Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Glob Chang Biol ; 30(6): e17372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894582

RESUMO

Widespread adoption of regenerative agriculture practices is an integral part of the US plan to achieve net-zero greenhouse gas emissions by 2050. National incentives have particularly increased for the adoption of cover crops (CCs), which have presumably large carbon (C) sequestration potential. However, assessments of national CC climate benefits have not fully considered regional variability, changing C sequestration rates over time, and potential N2O trade-offs. Using the DayCent soil biogeochemical model and current national survey data, we estimate CC climate change mitigation potential to be 39.0 ± 24.1 Mt CO2e year-1, which is 45%-65% lower than previous estimates, with large uncertainty attributed to N2O impacts. Three-fourths of this climate change mitigation potential is concentrated in the North Central, Southern Great Plains and Lower Mississippi regions. Public investment should be focused in these regions to maximize CC climate benefits, but the national contribution of CC to emissions targets may be lower than previously anticipated.


Assuntos
Mudança Climática , Produtos Agrícolas , Estados Unidos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Modelos Teóricos , Sequestro de Carbono , Gases de Efeito Estufa/análise
2.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741339

RESUMO

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Assuntos
Gado , Esterco , Óxido Nitroso , Óxido Nitroso/análise , Esterco/análise , Animais , Poluentes Atmosféricos/análise
3.
Environ Sci Technol ; 58(5): 2335-2345, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271692

RESUMO

Continuous flow processes for the in situ determination of N2O emissions during low C/N municipal wastewater treatment have rarely been reported. The anaerobic/aerobic/anoxic (AOA) process has recently shown promising potential in energy savings and advanced nitrogen removal, but it still needs to be comprehensively explored in relation to N2O emissions for its carbon reduction advantages. In this study, a novel gas-collecting continuous flow reactor was designed to comprehensively evaluate the emissions of N2O from the gas and liquid phases of the AOA process. Additionally, the measures of enhancing endogenous denitrification (ED) and self-enriching anaerobic ammonium oxidation (Anammox) were employed to optimize nitrogen removal and achieve N2O reduction in the anoxic zone. The results showed that enhanced ED coupled with Anammox led to an increase in the nitrogen removal efficiency (NRE) from 67.65 to 81.96%, an enhancement of the NO3- removal rate from 1.76 mgN/(L h) to 3.99 mgN/(L h), and the N2O emission factor in the anoxic zone decreased from 0.28 to 0.06%. Impressively, ED eliminated 91.46 ± 2.47% of the dissolved N2O from the upstream aerobic zone, and the dissolved N2O in the effluent was reduced to less than 0.01 mg/L. This study provides valuable strategies for fully evaluating N2O emissions and N2O reduction from the AOA process.


Assuntos
Desnitrificação , Águas Residuárias , Nitrogênio/análise , Reatores Biológicos , Carbono , Oxirredução , Esgotos , Nitrificação
4.
Environ Res ; 260: 119580, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38992757

RESUMO

Physicochemical and toxicological characterization of leather tanning wastewater has been widely documented. However, few reports have examined the response of denitrification N2 and N2O emissions in riparian sediments of tannery wastewater-receiving rivers. In this study, 15N-nitrate labeling was used to reveal the effects of tanning wastewater on denitrification N2 and N2O emission in a wastewater-receiving river (the old Mang River, OMR). OMR riparian sediments were highly polluted with total organic carbon (93.39 mg/kg), total nitrogen (5.00 g/kg) and heavy metals; specifically, Cr, Zn, Cd, and Pb were found at concentrations 47.3, 5.8, 1.6, 4.3, and 2.8 times that in a nearby parallel river without tanning wastewater input (the new Mang River, NMR), respectively. The denitrification N2 emission rates (0.0015 nmol N · g-1 h-1) of OMR riparian sediments were significantly reduced by 2.5 times compared with those from the NMR (p < 0.05), but the N2O emission rates (0.31 nmol N · g-1 h-1) were significantly increased (4.1 times, p < 0.05). Although the dominant nitrogen-transforming bacteria phylum was Proteobacteria in the riparian sediments of both rivers, 11 nitrogen-transforming bacteria genera in the OMR were found to be significantly enriched; five of these were related to pollutant degradation based on linear discriminant analysis (LDA >3). The average activity of the electron transport system in the OMR was 6.3 times lower than that of the NMR (p < 0.05). Among pollution factors, heavy metal complex pollution was the dominant factor driving variations in N2O emissions, microbial community structure, and electron transport system activity. These results provide a new understanding and reference for the treatment of tanning wastewater-receiving rivers.

5.
Glob Chang Biol ; 29(7): 1839-1853, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537009

RESUMO

Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2 O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2 O emissions.


Assuntos
Desnitrificação , Nitrificação , Ecossistema , Dióxido de Carbono , Microbiologia do Solo , Solo , Bactérias , Óxido Nitroso/análise
6.
Environ Sci Technol ; 57(41): 15571-15579, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796720

RESUMO

Airborne measurements offer an effective way to quantify urban emissions of greenhouse gases (GHGs). However, it may be challenging due to the requirement of high measurement precision and sufficiently enhanced signals. We developed a new active AirCore system based on the previous unmanned aerial vehicle (UAV) version, which is capable of sampling atmospheric air for several hours aboard a lightweight aircraft for postflight simultaneous and continuous measurements of N2O, CH4, CO2, and CO. We performed 13 flights over the urban areas of Groningen, Utrecht, and Rotterdam and evaluated the aircraft-based AirCore measurements against in situ continuous CH4 measurements. One flight was selected for each of the three urban areas to quantify the emissions of N2O and CH4. Compared to the Dutch inventory, the estimated N2O emissions (364 ± 143 kg h-1) from the Rotterdam area are ∼3 times larger, whereas those for Groningen (95 ± 90 kg h-1) and Utrecht (32 ± 16 kg h-1) are not significantly different. The estimated CH4 emissions for all three urban areas (Groningen: 2534 ± 1774 kg CH4 hr-1, Utrecht: 1440 ± 628 kg CH4 hr-1, and Rotterdam: 2419 ± 922 kg CH4 hr-1) are not significantly different from the Dutch inventory. The innovative aircraft-based active AirCore sampling system provides a robust means of high-precision and continuous measurements of multiple gas species, which is useful for quantifying GHG emissions from urban areas.


Assuntos
Gases de Efeito Estufa , Metano , Metano/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Aeronaves
7.
Environ Res ; 231(Pt 3): 116217, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245574

RESUMO

The sole application of nitrogen (N) fertilizer with lower N2O emission potential or combined with biochar may help for mitigating N2O production. However, how biochar applied with various inorganic N fertilizers affected N2O emission in acidic soil remains unclear. Thus, we examined N2O emission, soil N dynamics and relating nitrifiers (i.e., ammonia-oxidizing archaea, AOA) in acidic soil. The study contained three N fertilizers (including NH4Cl, NaNO3, NH4NO3) and two biochar application rates (i.e., 0% and 0.5%). The results indicated that the alone application of NH4Cl produced more N2O. Meanwhile, the co-application of biochar and N fertilizers enhanced N2O emission as well, especially in the combined treatment of biochar and NH4NO3. Soil pH was decreased with the application of various N fertilizers, especially with NH4Cl, and the average decrease rate was 9.6%. Meanwhile, correlation analysis showed a negative relationship between N2O and pH, dramatically, which might indicate that the alteration of pH was one factor relating to N2O emission. However, there was no difference between the same N addition treatments with or without biochar on pH. Interestingly, in the combined treatment of biochar and NH4NO3, the lowest net nitrification rate and net mineralization rate appeared during days 16-23. Meanwhile, the highest emission rate of N2O in the same treatment also appeared during days 16-23. The accordance might indicate that N transformation alteration was another factor relating to N2O emissions. In addition, compared to NH4NO3 alone application, co-applied with biochar had a lower content of Nitrososphaera-AOA, which was a main contributor to nitrification. The study emphasizes the importance of using a suitable form of N fertilizers and further indicates that two factors, namely alteration of pH and N transformation rate, are related to N2O emission. Moreover, in future studies, it is necessary to explore the soil N dynamics controlled by microorganisms.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Nitrogênio , Óxido Nitroso , Archaea , Agricultura/métodos
8.
Environ Res ; 225: 115542, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822538

RESUMO

Soil nitrous oxide (N2O) is produced by abiotic and biotic processes, but it is solely consumed by denitrifying microbes-encoded by nosZ genes. The nosZ gene includes two groups i.e. Clade I and Clade II, which are highly sensitive to pH. Managing pH of acidic soils can substantially influence soil N2O production or consumption through nosZ gene abundance. Nevertheless, the response of nosZ (Clade I and Clade II) to pH management needs elucidation in acidic soils. To clarify this research question, a pot experiment growing rice crop was conducted with three treatments: control (only soil), low dose of dolomite (LDD), and high dose of dolomite (HDD). The soil pH increased from 5.41 to 6.23 in the control, 6.5 in LDD and 6.8 in HDD treatment under flooded condition. The NH4+ and NO3- contents increased and reached the maximum at 30.4 and 21.5 mg kg-1, respectively, in HDD treatment under flooding condition. The contents of dissolved organic carbon and microbial biomass carbon showed a swift rise at midseason aeration and reached maximum at 30.7 and 101 mg kg-1 in the HDD treatment. Clade I, Clade II and 16S rRNA genes abundance increased with the onset of flooding, and occurred maximum in the HDD treatment. A peak in N2O emissions (5.96 µg kg-1 h-1) occurred at midseason events in the control when no dolomite was added. Dolomite application significantly (p ≤ 0.001) suppressed N2O emissions, and HDD treatment was more effective in reducing emissions. Pearson correlation, linear regressions and principal component analysis displayed that increased soil pH and Clade I and Clade II were the main controlling factors for N2O emission mitigation in acidic soil. This research demonstrates that ameliorating soil acidity with dolomite application is a potential option for the mitigation of N2O emissions.


Assuntos
Oryza , Solo , Solo/química , Oryza/genética , RNA Ribossômico 16S , Carbono , Óxido Nitroso , Concentração de Íons de Hidrogênio , Microbiologia do Solo
9.
Environ Res ; 239(Pt 1): 117245, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774999

RESUMO

The squeezed liquid from fruit and vegetable waste (LW) presents a unique wastewater challenge, marked by recalcitrance in treatment and amplified design risks with the application of conventional processes. Following coagulation of the squeezed liquid, the majority of particulate matter precipitates. The resulting precipitated floc (LWF) is reclaimed and subsequently utilized for the synthesis of biochar. The present study primarily explores the viability of repurposing LWF as biochar to enhance soil quality and mitigate N2O emissions. Findings indicate that the introduction of a 2% proportion of LWFB led to a remarkable 99.5% reduction in total N2O emissions in contrast to LWF. Concurrently, LWFB substantially enhanced nutrients content by elevating soil organic carbon (SOC) and nitrogen levels. Utilizing high-throughput sequencing in conjunction with qPCR, the investigation unveiled that the porous structure and substantial specific surface area of LWFB potentially fostered microbial adhesion and heightened diversity within the soil microbial community. Furthermore, LWFB notably diminished the relative abundance of AOB (Nitrosospira, Nitrosomonas), and NOB (Candidatus_Nitrotoga), thereby curbing the conversion of NH4+ into NO3-. The pronounced elevation in nosZ abundance implies that LWFB holds the potential to mitigate N2O emissions through a conversion to N2.


Assuntos
Microbiota , Solo , Solo/química , Carbono , Verduras , Frutas/química , Óxido Nitroso , Microbiologia do Solo
10.
J Environ Manage ; 347: 119045, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778069

RESUMO

In order to explore the alteration of N transformation and N2O emissions in acid soil with the co-application of straw and different types of nitrogen (N) fertilizers, an incubation experiment was carried out for 40 days. There are totally five treatments in the study: (a) without straw and N fertilizer (N0), (b) straw alone application (SN0), (c) straw with NH4Cl (SN1), (d) straw with NaNO3 (SN2), and (e) straw with NH4NO3 (SN3). N2O emissions, soil physicochemical properties, and abundance/activity of ammonia-oxidizing archaea (AOA) were measured. The results showed that the combined application of straw and N enhanced N2O emissions, particularly, SN2 and SN3 treatments. Moreover, the soil pH was lower in co-application treatments and the average decreasing rate was 9.69%. Specially, the pH was lowest in the SN1 treatment. The results of correlation analysis indicated a markedly negative relationship between pH and N2O, as well as a negative relationship between pH and net mineralization rate. These findings suggest that pH alteration can affect the N transformation process in soil and thus influence N2O emissions. In addition, the dominant AOA at the genus level in the SN2 treatment was Nitrosopumilus, and Candidatus nitrosocosmicus in the SN3 treatment. The reshaped AOA structure can serve as additional evidence of the changes in the N transformation process. In conclusion, as the return of straw, the cumulation of N2O from arable acid soil depends on the form of N fertilizer. It is also important to consider how N fertilizer is applied to reduce the possibility of N being lost in the soil as gas.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Archaea , Agricultura
11.
J Environ Manage ; 344: 118455, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393872

RESUMO

Nitrous oxide (N2O) is the third most potent greenhouse gas (GHG) and the most important ozone depleting substance. But how global N2O emissions are connected through the interwoven trade network remains unclear. This paper attempts to specifically trace anthropogenic N2O emissions via global trade networks using a multi-regional input-output model and a complex network model. Nearly one quarter of global N2O emissions can be linked to products traded internationally in 2014. The top 20 economies contribute to about 70% of the total embodied N2O emission flows. In terms of the trade embodied emissions classified by sources, cropland-, livestock-, chemistry-, and other industries-related embodied N2O emissions account for 41.9%, 31.2%, 19.9%, and 7.0%, respectively. Clustering structure of the global N2O flow network is revealed by the regional integration of 5 trading communities. Hub economies such as mainland China and the USA are collectors and distributors, and some emerging countries, such as Mexico, Brazil, India, and Russia, also exhibit dominance in different kinds of networks. This study selects the cattle sector to further verify that low production-side emission intensities and trade cooperation can lead to N2O emission reduction. In view of the impact of trade networks on global N2O emissions, achieving N2O emission reduction calls for vigorous international cooperation.


Assuntos
Gases de Efeito Estufa , Animais , Bovinos , Óxido Nitroso/análise , China , Brasil , Índia
12.
J Environ Manage ; 336: 117677, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36913855

RESUMO

Nitrous oxide (N2O) emissions from agroecosystems are a major contributor to global warming and stratospheric ozone depletion. However, knowledge concerning the hotspots and hot moments of soil N2O emissions with manure application and irrigation, as well as the underlying mechanisms remain incomplete. Here, a 3-year field experiment was conducted with the combination of fertilization (no fertilizer, F0; 100% chemical fertilizer N, Fc; 50% chemical N + 50% manure N, Fc + m; and 100% manure N, Fm) and irrigation (with irrigation, W1; and without irrigation, W0; at wheat jointing stage) for winter wheat - summer maize cropping system in the North China Plain. Results showed that irrigation did not affect annual N2O emissions of the wheat-maize system. Manure application (Fc + m and Fm) reduced annual N2O emissions by 25-51% compared with Fc, which mainly occurred during 2 weeks after fertilization combined with irrigation (or heavy rainfall). In particular, Fc + m reduced the cumulative N2O emissions during 2 weeks after winter wheat sowing and summer maize top dressing by 0.28 and 0.11 kg ha-1, respectively, compared with Fc. Meanwhile, Fm maintained the grain N yield and Fc + m increased grain N yield by 8% compared with Fc under W1. Overall, Fm maintained the annual grain N yield and lower N2O emissions compared to Fc under W0, and Fc + m increased the annual grain N yield and maintained N2O emissions compared with Fc under W1, respectively. Our results provide scientific support for using manure to minimize N2O emissions while maintaining crop N yield under optimal irrigation to support the green transition in agricultural production.


Assuntos
Triticum , Zea mays , Esterco , Fertilizantes , Agricultura/métodos , Solo , Óxido Nitroso/análise , Grão Comestível/química , China
13.
Glob Chang Biol ; 28(7): 2505-2524, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34951088

RESUMO

The atmospheric concentration of nitrous oxide (N2 O) has increased by 23% since the pre-industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of soil N2 O emissions, a primary biogenic source. Here, we used an integrative land ecosystem model, Dynamic Land Ecosystem Model (DLEM), to quantify direct (i.e., emitted from local soil) and indirect (i.e., emissions related to local practices but occurring elsewhere) N2 O emissions in the contiguous United States during 1900-2019. Newly developed geospatial data of land-use history and crop-specific agricultural management practices were used to force DLEM at a spatial resolution of 5 arc-min by 5 arc-min. The model simulation indicates that the U.S. soil N2 O emissions totaled 0.97 ± 0.06 Tg N year-1 during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. Hot spots of soil N2 O emission are found in the US Corn Belt and Rice Belt. We find a threefold increase in total soil N2 O emission in the United States since 1900, 74% of which is from agricultural soil emissions, increasing by 12 times from 0.04 Tg N year-1 in the 1900s to 0.51 Tg N year-1 in the 2010s. More than 90% of soil N2 O emission increase in agricultural soils is attributed to human land-use change and agricultural management practices, while increases in N deposition and climate warming are the dominant drivers for N2 O emission increase from natural soils. Across the cropped acres, corn production stands out with a large amount of fertilizer consumption and high-emission factors, responsible for nearly two-thirds of direct agricultural soil N2 O emission increase since 1900. Our study suggests a large N2 O mitigation potential in cropland and the importance of exploring crop-specific mitigation strategies and prioritizing management alternatives for targeted crop types.


Assuntos
Óxido Nitroso , Solo , Agricultura , Ecossistema , Fertilizantes/análise , Humanos , Óxido Nitroso/análise , Estados Unidos
14.
Glob Chang Biol ; 28(2): 480-492, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473894

RESUMO

Robust global simulation of soil background N2 O emissions (BNEs) is a challenge due to the lack of a comprehensive system for quantification of the variations in their magnitude and location. We mapped global BNEs based on 1353 field observations from globally distributed sites and high-resolution climate and soil data. We then calculated global and national total BNE budgets and compared them to the IPCC-estimated values. The average BNE was 1.10, 0.92, and 0.84 kg N ha-1  year-1 with variations from 0.18 to 3.47 (5th-95th percentile, hereafter), 0.20 to 3.44, and -1.16 to 3.70 kg N ha-1  year-1 for cropland, forestland, and grassland, respectively. Soil pH, soil N mineralization, atmospheric N deposition, soil volumetric water content, and soil temperature were the principle significant drivers of BNEs. The total BNEs of three land use types was lower than IPCC-estimated total BNEs by 0.83 Tg (1012  g) N year-1 , ranging from -47% to 94% across countries. The estimated BNE with cropland values were slightly higher than the IPCC estimates by 0.11 Tg N year-1 , and forestland and grassland lower than the IPCC estimates by 0.4 and 0.54 Tg N year-1 , respectively. Our study underlined the necessity for detailed estimation of the spatial distribution of BNEs to improve the estimates of global N2 O emissions and enable the establishment of more realistic and effective mitigation measures.


Assuntos
Óxido Nitroso , Solo , Agricultura , Clima , Florestas , Óxido Nitroso/análise
15.
Glob Chang Biol ; 28(3): 899-917, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34699094

RESUMO

Human activities have drastically increased nitrogen (N) deposition onto forests globally. This may have alleviated N limitation and thus stimulated productivity and carbon (C) sequestration in aboveground woody biomass (AGWB), a stable C pool with long turnover times. This 'carbon bonus' of human N use partly offsets the climate impact of human-induced N2 O emissions, but its magnitude and spatial variation are uncertain. Here we used a meta-regression approach to identify sources of heterogeneity in tree biomass C-N response (additional C stored per unit of N) based on data from fertilization experiments in global forests. We identified important drivers of spatial variation in forest biomass C-N response related to climate (potential evapotranspiration), soil fertility (N content) and tree characteristics (stand age), and used these relationships to quantify global spatial variation in N-induced forest biomass C sequestration. Results show that N deposition enhances biomass C sequestration in only one-third of global forests, mainly in the boreal region, while N reduces C sequestration in 5% of forests, mainly in the tropics. In the remaining 59% of global forests, N addition has no impact on biomass C sequestration. Average C-N responses were 11 (4-21) kg C per kg N for boreal forests, 4 (0-8) kg C per kg N for temperate forests and 0 (-4 to 5) kg C per kg N for tropical forests. Our global estimate of the N-induced forest biomass C sink of 41 (-53 to 159) Tg C yr-1 is substantially lower than previous estimates, mainly due to the absence of any response in most tropical forests (accounting for 58% of the global forest area). Overall, the N-induced C sink in AGWB only offsets ~5% of the climate impact of N2 O emissions (in terms of 100-year global warming potential), and contributes ~1% to the gross forest C sink.


Assuntos
Sequestro de Carbono , Nitrogênio , Biomassa , Carbono , Florestas , Humanos , Taiga , Árvores
16.
Biotechnol Bioeng ; 119(6): 1426-1438, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35119107

RESUMO

Partial nitration-anammox is a resource-efficient pathway for nitrogen removal from wastewater. However, the advantages of this nitrogen removal technology may be counter-acted by the emission of N2 O, a potent greenhouse gas. In this study, mathematical modelling was applied to analyse N2 O formation and emission dynamics and to develop N2 O mitigation strategies for a one-stage partial nitritation-anammox granular sludge reactor. Dynamic model calibration for such a full-scale reactor was performed, applying a one-dimensional biofilm model and including several N2 O formation pathways. Simultaneous calibration of liquid phase concentrations and N2 O emissions leads to improved model fit compared to their consecutive calibration. The model could quantitatively predict the average N2 O emissions and qualitatively characterize the N2 O dynamics, adjusting only seven parameter values. The model was validated with N2 O data from an independent data set at different aeration conditions. Nitrifier nitrification was identified as the dominating N2 O formation pathway. Off-gas recirculation as a potential N2 O emission reduction strategy was tested by simulation and showed indeed some improvement, be it at the cost of higher aeration energy consumption.


Assuntos
Reatores Biológicos , Esgotos , Oxidação Anaeróbia da Amônia , Nitrificação , Nitrogênio , Oxirredução , Águas Residuárias
17.
Environ Sci Technol ; 56(6): 3791-3800, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226464

RESUMO

Dissimilatory nitrate reduction to ammonium (DNRA), the nearly forgotten process in the terrestrial nitrogen (N) cycle, can conserve N by converting the mobile nitrate into non-mobile ammonium avoiding nitrate losses via denitrification, leaching, and runoff. However, global patterns and controlling factors of soil DNRA are still only rudimentarily known. By a meta-analysis of 231 observations from 85 published studies across terrestrial ecosystems, we find a global mean DNRA rate of 0.31 ± 0.05 mg N kg-1 day-1, being significantly greater in paddy soils (1.30 ± 0.59) than in forests (0.24 ± 0.03), grasslands (0.52 ± 0.15), and unfertilized croplands (0.18 ± 0.04). Soil DNRA was significantly enhanced at higher altitude and lower latitude. Soil DNRA was positively correlated with precipitation, temperature, pH, soil total carbon, and soil total N. Precipitation was the main stimulator for soil DNRA. Total carbon and pH were also important factors, but their effects were ecosystem-specific as total carbon stimulates DNRA in forest soils, whereas pH stimulates DNRA in unfertilized croplands and paddy soils. Higher temperatures inhibit soil DNRA via decreasing total carbon. Moreover, nitrous oxide (N2O) emissions were negatively related to soil DNRA. Thus, future changes in climate and land-use may interact with management practices that alter soil substrate availability and/or soil pH to enhance soil DNRA with positive effects on N conservation and lower N2O emissions.


Assuntos
Compostos de Amônio , Carbono , Desnitrificação , Ecossistema , Nitratos , Nitrogênio , Óxido Nitroso , Solo
18.
Environ Sci Technol ; 56(7): 4665-4675, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35254824

RESUMO

Agricultural soils are the largest anthropogenic emission source of nitrous oxide (N2O). National agricultural policies have been implemented to increase crop yield and reduce nitrogen (N) losses to the environment. However, it is difficult to effectively quantify crop-specific and regional N2O mitigation priorities driven by policies, due to lack of long-term, high-resolution crop-specific activity data, and oversimplified models. Here, we quantify the spatiotemporal changes and key drivers of crop-specific cropland-N2O emissions from China between 1980 and 2017, and future N2O mitigation potentials, using a linear mixed-effect model and survey-based data set of agricultural management measures. Cropland-N2O emissions from China tripled from 102.5 to 315.0 Gg N yr-1 between 1980 and 2017, and decelerated since 1998 mainly driven by country-wide deceleration and decrease in N rate and the changes in sowing structure. About 63% of N2O emissions could be reduced in 2050, primarily in the North China Plain and Northeast China Plain; 83% of which is from the production of maize (33%), vegetables (27%), and fruits (23%). The deceleration of N2O emissions highlights that policy interventions and agronomy practices (i.e., optimizing N rate and sowing structure) are potential pathways for further ambitious N2O mitigation in China and other developing countries.


Assuntos
Desaceleração , Fertilizantes , Agricultura , China , Óxido Nitroso/análise , Solo/química , Verduras
19.
Environ Res ; 213: 113728, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732203

RESUMO

Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions are two main greenhouse gases that play important roles in global warming. Studies have shown that microplastics, biochar, and earthworms can significantly affect soil greenhouse gas emissions. However, few studies have explored how their interactions affect soil CO2 and N2O emissions. A mesocosm experiment was conducted to investigate their interactive effects on soil greenhouse gases and soil microbial functional genes in vegetable-growing soil under different incubation times. Biochar alone or combined with microplastics significantly decreased soil CO2 emissions but had no effect on soil N2O emissions. Microplastics and biochar inhibited CO2 emissions and promoted N2O emissions in the soil with earthworms. The addition of microplastics, biochar, and earthworms had significant effects on soil chemical properties, including dissolved organic carbon, ammonia nitrogen, nitrate nitrogen, total nitrogen, and pH. Microplastics and earthworms selectively influenced microbial abundances and led to a fungi-prevalent soil microbial community, while biochar led to a bacteria-prevalent microbial community. The interactions of microplastics, biochar, and earthworms could alleviate the reduction of the bacteria-to-fungi ratio and the abundance of microbial functional genes caused by microplastics and earthworms alone. Microplastics significantly inhibited microorganisms as well as C and N cycling functional genes in earthworm guts, while biochar obviously stimulated them. The influence of the addition of exogenous material on soil greenhouse gas emissions, soil chemical properties, and functional microbes differed markedly with soil incubation time. Our results indicated that biochar is a promising amendment for soil with microplastics or earthworms to simultaneously mitigate CO2 emissions and regulate soil microbial community composition and function. These findings contribute to a better understanding of the interaction effects of microplastics, biochar, and earthworms on soil carbon and nitrogen cycles, which could be used to help conduct sustainable environmental management of soil.


Assuntos
Gases de Efeito Estufa , Oligoquetos , Animais , Dióxido de Carbono/análise , Carvão Vegetal , Microplásticos , Nitrogênio , Óxido Nitroso , Oligoquetos/genética , Plásticos , Solo/química , Verduras
20.
Glob Chang Biol ; 27(20): 4950-4966, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231289

RESUMO

Manual measurements of nitrous oxide (N2 O) emissions with static chambers are commonly practised. However, they generally do not consider the diurnal variability of N2 O flux, and little is known about the patterns and drivers of such variability. We systematically reviewed and analysed 286 diurnal data sets of N2 O fluxes from published literature to (i) assess the prevalence and timing (day or night peaking) of diurnal N2 O flux patterns in agricultural and forest soils, (ii) examine the relationship between N2 O flux and soil temperature with different diurnal patterns, (iii) identify whether non-diurnal factors (i.e. land management and soil properties) influence the occurrence of diurnal patterns and (iv) evaluate the accuracy of estimating cumulative N2 O emissions with single-daily flux measurements. Our synthesis demonstrates that diurnal N2 O flux variability is a widespread phenomenon in agricultural and forest soils. Of the 286 data sets analysed, ~80% exhibited diurnal N2 O patterns, with ~60% peaking during the day and ~20% at night. Contrary to many published observations, our analysis only found strong positive correlations (R > 0.7) between N2 O flux and soil temperature in one-third of the data sets. Soil drainage property, soil water-filled pore space (WFPS) level and land use were also found to potentially influence the occurrence of certain diurnal patterns. Our work demonstrated that single-daily flux measurements at mid-morning yielded daily emission estimates with the smallest average bias compared to measurements made at other times of day, however, it could still lead to significant over- or underestimation due to inconsistent diurnal N2 O patterns. This inconsistency also reflects the inaccuracy of using soil temperature to predict the time of daily average N2 O flux. Future research should investigate the relationship between N2 O flux and other diurnal parameters, such as photosynthetically active radiation (PAR) and root exudation, along with the consideration of the effects of soil moisture, drainage and land use on the diurnal patterns of N2 O flux. The information could be incorporated in N2 O emission prediction models to improve accuracy.


Assuntos
Óxido Nitroso , Solo , Agricultura , Florestas , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA