Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cell ; 174(3): 536-548.e21, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29961578

RESUMO

The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.


Assuntos
Surdez/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Processamento Alternativo/genética , Animais , Linhagem Celular , Éxons , Regulação da Expressão Gênica/genética , Células HEK293 , Células Ciliadas Auditivas/fisiologia , Audição/genética , Audição/fisiologia , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Splicing de RNA/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição , Vorinostat/farmacologia
2.
J Biol Chem ; 300(9): 107707, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178947

RESUMO

Chronic exposure to elevated levels of manganese (Mn) may cause a neurological disorder referred to as manganism. The transcription factor REST is dysregulated in several neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. REST upregulated tyrosine hydroxylase and induced protection against Mn toxicity in neuronal cultures. In the present study, we investigated if dopaminergic REST plays a critical role in protecting against Mn-induced toxicity in vivo using dopaminergic REST conditional knockout (REST-cKO) mice and REST loxP mice as wild-type (WT) controls. Restoration of REST in the substantia nigra (SN) with neuronal REST AAV vector infusion was performed to further support the role of REST in Mn toxicity. Mice were exposed to Mn (330 µg, intranasal, daily for 3 weeks), followed by behavioral tests and molecular biology experiments. Results showed that Mn decreased REST mRNA/protein levels in the SN-containing midbrain, as well as locomotor activity and motor coordination in WT mice, which were further decreased in REST-cKO mice. Mn-induced mitochondrial insults, such as impairment of fission/fusion and mitophagy, apoptosis, and oxidative stress, in the midbrain of WT mice were more pronounced in REST-cKO mice. However, REST restoration in the SN of REST-cKO mice attenuated Mn-induced neurotoxicity. REST's molecular target for its protection is unclear, but REST attenuated Mn-induced mitochondrial dysregulation, indicating that it is a primary intracellular target for both Mn and REST. These novel findings suggest that dopaminergic REST in the nigrostriatal pathway is critical in protecting against Mn toxicity, underscoring REST as a potential therapeutic target for treating manganism.

3.
Proc Natl Acad Sci U S A ; 119(44): e2205524119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282915

RESUMO

Uterine leiomyomas (UL) are benign tumors that arise in the myometrial layer of the uterus. The standard treatment option for UL is hysterectomy, although hormonal therapies, such as selective progesterone receptor modulators, are often used as temporary treatment options to reduce symptoms or to slow the growth of tumors. However, since the pathogenesis of UL is poorly understood and most hormonal therapies are not based on UL-specific, divergent hormone signaling pathways, hallmarks that predict long-term efficacy and safety of pharmacotherapies remain largely undefined. In a previous study, we reported that aberrant expression of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes activate UL growth due to the near ubiquitous loss of REST. Here, we show that ablation of the Rest gene in mouse uterus leads to UL phenotype and gene-expression patterns analogous to UL, including altered estrogen and progesterone signaling pathways. We demonstrate that many of the genes dysregulated in UL harbor cis-regulatory elements bound by REST and progesterone receptor (PGR) adjacent to each other. Crucially, we identify an interaction between REST and PGR in healthy myometrium and present a putative mechanism for the dysregulation of progesterone-responsive genes in UL ensuing in the loss of REST. Using three Rest conditional knockout mouse lines, we provide a comprehensive picture of the impact loss of REST has in UL pathogenesis and in altering the response of UL to steroid hormones.


Assuntos
Leiomioma , Neoplasias Uterinas , Animais , Feminino , Humanos , Camundongos , Estrogênios/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/patologia , Progesterona/metabolismo , Receptores de Progesterona/genética , Fatores de Transcrição , Neoplasias Uterinas/patologia
4.
J Neurochem ; 165(5): 701-721, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36636908

RESUMO

Neuron-restrictive silencer factor/repressor element 1 (RE1)-silencing transcription factor (NRSF/REST) is a transcriptional repressor of a large cluster of neural genes containing RE1 motifs in their promoter region. NRSF/REST is ubiquitously expressed in non-neuronal cells, including astrocytes, while it is down-regulated during neuronal differentiation. While neuronal NRSF/REST homeostatically regulates intrinsic excitability and synaptic transmission, the role of the high NRSF/REST expression levels in the homeostatic functions of astrocytes is poorly understood. Here, we investigated the functional consequences of NRSF/REST deletion in primary cortical astrocytes derived from NRSF/REST conditional knockout mice (KO). We found that NRSF/REST KO astrocyte displayed a markedly reduced activity of inward rectifying K+ channels subtype 4.1 (Kir4.1) underlying spatial K+ buffering that was associated with a decreased expression and activity of the glutamate transporter-1 (GLT-1) responsible for glutamate uptake by astrocytes. The effects of the impaired astrocyte homeostatic functions on neuronal activity were investigated by co-culturing wild-type hippocampal neurons with NRSF/REST KO astrocytes. Interestingly, neurons experienced increased neuronal excitability at high firing rates associated with decrease after hyperpolarization and increased amplitude of excitatory postsynaptic currents. The data indicate that astrocytic NRSF/REST directly participates in neural circuit homeostasis by regulating intrinsic excitability and excitatory transmission and that dysfunctions of NRSF/REST expression in astrocytes may contribute to the pathogenesis of neurological disorders.


Assuntos
Astrócitos , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Astrócitos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação da Expressão Gênica
5.
Cancer Cell Int ; 23(1): 8, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650528

RESUMO

BACKGROUND: Antisense oligonucleotide (ASO) medicine for clinical applications has been becoming a reality. We previously developed a gapmer ASO targeting Ser/Arg repetitive matrix 4 (SRRM4) that is abnormally expressed in small cell lung cancer (SCLC). However the detailed mechanism of ASO through repressing SRRM4 has not been completely elucidated. Further, effectiveness of SRRM4 ASO to prostate cancer (PCa) cells expressing SRRM4 similar to SCLC remains to be elucidated. RE1-silencing transcription factor (REST) is a tumor suppressor, and its splicing isoform (sREST) is abnormally expressed by SRRM4 and causes carcinogenesis with neuroendocrine phenotype in SCLC. The present study aimed to understand the contribution of REST splicing by SRRM4 ASO administration. METHODS: SRRM4 expression and REST splicing were analyzed by RT-qPCR and conventional RT-PCR after treating SRRM4 ASO, and cell viability was analyzed in vitro. Exogenous reconstitution of Flag-tagged REST plasmid in SCLC cells and the splice-switching oligonucleotide (SSO) specific for REST was analyzed for cell viability. Furthermore, we expanded the application of SRRM4 ASO in PCa cells abnormally expressing SRRM4 mRNA in vitro. RESULTS: SRRM4 ASO successfully downregulated SRRM4 expression, followed by repressed cell viability of SCLC and PCa cells in a dose-dependent manner. Administration of SRRM4 ASO then modified the alternative splicing of REST, resulting reduced cell viability. REST SSO specifically modified REST splicing increased REST expression, resulting in reduced cell viability. CONCLUSIONS: Our data demonstrate that a gapmer ASO targeting SRRM4 (SRRM4 ASO) reduces cell viability through splicing changes of REST, followed by affecting REST-controlled genes in recalcitrant tumors SCLC and PCa cells.

6.
EMBO Rep ; 22(2): e51524, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33399271

RESUMO

Advanced paternal age can have deleterious effects on various traits in the next generation. Here, we establish a paternal-aging model in mice to understand the molecular mechanisms of transgenerational epigenetics. Whole-genome target DNA methylome analyses of sperm from aged mice reveal more hypo-methylated genomic regions enriched in REST/NRSF binding motifs. Gene set enrichment analyses also reveal the upregulation of REST/NRSF target genes in the forebrain of embryos from aged fathers. Offspring derived from young mice administrated with a DNA de-methylation drug phenocopy the abnormal vocal communication of pups derived from aged fathers. In conclusion, hypo-methylation of sperm DNA can be a key molecular feature modulating neurodevelopmental programs in offspring by causing fluctuations in the expression of REST/NRSF target genes.


Assuntos
Metilação de DNA , Idade Paterna , Animais , Epigênese Genética , Pai , Humanos , Masculino , Camundongos , Espermatozoides/metabolismo
7.
J Neurosci ; 41(31): 6582-6595, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34210779

RESUMO

Early studies in mouse neurodevelopment led to the discovery of the RE1 Silencing Transcription Factor (REST) and its role as a master repressor of neuronal gene expression. Recently, REST was reported to also repress neuronal genes in the human adult brain. These genes were found to be involved in pro-apoptotic pathways; and their repression, associated with increased REST levels during aging, were found to be neuroprotective and conserved across species. However, direct genome-wide REST binding profiles for REST in adult brain have not been identified for any species. Here, we apply this approach to mouse and human hippocampus. We find an expansion of REST binding sites in the human hippocampus that are lacking in both mouse hippocampus and other human non-neuronal cell types. The unique human REST binding sites are associated with genes involved in innate immunity processes and inflammation signaling which, on the basis of histology and recent public transcriptomic analyses, suggest that these new target genes are repressed in glia. We propose that the increases in REST expression in mid-adulthood presage the beginning of brain aging, and that human REST function has evolved to protect the longevity and function of both neurons and glia in human brain.SIGNIFICANCE STATEMENT The RE1 Silencing Transcription Factor (REST) repressor has served historically as a model for gene regulation during mouse neurogenesis. Recent studies of REST have also suggested a conserved role for REST repressor function across lower species during aging. However, direct genome-wide studies for REST have been lacking for human brain. Here, we perform the first genome-wide analysis of REST binding in both human and mouse hippocampus. The majority of REST-occupied genes in human hippocampus are distinct from those in mouse. Further, the REST-associated genes unique to human hippocampus represent a new set related to innate immunity and inflammation, where their gene dysregulation has been implicated in aging-related neuropathology, such as Alzheimer's disease.


Assuntos
Envelhecimento/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Proteínas Repressoras/metabolismo , Idoso , Envelhecimento/imunologia , Animais , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/imunologia , Humanos , Imunidade Inata/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neuroglia/imunologia , Neurônios/metabolismo , Proteínas Repressoras/imunologia
8.
Genes Cells ; 26(2): 45-55, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33211397

RESUMO

Rest (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells by preventing precocious expression of neuronal genes. In order to further investigate the function of Rest in neurons, we generated and examined mice evoking genetic ablation of Rest specifically in neural tissues by generating Rest conditional knockout mice. As the Rest knockout mice are embryonically lethal, we used a Sox1-Cre allele to excise the floxed Rest gene from the early stage of nerve cell differentiation including neural crest-derived nerve cells. Using this conditional Rest knockout Sox1-Cre; Restflox/flox mice, we have revealed the role of Rest in the parasympathetic nervous system in the stomach and heart.


Assuntos
Deleção de Genes , Proteínas Repressoras/genética , Nervo Vago/fisiologia , Animais , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Neurônios/metabolismo , Pressão , Proteínas Repressoras/metabolismo , Estômago/inervação , Transmissão Sináptica
9.
Mol Cell Neurosci ; 117: 103683, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775008

RESUMO

Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.


Assuntos
Envelhecimento , Neurônios/fisiologia , Proteínas Repressoras/genética , Fatores de Transcrição , Envelhecimento/genética , Animais , Regulação da Expressão Gênica , Homeostase , Humanos , Longevidade/genética , Doenças Neurodegenerativas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555637

RESUMO

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts effective neuroprotective activity through its specific receptor, PAC1-R. We accidentally discovered that as a positive allosteric modulator (PAM) of PAC1-R, the small-molecule PAM (SPAM1) has a hydrazide-like structure, but different binding characteristics, from hydrazide for the N-terminal extracellular domain of PAC1-R (PAC1-R-EC1). SPAM1 had a significant neuroprotective effect against oxidative stress, both in a cell model treated with hydrogen peroxide (H2O2) and an aging mouse model induced by D-galactose (D-gal). SPAM1 was found to block the decrease in PACAP levels in brain tissues induced by D-gal and significantly induced the nuclear translocation of PAC1-R in PAC1R-CHO cells and mouse retinal ganglion cells. Nuclear PAC1-R was subjected to fragmentation and the nuclear 35 kDa, but not the 15 kDa fragments, of PAC1-R interacted with SP1 to upregulate the expression of Huntingtin (Htt), which then exerted a neuroprotective effect by attenuating the binding availability of the neuron-restrictive silencer factor (NRSF) to the neuron-restrictive silencer element (NRSE). This resulted in an upregulation of the expression of NRSF-related neuropeptides, including PACAP, the brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), and synapsin-1 (SYN1). The novel mechanism reported in this study indicates that SPAM1 has potential use as a drug, as it exerts a neuroprotective effect by regulating NRSF.


Assuntos
Fármacos Neuroprotetores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Cricetinae , Camundongos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Cricetulus , Peróxido de Hidrogênio
11.
J Biol Chem ; 295(10): 3040-3054, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32001620

RESUMO

Dopaminergic functions are important for various biological activities, and their impairment leads to neurodegeneration, a hallmark of Parkinson's disease (PD). Chronic manganese (Mn) exposure causes the neurological disorder manganism, presenting symptoms similar to those of PD. Emerging evidence has linked the transcription factor RE1-silencing transcription factor (REST) to PD and also Alzheimer's disease. But REST's role in dopaminergic neurons is unclear. Here, we investigated whether REST protects dopaminergic neurons against Mn-induced toxicity and enhances expression of the dopamine-synthesizing enzyme tyrosine hydroxylase (TH). We report that REST binds to RE1 consensus sites in the TH gene promoter, stimulates TH transcription, and increases TH mRNA and protein levels in dopaminergic cells. REST binding to the TH promoter recruited the epigenetic modifier cAMP-response element-binding protein-binding protein/p300 and thereby up-regulated TH expression. REST relieved Mn-induced repression of TH promoter activity, mRNA, and protein levels and also reduced Mn-induced oxidative stress, inflammation, and apoptosis in dopaminergic neurons. REST reduced Mn-induced proinflammatory cytokines, including tumor necrosis factor α, interleukin 1ß (IL-1ß), IL-6, and interferon γ. Moreover, REST inhibited the Mn-induced proapoptotic proteins Bcl-2-associated X protein (Bax) and death-associated protein 6 (Daxx) and attenuated an Mn-induced decrease in the antiapoptotic proteins Bcl-2 and Bcl-xL. REST also enhanced the expression of antioxidant proteins, including catalase, NF-E2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Our findings indicate that REST activates TH expression and thereby protects neurons against Mn-induced toxicity and neurological disorders associated with dopaminergic neurodegeneration.


Assuntos
Manganês/toxicidade , Proteínas Repressoras/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Proteína de Ligação a CREB/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Heme Oxigenase-1/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/genética , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/genética
12.
Hippocampus ; 31(9): 935-956, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960056

RESUMO

Neuron-restrictive silencing factor (NRSF) is a zinc-finger transcription factor that regulates expression of a diverse set of genes. However, NRSF function in brain development still remains elusive. In the present study, we generated NRSF-conditional knockout (NRSF-cKO) mice by hGFAP-Cre/loxp system to study the effect of NRSF deficiency on brain development. Results showed that NRSF conditional knockout caused a smaller hippocampus and a thinner granule cell layer (GCL) in mice. Moreover, the reduction and disarrangement of GFAP+ cells in subgranular zone (SGZ) of NRSF-cKO mice was accompanied with the decreased number of premature neurons, neural stem cells (NSCs) and neural progenitor cells (NPCs), as well as compromising the majority of mitotically active cells. The analysis of postnatal development of hippocampus indicated the existence of an abnormality at postnatal day (P) 8, rather than at P1, in NRSF-cKO mice, although the densities of Ki67+ cells with mitotic ability in dentate gyrus were relatively unaffected at P1 and P8. Meanwhile, NRSF deficiency led to abnormal organization of SGZ at P8 during postnatal development. RNA-Seq analysis revealed 79 deregulated genes in hippocampus of NRSF-cKO mice at P8, which were involved in p53 signal transduction, neuron migration and negative regulation of cell proliferation, etc. The deregulation of p53 pathway in NRSF-cKO mice at P1 and P8 was evidenced, of which p21/Cdkn1a was accumulated in a portion of NSCs and NPCs in hippocampus during postnatal development. Together, these results, for the first time, revealed that NRSF could significantly influence the postnatal development of hippocampus, especially the formation of SGZ.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Giro Denteado , Hipocampo , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia
13.
Front Neuroendocrinol ; 53: 100744, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31004616

RESUMO

The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.


Assuntos
Fatores Etários , Encéfalo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Epigênese Genética/fisiologia , Epigenômica , Humanos
14.
Biochem Biophys Res Commun ; 527(3): 785-790, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32423826

RESUMO

Diabetic neuropathic pain is one of the most common complications of diabetes. Mechanisms underlying the central modulation are still unclear. Here, we investigated the role of the neuron-restricted silencing factor (NRSF/REST) in diabetic-related neuropathic pain. Mechanical allodynia and thermal hyperalgesia were assessed to evaluate painful behaviors. Our results found that in the anterior cingulate cortex (ACC) of db/db mice, NRSF/REST levels increased significantly. Reduction of NRSF/REST improved the painful sensation. Meanwhile, in vitro study found that high glucose and high palmitic acid treatment induced elevation of NRSF/REST and its cofactors (mSin3A, CoREST and HDAC1), whereas downregulation of GluR2 and NMDAR2B. Knockdown of NRSF/REST could attenuate the LDH release and partially reversed the expression changes of HDAC1 and NMDAR2B. Our results suggested that the elevation of NRSF/REST in the ACC area of db/db mice is one of the key mediators of diabetic neuropathic pain.


Assuntos
Neuropatias Diabéticas/fisiopatologia , Giro do Cíngulo/fisiopatologia , Hiperalgesia/fisiopatologia , Proteínas Repressoras/metabolismo , Animais , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Técnicas de Silenciamento de Genes , Giro do Cíngulo/metabolismo , Hiperalgesia/complicações , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Células PC12 , Ratos , Proteínas Repressoras/genética , Regulação para Cima
15.
Acta Biochim Biophys Sin (Shanghai) ; 52(10): 1063-1070, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32556117

RESUMO

Neuron-restrictive silencer factor (NRSF) is a zinc finger protein that acts as a negative transcriptional regulator by recruiting histone deacetylases and other co-factors. It plays a crucial role in nervous system development and is recently reported to be involved in tumorigenesis in a tumor type-dependent manner; however, the role of NRSF in hepatocellular carcinoma (HCC) tumorigenesis remains unclear. Here, we found that NRSF expression was up-regulated in 27 of 49 human HCC tissue samples examined. Additionally, mice with conditional NRSF-knockout in the liver exhibited a higher tolerance against diethylnitrosamine (DEN)-induced acute liver injury and were less sensitive to DEN-induced HCC initiation. Our results showed that silencing NRSF in HepG2 cells using RNAi technology significantly inhibited HepG2 cell proliferation and severely hindered their migration and invasion potentials. Our results demonstrated that NRSF plays a pivotal role in promoting DEN-induced HCC initiation via a mechanism related to the STAT3 and AKT signaling pathways. Thus, NRSF could be a potential therapeutic target for treating human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células/genética , Dietilnitrosamina/toxicidade , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
16.
Dev Dyn ; 248(10): 918-930, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301200

RESUMO

BACKGROUND: Developmental processes, including neuronal differentiation, require precise regulation of transcription. The RE-1 silencing transcription factor (Rest), is often called a "master neuronal regulator" due to its large number of neural-specific targets. Rest recruits CoRest (Rcor) and Sin3 corepressor complexes to gene regulatory sequences. CoRest not only associates with Rest, but with other transcription regulators. In this study, we generated zebrafish rcor1 mutants using transcription activator-like effector nucleases (TALENS), to study its requisite role in repression of Rest target genes as well as Rest-independent Rcor1 developmental functions. RESULTS: While rcor1 mutants have a slight decrease in fitness, most survived and produced viable offspring. We examined expression levels of RE1-containing genes in maternal zygotic rcor1 (MZrcor1) mutants and found that Rcor1 is generally not required for the repression of Rest target genes at early stages. However, MZrcor1 mutants undergo more rapid neurogenesis compared to controls. We found that at gastrula stages, Rcor1 acts as a repressor of her gene family, but at later stages, her6 decreased in the MZrcor1 mutant. CONCLUSIONS: Based on these findings, the central role of CoRest1 in neurogenesis is likely due to a Rest-independent role rather than as a Rest corepressor.


Assuntos
Proteínas Correpressoras/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Embrião não Mamífero , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Mutantes , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Anal Biochem ; 587: 113418, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31520595

RESUMO

The repressor element 1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) binds to repressor element 1/neuron-restrictive silencer element (RE1/NRSE) sites in the genome and recruits effector proteins to repress its target genes. Here, we developed the FlpTRAP system to isolate endogenously assembled DNA-protein complexes such as the REST/NRSF complex. In the FlpTRAP system, we take advantage of the step-arrest variant of the Flp recombinase, FlpH305L, which, in the presence of Flp recognition target (FRT) DNA, accumulates as FRT DNA-protein adduct. The FlpTRAP system consists of three elements: (i) FlpH305L-containing cell extracts or isolates, (ii) a cell line engineered to harbor the DNA motif of interest flanked by FRT sites, and (iii) affinity selection steps to isolate the target chromatin. Specifically, 3×FLAG-tagged FlpH305L was expressed in insect cell cultures infected with baculovirus, and cell lysates were prepared. The lysate was used to capture the FRT-SNAP25 RE1/NRSE-FRT chromatin from a human medulloblastoma cell line, and the target RE1/NRSE chromatin was isolated by anti-FLAG immunoaffinity chromatography. Using electrophoretic mobility shift assays (EMSAs) and chromatin immunopurification (ChIP), we show that FlpH305L recognized and bound to the FRT sites. Overall, we suggest the FlpTRAP system as a tool to purify endogenous, specific chromatin loci from eukaryotic cells.


Assuntos
Cromatina/isolamento & purificação , DNA Nucleotidiltransferases/química , Cromatina/química , Cromatina/metabolismo , DNA Nucleotidiltransferases/metabolismo , Humanos
18.
Mol Cell Biochem ; 461(1-2): 171-182, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31428904

RESUMO

The BAF complex (SWI/SNF) is an ATP-dependent chromatin remodeler that adapts the structural organization of the chromatin. Despite a growing understanding of the composition of BAF in different cell types, the interaction network within the BAF complex is poorly understood. Here, we characterized an isoform of the BRG1/SMARCA4 ATPase expressed in human neural progenitor cells. By electron microscopy and image processing, the neural BRG1/SMARCA4 shows an elongated globular structure, which provides a considerably larger surface than anticipated. We show that neural BRG1/SMARCA4 binds to BAF57/SMARCE1 and BAF60A/SMARCD1, two further components of BAF. Moreover, we demonstrate an interaction between the neural BRG1/SMARCA4 isoform and the central neurodevelopmental transcriptional repressor REST/NRSF. Our results provide insights into the assembly of a central transcriptional repressor complex, link the structure of the neural BRG1/SMARCA4 to its role as a protein-protein interaction platform and suggest BRG1/SMARCA4 as a key determinant that directs the BAF complex to specific DNA sites by interacting with transcription factors and regulators.


Assuntos
DNA Helicases/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/química
19.
Epilepsy Behav ; 94: 118-123, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30903955

RESUMO

The Repressor Element-1 Silencing Transcription factor or Neuron-Restrictive Silencer Factor (REST/NRSF) is a zinc finger repressor transcription factor of the Kruppel family. Several studies in experimental models have shown that overexpression of REST/NRSF occurs after the induction of seizures. In the present study, the expression of REST/NRSF (messenger ribonucleic acid (mRNA) and protein) was evaluated in the hippocampus of 28 patients with drug-resistant mesial temporal lobe epilepsy (MTLE) and their correlation with clinical variables and comorbid anxiety and depression. The REST/NRSF protein expression was augmented in an age-dependent manner in the hippocampus of autopsied subjects. However, this condition was not observed in patients with MTLE, in whom overexpression of this transcription factor occurred at both the mRNA and protein levels. The correlations with clinical variables showed that the frequency of epileptic seizures was proportional to the protein expression of REST/NRSF. The results revealed that the overexpression of REST/NRSF was more evident in patients with MTLE without anxiety and depression. Our data indicate that the expression of REST/NRSF is modified in patients with MTLE. This condition has implications in the pathophysiology of this disorder, making it a potential candidate for the optimization of clinical treatments.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Adolescente , Adulto , Ansiedade/complicações , Ansiedade/genética , Ansiedade/metabolismo , Depressão/complicações , Depressão/genética , Depressão/metabolismo , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/genética , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Repressoras/genética , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 113(1): E91-100, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699507

RESUMO

Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.


Assuntos
Regulação da Expressão Gênica , Neurônios/metabolismo , Optogenética/métodos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Animais , Avena/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Transcrição Gênica , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA