Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816532

RESUMO

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Telomerase , Telômero , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Telômero/genética , Telômero/metabolismo , Divisão Celular/genética , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero/genética , Regulação da Expressão Gênica de Plantas , Mutação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proliferação de Células/genética , Meristema/genética , Meristema/metabolismo
2.
Funct Integr Genomics ; 24(2): 58, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489049

RESUMO

Recent studies have shown that NOP2, a nucleolar protein, is up-regulated in various cancers, suggesting a potential link to tumor aggressiveness and unfavorable outcomes. This study examines NOP2's role in lung adenocarcinoma (LUAD), a context where its implications remain unclear. Utilizing bioinformatics, we assessed 513 LUAD and 59 normal tissue samples from The Cancer Genome Atlas (TCGA) to explore NOP2's diagnostic and prognostic significance in LUAD. Additionally, in vitro experiments compared NOP2 expression between Beas-2b and A549 cells. Advanced databases and analytical tools, including LINKEDOMICS, STRING, and TISIDB, were employed to further elucidate NOP2's association with LUAD. Our findings indicate a significantly higher expression of NOP2 mRNA and protein in A549 cells compared to Beas-2b cells (P < 0.001). In LUAD, elevated NOP2 levels were linked to decreased Overall Survival (OS) and advanced clinical stages. Univariate Cox analysis revealed that high NOP2 expression correlated with poorer OS in LUAD (P < 0.01), a finding independently supported by multivariate Cox analysis (P < 0.05). The relationship between NOP2 expression and LUAD risk was presented via a Nomogram. Additionally, Gene Set Enrichment Analysis (GSEA) identified seven NOP2-related signaling pathways. A focal point of our research was the interplay between NOP2 and tumor-immune interactions. Notably, a negative correlation was observed between NOP2 expression and the immune infiltration levels of macrophages, neutrophils, mast cells, Natural Killer (NK) cells, and CD8 + T cells in LUAD. Moreover, the expression of NOP2 was related to the sensitivity of various chemotherapeutic drugs. In vitro, we found that downregulating NOP2 can decrease the proliferation, migration and invasion of A549 cells. Furthermore, NOP2 can regulate Caspase3-mediated apoptosis. Collectively, particularly regarding prognosis, immune infiltration and vitro experiments, these findings suggest NOP2's potential of serving as a poor-prognostic biomarker for LUAD and aggravating the malignancy of lung adenocarcinoma cells.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Nucleares , Adenocarcinoma de Pulmão/genética , Apoptose , Biologia Computacional , Neoplasias Pulmonares/genética , tRNA Metiltransferases
3.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791231

RESUMO

Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.


Assuntos
Peptidil Transferases , Biossíntese de Proteínas , RNA Ribossômico , Saccharomyces cerevisiae , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peptidil Transferases/metabolismo , Peptidil Transferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Ribossomos/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Mutação
4.
FASEB J ; 34(2): 2715-2729, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908012

RESUMO

The maternal nucleolus plays an indispensable role in zygotic genome activation (ZGA) and early embryonic development in mice. During oocyte-to-embryo transition, the nucleolus is subject to substantial transformation. Despite the primary role of the nucleolus is ribosome biogenesis, accumulating evidence has uncovered its functions in various other cell processes. However, the regulation of nucleolar maturation and ribosome biogenesis and the molecules involved remain unclear during early embryonic development. In this study, we observed that nucleolar protein 2 (NOP2) is restrictedly localized within the nucleolus, first detected in the late two-cell embryos, and increases to a peak level at the eight-cell stage in mice. RNAi-mediated NOP2 depletion leads to a developmental arrest during the morula-to-blastocyst transition. RNA-seq analyses reveal that 208 genes are differentially expressed, including multiple lineage-specific genes and several genes encoding ribosome proteins. Indeed, we observe a failure of the first lineage specification with reduced TEA domain transcription factor 4(TEAD4) (trophectoderm-specific), tir na nog (NANOG), and kruppel-like factor 4 (KLF4) (inner cell mass-specific). Importantly, by Transmission Electron Microscopy (TEM), we noted a decrease in the ratio of the nucleolus size and an increase in the ratio of the size of the nucleolus precursor body, suggesting the nucleolar maturation is disrupted. Moreover, both qPCR and Fluorescence In Situ Hybridization (FISH) data showcase a significant decrease in the abundance of ribosome RNAs. Similarly, NOP2 depletion causes reduced developmental potential and decreased rRNA level in bovine early embryos, suggesting a functional conservation of NOP2 in mammals. Taken together, these results suggest that NOP2 is required for mammalian preimplantation development, presumably by regulating nucleolar maturation and ribosome biogenesis.


Assuntos
Desenvolvimento Embrionário/fisiologia , Oócitos/metabolismo , Proteínas Metiltransferases/metabolismo , Ribossomos/metabolismo , Animais , Blastocisto/metabolismo , Nucléolo Celular/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Fator 4 Semelhante a Kruppel , Mamíferos/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , RNA Ribossômico/genética , Zigoto/metabolismo
5.
Cancer Sci ; 110(11): 3510-3519, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31487418

RESUMO

NOP2/Sun domain family, member 2 (NSUN2) is a nuclear RNA methyl-transferase catalyzing 5-methylcytosine formation. Evidence shows that NSUN2 is correlated with cell unlimited proliferation. However, its functional role in gallbladder carcinoma (GBC), which is the most common biliary tract malignancy and has a poor prognosis, remains to be determined. Here we found that NSUN2 was highly expressed in GBC tissues as well as cell lines. NSUN2 silencing repressed GBC cell proliferation and tumorigenesis both in vitro and in vivo. Conversely, upregulation of NSUN2 enhanced GBC cell growth and colony formation. We further discovered that RPL6 was a closely interacting partner with NSUN2. Silencing RPL6 resulted in insufficient NSUN2 translational level and accumulative NSUN2 transcriptional level. Exogenous expression of NSUN2 partially rescued the effect of RPL6 in gallbladder cancer progression. Taken together, our data provided novel mechanic insights into the function of NSUN2 in GBC, thus pointing to NSUN2 as a potential and effective therapeutic approach to GBC treatment.


Assuntos
Carcinoma/metabolismo , Neoplasias da Vesícula Biliar/metabolismo , Metiltransferases/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Carcinoma/patologia , Carcinoma/terapia , Linhagem Celular Tumoral , Proliferação de Células , Colecistite/metabolismo , Progressão da Doença , Neoplasias da Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/terapia , Humanos , Metiltransferases/antagonistas & inibidores , Camundongos , Camundongos Nus , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
6.
Biochem Biophys Res Commun ; 493(1): 94-99, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28919411

RESUMO

Interleukin-17A (IL-17A) has been proven to participate in the process of various autoimmune diseases. The elevation of plasma homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), is related to various chronic inflammatory diseases. Though HHcy-induced upregulation of IL-17A expression in T lymphocytes has been examined, the way in which IL-17A is regulated remains unclear. In this study, western blotting assays showed that Hcy (100 µM) upregulated NOP2/Sun domain family, member 2 (NSun2) expression in rat T lymphocytes. HHcy-induced upregulation of IL-17A observed in plasma of wild-type rats was markedly decreased in NSun2-/- rats in vivo. Mechanistically, by using in vitro methylation assays and high-performance liquid chromatography-mass spectrum (HPLC-MS) analysis, we showed that the tRNA methyltransferase NSun2 methylated the IL-17A mRNA in an m5C pattern. The results from bisulfite sequencing indicated that NSun2 methylated IL-17A mRNA at cytosine C466 in vitro and in vivo. Furthermore, we analyzed the activity of pGL3-derived reporters bearing IL-17A mRNA fragments and found that methylation by NSun2 promoted the translation of IL-17A. In conclusion, NSun2 mediates HHcy-induced upregulation of IL-17A expression by methylating IL-17A mRNA and promoting its translation in T lymphocytes.


Assuntos
Homocisteína/metabolismo , Interleucina-17/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Metilação , Ratos , Regulação para Cima/fisiologia
7.
Oncol Rep ; 51(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038159

RESUMO

Following the publication of the above article, a concerned reader drew to the Editor's attention that the data showing the results of TUNEL staining of tumours featured in the four panels of Fig. 2G on p. 4, and potentially some of the photographs of the tumours shown in Fig. 2F, were strikingly similar to data appearing in different form in another article written by different authors that had already been submitted for publication elsewhere prior to the submission of this paper to Oncology Reports. In view of the fact that certain of these data had already apparently been submitted for submission in a different journal, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 46: 142, 2021; DOI: 10.3892/or.2021.8093].

8.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961382

RESUMO

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a - deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.

9.
Cancer Biol Ther ; 24(1): 2263921, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800580

RESUMO

RNA methyltransferase nucleolar protein p120 (NOP2), commonly referred to as NOP2/Sun RNA methyltransferase family member 1 (NSUN1), is involved in cell proliferation and is highly expressed in various cancers. However, its role in high-grade serous ovarian cancer (HGSOC) remains unclear. Our study investigated the expression of NOP2 in HGSOC tissues and normal fimbria tissues, and found that NOP2 was significantly upregulated in HGSOC tissues. Our experiments showed that NOP2 overexpression promoted cell proliferation in vivo and in vitro and increased the migration and invasion ability of HGSOC cells in vitro. Furthermore, we identified Rap guanine nucleotide exchange factor 4 (RAPGEF4) as a potential downstream target of NOP2 in HGSOC. Finally, our findings suggest that the regulation of NOP2 and RAPGEF4 may depend on m5C methylation levels.


Assuntos
Neoplasias Ovarianas , RNA , Humanos , Feminino , Metiltransferases/genética , Neoplasias Ovarianas/genética , Proliferação de Células , Proteínas Nucleares/metabolismo , Fatores de Troca do Nucleotídeo Guanina , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
10.
Exp Ther Med ; 26(3): 457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37614424

RESUMO

As an important 5-methylcytidine (m5C) methyltransferase, NOP2/Sun RNA methyltransferase family member 6 (NSUN6) has been reported to play an important role in the progression of several diseases. However, the role of NSUN6 in the progression of osteosarcoma (OS) remains unclear. This study aimed to identify the role of NSUN6 in the progression of OS and clarify the potential molecular mechanism. The present study discovered that NSUN6 was upregulated in OS and a higher NSUN6 expression was a strong indicator for poorer prognosis of patients with OS. In addition, the loss of NSUN6 led to reduced proliferation, migration and invasion of OS cells. Through bioinformatics analysis, RNA immunoprecipitation (RIP) and methylated RIP assays, eukaryotic elongation factor 1 α-2 (EEF1A2) was identified and validated as a potential target of NSUN6 in OS. Mechanistically, the expression of EEF1A2 was significantly suppressed following NSUN6 knockdown due to reduced EEF1A2 mRNA stability in an m5C-dependent manner. Meanwhile, NSUN6 deficiency inhibited m5C-dependent activation of Akt/mTOR signaling pathway. In addition, genetic overexpression of EEF1A2 or pharmacological activation of the Akt signaling pathway counteracted the suppressive effects of NSUN6 deficiency on the proliferation, invasion and migration of OS cells. The current findings suggested that NSUN6 may serve as a potential therapeutic target for OS treatment.

11.
Mol Neurobiol ; 60(4): 2223-2235, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646969

RESUMO

Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Humanos , Idoso , Doença de Alzheimer/patologia , RNA/metabolismo , Lesões Encefálicas Traumáticas/patologia , Metilação de DNA , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
12.
Saudi J Gastroenterol ; 28(5): 369-377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381832

RESUMO

Background: : NOP2 nucleolar protein plays a crucial role in early embryo development and cell proliferation. The role of NOP2 in human gastric adenocarcinoma has not been elucidated. In the present study, we aimed to examine the expression levels of NOP2 and dissected whether NOP2 expression was associated with aggressive clinicopathological outcomes of patients with gastric adenocarcinoma. Methods: : Clinicopathological analysis was performed in patients with gastric adenocarcinoma. Expression of NOP2 was tested by immunohistochemistry staining and quantitative RT-PCR. The prognostic role of NOP2 in gastric adenocarcinoma patients was assessed by univariate and multivariate analysis. The effect of NOP2 on cell proliferation was examined through cellular experiments and mice models. Results: : NOP2 expression was elevated in gastric adenocarcinoma tissues compared to normal gastric tissues. High expression of NOP2 was significantly correlated with tumor size, invasion depth, and lymph node metastasis. Moreover, patients with high NOP2 expression had poorer overall survival, and NOP2 was identified as an independent prognosis factor. Using the gastric adenocarcinoma cells, we found that NOP2 can promote tumor cell proliferation both in vitro and in vivo. Conclusions: : Overexpression of NOP2 significantly correlates with a poorer prognosis of gastric adenocarcinoma patients and suggested the potential of NOP2, which may serve as a novel prognostic biomarker in gastric adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Biomarcadores , Biomarcadores Tumorais/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Prognóstico , Neoplasias Gástricas/metabolismo , tRNA Metiltransferases
13.
Front Cell Dev Biol ; 10: 839136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372330

RESUMO

Background: Recent studies have identified that RNA 5-methylcytosine (m5C) is a wide-spread epigenetic modification in tumorigenesis. However, the clinical and immunotherapeutic values of m5C regulator NOP2 in 33 cancers remain unclear. Methods: The mRNA expression data and clinical data of 33 cancers were downloaded from The Cancer Genome Atlas (TCGA) database. The immunotherapy data including GSE67501, GSE78220, GSE35640, and IMvigor210 were downloaded from the Gene Expression Omnibus (GEO) database and the website based on the Creative Commons 3.0 license (http://research-pub.Gene.com/imvigor210corebiologies). The expression, survival, clinical parameters, tumor mutation burden (TMB), microsatellite instability (MSI), and tumor microenvironment (TME) were evaluated. Finally, the relationship between NOP2 and immunotherapy response was further explored. Results: NOP2 was significantly upregulated in most cancers, and high NOP2 expression was associated with poor prognosis. TMB, MSI, and NOP2 activities were involved in the dysregulation of NOP2. NOP2 was closely associated with immune cell infiltration, immune modulators, and immunotherapeutic inactivation. Conclusions: We comprehensively explored the clinical and immunotherapeutic values of NOP2 in cancers, providing evidence regarding the function of NOP2 and its role in clinical treatment.

14.
Bioengineered ; 12(1): 4841-4855, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34334108

RESUMO

As an indispensable part for cancer precision medicine, biomarkers and signatures for predicting cancer prognosis and therapeutic benefits were urgently required. The purpose of this study was to investigate the prognostic roles of NOP2 in renal clear cell carcinoma (ccRCC) for overall survival (OS) and its relationships with immunity. NOP2-related gene expression matrix associated with clinical information was obtained from the Cancer Genome Atlas (TCGA) ccRCC dataset and NOP2-related pathways were identified by gene set enrichment analysis (GSEA). Associations among the NOP2 expression and MSI, TMB, TNB, and immunity were also explored. Both the NOP2 mRNA and protein/phosphoprotein had a higher expression in ccRCC tumor tissues than in normal kidney tissues (both P < 0.001) and elevated NOP2 expression was associated with poor OS (P < 0.001). Logistic regression analysis revealed the NOP2 expression was significantly linked to stage, age, grade, N stage, T stage, and M stage (all P < 0.05). Univariate/multivariate Cox hazard regression analysis results indicated that NOP2 was an independent prognostic factor for OS in ccRCC and GSEA revealed five NOP2-related signaling pathways. Nomogram based on NOP2 and eight clinical characteristic parameters (grade, age, stage, gender, T stage, race, M stage, N stage) was constructed and carefully evaluated. Furthermore, NOP2 gene expression was also found to be significantly related to MSI, TMB, and immunity. Our findings revealed that NOP2 might be a potential prognostic factor for OS in ccRCC and it was significantly associated with immunity, MSI, and TMB.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas Nucleares/genética , tRNA Metiltransferases/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Humanos , Rim/metabolismo , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Proteínas Nucleares/metabolismo , Prognóstico , Transdução de Sinais/genética , Transcriptoma/genética , tRNA Metiltransferases/metabolismo
15.
Drug Des Devel Ther ; 15: 857-870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664565

RESUMO

BACKGROUND: Aloperine can regulate miR-296-5p/Signal Transducer and Activator of Transcription 3 (STAT3) pathway to inhibit the malignant development of colorectal cancer (CRC), but the regulatory mechanism is unclear. This study explored the upstream mechanism of Aloperine in reducing CRC damage from the perspective of the circRNA-miRNA-mRNA regulatory network. METHODS: After treatment with gradient concentrations of Aloperine (0.1 mmol/L, 0.2 mmol/L, 0.4 mmol/L, 0.8 mmol/L and 1 mmol/L) for 24 hours, changes in CRC cell proliferation and apoptosis were detected by functional experiments. Data of the differential expression of miR-296-5p in CRC patients and healthy people were obtained from Starbase. The effects of Aloperine on 12 differentially expressed circRNAs were detected. The binding of miR-296-5p with NOP2/Sun RNA methyltransferase 2 (circNSUN2) and STAT3 was predicted by TargetScan and confirmed through dual-luciferase experiments. The expressions of circNSUN2, miR-296-5p and STAT3 as well as apoptosis-related genes in CRC cells were detected by qRT-PCR and Western blot as needed. Rescue experiments were conducted to test the regulatory effects of circNSUN2, miR-296-5p and STAT3 on CRC cells. RESULTS: Aloperine at a concentration gradient inhibited proliferation and promoted apoptosis in CRC cells. The abnormally low expression of miR-296-5p in CRC could be upregulated by Aloperine. Among the differentially expressed circRNAs in CRC, only circNSUN2 not only targets miR-296-5p, but also can be regulated by Aloperine. The up-regulation of circNSUN2 offset the inhibitory effect of Aloperine on cancer cells. The rescue experiments finally confirmed the regulation of circNSUN2/miR-296-5p/STAT3 axis in CRC cells. CONCLUSION: By regulating the circNSUN2/miR-296-5p/STAT3 pathway, Aloperine prevents the malignant development of CRC cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Quinolizidinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estrutura Molecular , Quinolizidinas/química , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade
16.
Curr Cancer Drug Targets ; 21(4): 326-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33504307

RESUMO

The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Metiltransferases , Neoplasias , Processamento Pós-Transcricional do RNA/fisiologia , RNA/metabolismo , Epigênese Genética/genética , Humanos , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Edição de RNA/fisiologia
17.
Oncol Rep ; 46(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080658

RESUMO

Aberrant expression of circular RNAs (circRNAs) has been demonstrated to be related to the development of colorectal cancer (CRC), the third most common cancer worldwide. However, the mechanism of the effect of circRNA NOP2/Sun domain family, member 2 (circNSUN2) on the malignant biological behavior of CRC remains unclear. In the present study, the expression of circNSUN2 and microRNA (miR)­181a­5p was detected by RT­qPCR. The expression of Rho­associated coiled­coil­containing protein kinase 2 (ROCK2) was measured by western blotting. Cell proliferation was detected by CCK­8 assay. The cell apoptosis rate was measured by flow cytometry. Cell migration ability was evaluated by Transwell assay. The interactions between circNSUN2, miR­181a­5p and ROCK2 were verified by dual­luciferase reporter assay. The results revealed that circNSUN2 was highly expressed in CRC tissues and cell lines. Knockdown of circNSUN2 inhibited the malignant biological behavior of CRC in vivo and in vitro. Moreover, miR­181a­5p was revealed to be a target gene of circNSUN2, and the expression of ROCK2 was negatively regulated by miR­181a­5p. Knockdown of circNSUN2 inhibited proliferation and migration, and induced apoptosis of CRC cells and suppressed tumor growth by targeting miR­181a­5p to decrease ROCK2 expression. In conclusion, circNSUN2 promoted the progression of CRC by sponging miR­181a­5p to increase the expression of ROCK2.


Assuntos
Neoplasias Colorretais/patologia , MicroRNAs/genética , RNA Circular/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Adulto , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Regulação para Cima , Adulto Jovem
18.
Genes (Basel) ; 12(5)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922187

RESUMO

Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.


Assuntos
Cromatina/genética , Epigênese Genética/genética , RNA/genética , Transcrição Gênica/genética , Animais , DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Processamento Pós-Transcricional do RNA/genética
19.
Onco Targets Ther ; 13: 6755-6765, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764963

RESUMO

BACKGROUND: Metastatic disease caused by prostate cancer (PCa) is the principal cause of PCa-related mortality. Long non-protein-coding RNAs may possess significant cellular functions. Plasmacytoma variant translocation 1 (PVT1), a long non-coding RNA encoded by the human PVT1 gene, is an oncogene, which can regulate several tumor-related genes. In PCa, the function and mechanism of PVT1 are unclear. NOP2 is being pursued as a prognostic marker for cancer aggressiveness, which promotes mouse fibroblast growth and tumor formation. Essentially, nothing is known about the specific interactions between the PVT1 and NOP2. METHODS:  190 pairs of PCa tissues and adjacent normal tissues were collected and RNA sequencing was used to identify the differential lncRNAs. Real-time quantitative real-time PCR (RT-qPCR) confirmed these results and gene regulatory relationship. Lentiviral vectors were used to alter PVT1 and genes to analyze their effects on PCa progression. Transwell migration and invasion assays were performed to test the metastasis ability. Biofunction of PVT1 and NOP2 were confirmed in vitro and in vivo. RESULTS: In this study, we reported that the long noncoding RNA-PVT1 was upregulated in PCa metastasis tissues and promoted migration of PCa cells in vitro and their metastasis in vivo. High levels of PVT1 significantly downregulated tumor suppressor microRNAs (miRNAs), such as miR-15b-5p, miR-27a-3p, miR-143-3p, and miR-627-5p, whose levels in metastasis tissues were low compared to those in non-metastasis tissues. In vitro and in vivo, PVT1 promotes PCa metastasis via targeting miRNAs. Furthermore, the expression level of PVT1 was positively associated with the expression of NOP2, a cancer metastasis-related protein. We demonstrated that NOP2 promoted invasion and migration of PCa. For specific mechanism, correlation analysis showed that PVT1 promoted metastasis by up-regulating NOP2. CONCLUSION: Taken together, our results show that PVT1 acts as an inducer of PCa metastasis via targeting miRNAs, thereby promoting NOP2. This axis may have diagnostic and therapeutic potential for advanced PCa.

20.
Aging (Albany NY) ; 12(12): 11500-11516, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554858

RESUMO

Metastatic disease caused by castration-resistant prostate cancer (CRPC) is the principal cause of prostate cancer (PCa)-related mortality. CRPC occurs within 2-3 years of initiation of androgen deprivation therapy (ADT), which is an important factor of influencing PCa metastasis. Recent studies have revealed that non-coding RNAs in PCa can enhance metastasis and progression, while the mechanisms are still unclear. In this study, we reported that the long noncoding RNA-LINC00963 was increased in CRPC tissues and promoted migration of PCa cells in vitro and their metastasis in vivo. High levels of LINC00963 significantly decreased tumor suppressor miR-542-3p, whose levels in metastasis tissues were low compared to those in non-metastasis tissues. LINC00963 promotes and miR-542-3p inhibits metastasis. Furthermore, the expression levels of LINC00963 and miR-542-3p were positively and negatively associated with the expression of NOP2. We demonstrated that NOP2 promoted PCa by activating the epithelial-mesenchymal transition (EMT) pathway. For specific mechanism, dual luciferase reporter assays showed that miR-542-3p directly binds to both 3'-untranslated region (UTR) of LINC00963 and NOP2 mRNA. Taken together, our results show that LINC00963 acts as an inducer of PCa metastasis by binding miR-542-3p, thereby promoting NOP2. This axis may have diagnostic and therapeutic potential for advanced PCa.


Assuntos
MicroRNAs/metabolismo , Proteínas Nucleares/genética , Neoplasias de Próstata Resistentes à Castração/genética , RNA Longo não Codificante/metabolismo , tRNA Metiltransferases/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Metástase Neoplásica/genética , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Metiltransferases/genética , RNA Longo não Codificante/genética , RNA-Seq , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA