa. Leucine plays a vital effect in the development of skeletal muscle. However, the role of leucine in porcine myofibre type transformation and its mechanism are still unclear. In this study, effects of leucine and microRNA-27a (miR-27a) on the transformation of porcine myofibre type were investigated in vitro. We found that leucine increased slow MyHC protein level and decreased fast MyHC protein level, increased the levels of phospho-protein kinase B (Akt)/Akt and phospho-forkhead box 1 (FoxO1)/FoxO1 and decreased the FoxO1 protein level. However, blocking the Akt/FoxO1 signalling pathway by wortmannin attenuated the role of leucine in porcine myofibre type transformation. Over-expression of miR-27a decreased slow MyHC protein level and increased fast MyHC protein level, whereas inhibition of miR-27a had an opposite effect. We also found that expression of miR-27a was down-regulated following leucine treatment. Moreover, over-expression of miR-27a repressed transformation from fast MyHC to slow MyHC caused by leucine, suggesting that miR-27a is interdicted by leucine and then contributes to porcine muscle fibre type transformation. Our finding provided the first evidence that leucine promotes porcine myofibre type transformation from fast MyHC to slow MyHC via the Akt/FoxO1 signalling pathway and miR-27a.


Assuntos
Proteína Forkhead Box O1/metabolismo , Leucina/farmacologia , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sus scrofa , Animais , Regulação para Baixo/efeitos dos fármacos , Masculino , MicroRNAs/genética , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Inibidores de Proteínas Quinases , Transdução de Sinais/efeitos dos fármacos , Wortmanina/farmacologia
12.
Anim Biotechnol ; 30(3): 260-266, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30264664

RESUMO

A feeding trial for 91 days was conducted to investigate effects of active immunization against porcine Sox6 (pSox6) on meat quality and myosin heavy chain (MyHC) isoform expression in growing-finishing pigs. Twenty-four castrated Duroc × Landrace × Yarkshire pigs were randomly divided into three groups: (1) Control group; (2) 1 mg/head pSox6 active immunity group; (3) 4 mg/head pSox6 active immunity group (4 mg/head group). The results showed that pigs in 4 mg/head group had a greater a* (Redness) and a higher marbling score, while no significant effect was observed in L* (Lightness), b* (Yellowness), intramuscular fat and cooking loss. Muscle succinic dehydrogenase activity in pSox6 active immunization groups was significantly increased, and muscle lactate dehydrogenase activity was significantly reduced. Meanwhile, active immunization against pSox6 upregulated the mRNA expression of MyHC I, while no effect was observed on the mRNA expressions of MyHC IIa, MyHC IIx, MyHC IIb. In addition, pigs in the 4 mg/head group exhibited lower Sox6 mRNA level and higher MyHC I protein level, while no significant influence was observed on MyHC IIb protein level. Together, our data imply that active immunization against pSox6 could improve the pork quality and promote the MyHC I expression in growing-finishing pigs.


Assuntos
Anticorpos/sangue , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Carne Vermelha/normas , Fatores de Transcrição SOXD/imunologia , Suínos/imunologia , Vacinação/veterinária , Animais , Antígenos/imunologia , Regulação da Expressão Gênica , Isoformas de Proteínas , RNA Mensageiro/genética , Distribuição Aleatória , Suínos/genética , Suínos/crescimento & desenvolvimento
13.
J Neurosci Res ; 96(6): 1043-1055, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29265492

RESUMO

Calcitonin gene-related peptide (CGRP) is released by motor neurons and affects skeletal muscle fiber and transient receptor potential cation channel subfamily V member 1 (TRPV1), an important marker of pain modulation. However, the expression of CGRP and TRPV1 in the trigeminal ganglion (TG) during changes and in feeding patterns has not been described. We used real-time reverse transcription polymerase chain reaction and in situ hybridization to investigate the mRNA expression levels of CGRP and TRPV1 in the TG. The expression of myosin heavy-chain (MyHC) isoforms was also investigated in the masseter muscle (MM) during the transition from sucking to mastication, an important functional trigger for muscle. The mRNA and protein levels of CGRP increased in the MM and TG from postnatal day 10 (P10) to P20 in male mice. The protein levels of TRPV1 were almost constant in the TG from P10 to P20, in contrast to increases in the MM. The mRNA abundance of TRPV1 in the TG and MM was increased from P10 to P20. The localization of an antisense probe was used to count CGRP cell numbers and found to differentiate the ophthalmic, maxillary, and mandibular nerve divisions of the TG. In particular, the number of CGRP+ cells per 10,000 µm2 in the maxillary and mandibular divisions of the TG gradually changed from P10 to P20. The expression of CGRP and TRPV1 in the TG and MM and the patterns of expression of different MyHC isoforms were affected by changes in feeding during male mouse development.


Assuntos
Músculo Masseter/metabolismo , Neurotransmissores/biossíntese , Gânglio Trigeminal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Hibridização In Situ , Masculino , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Neurotransmissores/genética , Neurotransmissores/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/biossíntese , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
14.
Mol Cell Biochem ; 444(1-2): 109-123, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29189984

RESUMO

Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12 myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast culture. Resveratrol (10 µM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the 'slow' type I MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for 'intermediate' and 'faster' IIx, IIa and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48-72 h. Overall, resveratrol evoked myotube hypertrophy in DM conditions while favouring 'slower' Myhc gene expression and acutely ameliorated impaired myotube growth observed during glucose restriction.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Glucose/deficiência , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Estilbenos/farmacologia , Animais , Linhagem Celular , Glucose/metabolismo , Camundongos , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Doenças Musculares/induzido quimicamente , Doenças Musculares/patologia , Mioblastos Esqueléticos/patologia , Resveratrol
15.
J Sports Sci ; 36(14): 1630-1639, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29160161

RESUMO

Myogenesis is the formation of muscle tissue from muscle precursor cells. Physical exercise induces satellite cell activation in muscle. Currently, C2C12 murine myoblast cells are used to study myogenic differentiation. Herein, we evaluated whether human LHCN-M2 myoblasts can differentiate into mature myotubes and express early (myotube formation, creatine kinase activity and myogenin) and late (MyHC-ß) muscle-specific markers when cultured in differentiation medium (DM) for 2, 4 and 7 days. We demonstrate that treatment of LHCN-M2 cells with DM supplemented with 0.5% serum from long-term (3 years) differently exercised subjects for 4 days induced myotube formation and significantly increased the early (creatine kinase activity and myogenin) and late (MyHC-ß expression) differentiation markers versus cells treated with serum from untrained subjects. Interestingly, serum from aerobic exercised subjects (swimming) had a greater positive effect on late-differentiation marker (MyHC-ß) expression than serum from anaerobic (body building) or from mixed exercised (soccer and volleyball) subjects. Moreover, p62and anti-apoptotic Bcl-2 protein expression was lower in LHCN-M2 cells cultured with human sera from differently exercised subjectst han in cells cultured with DM. In conclusion, LHCN-M2 human myoblasts represent a species-specific system with which to study human myogenic differentiation induced by serum from differently exercised subjects.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Exercício Físico/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/fisiologia , Adulto , Apoptose/fisiologia , Autofagia/fisiologia , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular , Creatina Quinase/metabolismo , Meios de Cultura , Expressão Gênica , Humanos , Fibras Musculares Esqueléticas/fisiologia , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , RNA Mensageiro/genética , Soro , Adulto Jovem
16.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424476

RESUMO

Molecular mechanisms that trigger disuse-induced postural muscle atrophy as well as myosin phenotype transformations are poorly studied. This review will summarize the impact of 5' adenosine monophosphate -activated protein kinase (AMPK) activity on mammalian target of rapamycin complex 1 (mTORC1)-signaling, nuclear-cytoplasmic traffic of class IIa histone deacetylases (HDAC), and myosin heavy chain gene expression in mammalian postural muscles (mainly, soleus muscle) under disuse conditions, i.e., withdrawal of weight-bearing from ankle extensors. Based on the current literature and the authors' own experimental data, the present review points out that AMPK plays a key role in the regulation of signaling pathways that determine metabolic, structural, and functional alternations in skeletal muscle fibers under disuse.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Transtornos Musculares Atróficos/enzimologia , Animais , Metabolismo Energético , Humanos , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/patologia , Transdução de Sinais
17.
J Physiol ; 595(23): 7123-7134, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28975644

RESUMO

KEY POINTS: Inactivation of a skeletal muscle results in slow to fast myosin heavy chain (MyHC) shift. AMP-activated protein kinase (AMPK) can be implicated in the regulation of genes encoding the slow MyHC isoform. Here we report that AMPK dephosphorylation after 24 h of mechanical unloading can contribute to histone deacetylase (HDAC) nuclear translocation; activation of AMPK prevents HDAC4 nuclear accumulation after 24 h of unloading and AMPK dephosphorylation inhibits slow MyHC expression following 24 h of unloading. Our data indicate that AMPK dephosphorylation during the first 24 h of mechanical unloading has a significant impact on the expression of MyHC isoforms in rat soleus causing a decrease in MyHC I(ß) pre-mRNA and mRNA expression as well as MyHC IIa mRNA expression. ABSTRACT: One of the key events that occurs during skeletal muscle inactivation is a change in myosin phenotype, i.e. increased expression of fast isoforms and decreased expression of the slow isoform of myosin heavy chain (MyHC). It is known that calcineurin/nuclear factor of activated T-cells and AMP-activated protein kinase (AMPK) can regulate the expression of genes encoding MyHC slow isoform. Earlier, we found a significant decrease in phosphorylated AMPK in rat soleus after 24 h of hindlimb unloading (HU). We hypothesized that a decrease in AMPK phosphorylation and subsequent histone deacetylase (HDAC) nuclear translocation can be one of the triggering events leading to a reduced expression of slow MyHC. To test this hypothesis, Wistar rats were treated with AMPK activator (AICAR) for 6 days before HU as well as during 24 h of HU. We discovered that AICAR treatment prevented a decrease in pre-mRNA and mRNA expression of MyHC I as well as MyHC IIa mRNA expression. Twenty-four hours of hindlimb suspension resulted in HDAC4 accumulation in the nuclei of rat soleus but AICAR pretreatment prevented this accumulation. The results of the study indicate that AMPK dephosphorylation after 24 h of HU had a significant impact on the MyHC I and MyHC IIa mRNA expression in rat soleus. AMPK dephosphorylation also contributed to HDAC4 translocation to the nuclei of soleus muscle fibres, suggesting an important role of HDAC4 as an epigenetic regulator in the process of myosin phenotype transformation.


Assuntos
Elevação dos Membros Posteriores/efeitos adversos , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Quinases Proteína-Quinases Ativadas por AMP , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Histona Desacetilases/metabolismo , Masculino , Cadeias Pesadas de Miosina/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
18.
Muscle Nerve ; 55(5): 715-726, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27571286

RESUMO

INTRODUCTION: Rotator-cuff injury (RCI) represents 50% of shoulder injuries, and prevalence increases with age. Even with successful tendon repair, muscle and joint function may not return. METHODS: To explore the dysfunction, supraspinatus and ipsilateral deltoid (control) muscles were biopsied during arthroscopic RCI repair for pair-wise histological and protein-expression studies. RESULTS: Supraspinatus showed fiber atrophy (P < 0.0001), fibrosis (by Sirius Red, P = 0.05), reduced vascular density (P < 0.001), and a lower proportion of slow fibers (P < 0.0001) compared with the ipsilateral control muscle. There were also higher levels of atrogin-1 (P = 0.05), vascular endothelial growth factor (VEGF, P < 0.01), and dystrophin (P < 0.008, relative to fiber diameter) versus control. CONCLUSIONS: Adaptive changes in vascular endothelial growth factor and dystrophin were likely associated with reduced vascular supply, fatigue resistance, and fibrosis, accompanied by disuse atrophy from mechanical unloading of supraspinatus after tendon tear. Treatment to promote growth and vascularity in atrophic supraspinatus muscle may help improve functional outcome after surgical repair. Muscle Nerve 55: 715-726, 2017.


Assuntos
Fibras Musculares de Contração Rápida/patologia , Atrofia Muscular/patologia , Lesões do Manguito Rotador/patologia , Idoso , Miosinas Cardíacas/metabolismo , Distrofina/metabolismo , Feminino , Fibrose/diagnóstico por imagem , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/fisiopatologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Br J Nutr ; 117(1): 12-20, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28091351

RESUMO

The present study aimed to investigate the effects of maternal dietary butyrate supplementation on energy metabolism and mitochondrial biogenesis in offspring skeletal muscle and the possible mediating mechanisms. Virgin female rats were randomly assigned to either control or butyrate diets (1 % butyrate sodium) throughout gestation and lactation. At the end of lactation (21 d), the offspring were killed by exsanguination from the abdominal aorta under anaesthesia. The results showed that maternal butyrate supplementation throughout gestation and lactation did not affect offspring body weight. However, the protein expressions of G-protein-coupled receptors (GPR) 43 and 41 were significantly enhanced in offspring skeletal muscle of the maternal butyrate-supplemented group. The ATP content, most of mitochondrial DNA-encoded gene expressions, the cytochrome c oxidase subunit 1 and 4 protein contents and the mitochondrial DNA copy number were significantly higher in the butyrate group than in the control group. Meanwhile, the protein expressions of type 1 myosin heavy chain, mitochondrial transcription factor A, PPAR-coactivator-1α (PGC-1α) and uncoupling protein 3 were significantly increased in the gastrocnemius muscle of the treatment group compared with the control group. These results indicate for the first time that maternal butyrate supplementation during the gestation and lactation periods influenced energy metabolism and mitochondrial biogenesis through the GPR and PGC-1α pathways in offspring skeletal muscle at weaning.


Assuntos
Butiratos/farmacologia , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Ração Animal/análise , Animais , Butiratos/administração & dosagem , DNA Mitocondrial/genética , Dieta , Suplementos Nutricionais , Feminino , Lactação , Mitocôndrias Musculares/genética , Gravidez , Ratos , Ratos Sprague-Dawley
20.
Br J Nutr ; 117(9): 1222-1234, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28643619

RESUMO

Leucine plays an important role in promoting muscle protein synthesis and muscle remodelling. However, what percentage of leucine is appropriate in creep feed and what proteome profile alterations are caused by dietary leucine in the skeletal muscle of piglets remain elusive. In this case, we applied isobaric tags for relative and absolute quantitation to analyse the proteome profile of the longissimus dorsi muscles of weanling piglets fed a normal leucine diet (NL; 1·66 % leucine) and a high-leucine diet (HL; 2·1 % leucine). We identified 157 differentially expressed proteins between these two groups. Bioinformatics analysis of these proteins exhibited the suppression of oxidative phosphorylation and fatty acid ß-oxidation, as well as the activation of glycolysis, in the HL group. For further confirmation, we identified that SDHB, ATP5F1, ACADM and HADHB were significantly down-regulated (P<0·01, except ATP5F1, P<0·05), whereas the glycolytic enzyme pyruvate kinase was significantly up-regulated (P<0·05) in the HL group. We also show that enhanced muscle protein synthesis and the transition from slow-to-fast fibres are altered by leucine. Together, these results indicate that leucine may alter energy metabolism and promote slow-to-fast transitions in the skeletal muscle of weanling piglets.


Assuntos
Ração Animal/análise , Dieta/veterinária , Metabolismo Energético/efeitos dos fármacos , Leucina/farmacologia , Músculo Esquelético/fisiologia , Suínos/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Suplementos Nutricionais , Leucina/administração & dosagem , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA