Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37269831

RESUMO

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Longevidade/genética , Fosfatidilinositol 3-Quinases/genética , Envelhecimento/genética , Mamíferos/genética , Perfilação da Expressão Gênica
2.
EMBO J ; 42(16): e111133, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37431790

RESUMO

Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.


Assuntos
Senescência Celular , Serotonina , Animais , Camundongos , Serotonina/metabolismo , Senescência Celular/fisiologia , Envelhecimento/metabolismo , Morte Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ratos-Toupeira/metabolismo
3.
EMBO J ; 41(15): e109694, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35694726

RESUMO

Naked mole rats (NMRs) are the longest-lived rodents yet their stem cell characteristics remain enigmatic. Here, we comprehensively mapped the NMR hematopoietic landscape and identified unique features likely contributing to longevity. Adult NMRs form red blood cells in spleen and marrow, which comprise a myeloid bias toward granulopoiesis together with decreased B-lymphopoiesis. Remarkably, youthful blood and marrow single-cell transcriptomes and cell compositions are largely maintained until at least middle age. Similar to primates, the primitive stem and progenitor cell (HSPC) compartment is marked by CD34 and THY1. Stem cell polarity is seen for Tubulin but not CDC42, and is not lost until 12 years of age. HSPC respiration rates are as low as in purified human stem cells, in concert with a strong expression signature for fatty acid metabolism. The pool of quiescent stem cells is higher than in mice, and the cell cycle of hematopoietic cells is prolonged. By characterizing the NMR hematopoietic landscape, we identified resilience phenotypes such as an increased quiescent HSPC compartment, absence of age-related decline, and neotenic traits likely geared toward longevity.


Assuntos
Envelhecimento , Ratos-Toupeira , Adulto , Envelhecimento/metabolismo , Animais , Hematopoese , Humanos , Camundongos , Pessoa de Meia-Idade , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Fenótipo , Células-Tronco
4.
Artigo em Inglês | MEDLINE | ID: mdl-38915279

RESUMO

The intestinal barrier plays a crucial role in homeostasis, both by facilitating absorption of nutrients and fluids, and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance. The naked mole-rat has many unusual biological features, including attenuated colonic neuron sensitivity to acid and bradykinin, and resistance to chemical-induced intestinal damage. However, insight into their intestinal barrier physiology is scarce. Here, we observed notable macroscopic and microscopic differences in intestinal tissue structure between naked mole-rats and mice. Moreover, naked mole-rats showed increased number of larger goblet cells and elevated mucus content. In measuring gut permeability, naked mole-rats showed reduced permeability compared to mice, measured as transepithelial electrical resistance, especially in ileum. Furthermore, intestinal ion secretion induced by serotonin, bradykinin, histamine, and capsaicin was significantly reduced in naked mole-rats compared to mice, despite the expression of receptors for all these agonists. In addition, naked mole-rats exhibited reduced pro-secretory responses to the non-selective adenylate cyclase activator forskolin. Collectively, these findings indicate that naked mole-rats possess a robust and hard-to-penetrate gastrointestinal barrier, that is resistant to environmental and endogenous irritants. Naked mole-rats may therefore provide valuable insights into the physiology of the intestinal barrier and set the stage for the development of innovative and effective therapies.

5.
Proc Biol Sci ; 291(2022): 20240371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714210

RESUMO

Naked mole-rats (Heterocephalus glaber) live in large colonies with one breeding female (queen), one to three breeding males (BMs) and the remainder are non-reproductive subordinates. The animals have a linear dominance rank with the breeders at the top of the hierarchy. We investigated how dominance rank in naked mole-rats differs with exploration (the propensity to explore a novel environment) and related endocrine markers. Exploration behaviour, faecal progestagen metabolite (fPM), faecal glucocorticoid metabolite (fGCM), faecal androgen metabolite (fAM) and plasma prolactin concentrations were quantified in breeding, high-, middle- and low-ranked females and males from five naked mole-rat colonies. There were no significant differences between the dominance rank and exploration behaviour. Interestingly, the queens and high-ranking females had higher fGCM and fAM concentrations compared with middle- and low-ranked females. The queens had significantly higher fPM concentrations than all other ranked females, since they are responsible for procreation. In the males, the BMs had higher fGCM concentrations compared with high- and low-ranked males. In addition, BMs and middle-ranking males had overall higher prolactin levels than all other ranked males, which could be linked to cooperative care. Overall, the results suggest that physiological reproductive suppression is linked to high dominance rank.


Assuntos
Androgênios , Fezes , Ratos-Toupeira , Prolactina , Predomínio Social , Animais , Masculino , Feminino , Prolactina/metabolismo , Prolactina/sangue , Fezes/química , Ratos-Toupeira/fisiologia , Androgênios/metabolismo , Androgênios/sangue , Glucocorticoides/metabolismo , Comportamento Exploratório , Progestinas/metabolismo
6.
RNA ; 28(8): 1128-1143, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35654483

RESUMO

Paraspeckles are mammalian-specific nuclear bodies built on the long noncoding RNA NEAT1_2 The molecular mechanisms of paraspeckle formation have been mainly studied using human or mouse cells, and it is not known if the same molecular components are involved in the formation of paraspeckles in other mammalian species. We thus investigated the expression pattern of NEAT1_2 in naked mole-rats (nNEAT1_2), which exhibit extreme longevity and lower susceptibility to cancer. In the intestine, nNEAT1_2 is widely expressed along the entire intestinal epithelium, which is different from the expression of mNeat1_2 that is restricted to the cells of the distal tip in mice. Notably, the expression of FUS, a FET family RNA binding protein, essential for the formation of paraspeckles both in humans and mice, was absent in the distal part of the intestinal epithelium in naked mole-rats. Instead, mRNAs of other FET family proteins EWSR1 and TAF15 were expressed in the distal region. Exogenous expression of these proteins in Fus-deficient murine embryonic fibroblast cells rescued the formation of paraspeckles. These observations suggest that nNEAT1_2 recruits a different set of RNA binding proteins in a cell type-specific manner during the formation of paraspeckles in different organisms.


Assuntos
Paraspeckles , RNA Longo não Codificante , Animais , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética
7.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928217

RESUMO

The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.


Assuntos
Hipercapnia , Hipóxia , Humanos , Hipóxia/metabolismo , Animais , Dióxido de Carbono/metabolismo , Expectativa de Vida , Envelhecimento , Longevidade , Transdução de Sinais
8.
J Cell Physiol ; 238(4): 761-775, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790936

RESUMO

The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.


Assuntos
Proteína ADAM10 , Fibroblastos , Fosfatidilserinas , Animais , Camundongos , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Betacelulina/metabolismo , Fibroblastos/metabolismo , Ionomicina/farmacologia , Proteínas de Membrana/metabolismo , Ratos-Toupeira , Proteínas de Transferência de Fosfolipídeos
9.
Proc Natl Acad Sci U S A ; 117(12): 6491-6501, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152094

RESUMO

The mitochondria of various tissues from mice, naked mole rats (NMRs), and bats possess two mechanistically similar systems to prevent the generation of mitochondrial reactive oxygen species (mROS): hexokinases I and II and creatine kinase bound to mitochondrial membranes. Both systems operate in a manner such that one of the kinase substrates (mitochondrial ATP) is electrophoretically transported by the ATP/ADP antiporter to the catalytic site of bound hexokinase or bound creatine kinase without ATP dilution in the cytosol. One of the kinase reaction products, ADP, is transported back to the mitochondrial matrix via the antiporter, again through an electrophoretic process without cytosol dilution. The system in question continuously supports H+-ATP synthase with ADP until glucose or creatine is available. Under these conditions, the membrane potential, ∆ψ, is maintained at a lower than maximal level (i.e., mild depolarization of mitochondria). This ∆ψ decrease is sufficient to completely inhibit mROS generation. In 2.5-y-old mice, mild depolarization disappears in the skeletal muscles, diaphragm, heart, spleen, and brain and partially in the lung and kidney. This age-dependent decrease in the levels of bound kinases is not observed in NMRs and bats for many years. As a result, ROS-mediated protein damage, which is substantial during the aging of short-lived mice, is stabilized at low levels during the aging of long-lived NMRs and bats. It is suggested that this mitochondrial mild depolarization is a crucial component of the mitochondrial anti-aging system.


Assuntos
Envelhecimento , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Difosfato de Adenosina/metabolismo , Animais , Quirópteros , Creatina/metabolismo , Transporte de Elétrons , Embrião de Mamíferos , Glucose/metabolismo , Hexoquinase/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos-Toupeira , Especificidade de Órgãos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
10.
BMC Biol ; 20(1): 44, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35172813

RESUMO

BACKGROUND: Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. RESULTS: We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. CONCLUSIONS: Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution.


Assuntos
Adaptação Fisiológica , Ratos-Toupeira , Adaptação Fisiológica/genética , Animais , Genoma , Cobaias , Hipóxia/genética , Longevidade/genética , Ratos-Toupeira/genética
11.
Cancer Sci ; 113(12): 4030-4036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083242

RESUMO

Certain mammalian species are resistant to cancer, and a better understanding of how this cancer resistance arises could provide valuable insights for basic cancer research. Recent technological innovations in molecular biology have allowed the study of cancer-resistant mammals, despite the fact that they are not the classical model animals, which are easily studied using genetic approaches. Naked mole-rats (NMRs; Heterocephalus glaber) are the longest-lived rodent, with a maximum lifespan of more than 37 years, and almost never show spontaneous carcinogenesis. NMRs are currently attracting much attention from aging and cancer researchers, and published studies on NMR have continued to increase over the past decade. Cancer development occurs via multiple steps and involves many biological processes. Recent research on the NMR as a model for cancer resistance suggests that they possess various unique carcinogenesis-resistance mechanisms, including efficient DNA repair pathways, cell-autonomous resistance to transformation, and dampened inflammatory response. Here, we summarize the molecular mechanisms of carcinogenesis resistance in NMR, which have been uncovered over the past two decades, and discuss future perspectives.


Assuntos
Fenômenos Biológicos , Neoplasias , Animais , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Longevidade/genética , Envelhecimento/genética , Neoplasias/genética
12.
Proc Biol Sci ; 289(1980): 20220878, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946148

RESUMO

Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.


Assuntos
Tronco Encefálico , Ratos-Toupeira , Animais , Percepção Auditiva/fisiologia , Tronco Encefálico/anatomia & histologia , Gerbillinae , Hipocampo , Camundongos , Ratos-Toupeira/fisiologia
13.
FASEB J ; 35(5): e21590, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33871093

RESUMO

Light is the key regulator of circadian clock, the time-keeping system synchronizing organism physiology and behavior with environmental day and night conditions. In its natural habitat, the strictly subterranean naked mole-rat (Heterocephalus glaber) has lived in a light-free environment for millennia. We questioned if this species retains a circadian clock and if the patterns of this clock and concomitant rhythms differed in liver tissue from mice and naked mole-rats. As expected, in mice, the various circadian clock genes peaked at different times of the day; the Period gene (Per) group peaked in the evening, whereas Brain and Muscle ARNT-like1 (Bmal1) gene peaked in the morning; this phase shift is considered to be fundamental for circadian clock function. In sharp contrast, in the naked mole-rat both Per1 and Per2, as well as Bmal1, peaked at the same time in the morning-around ZT2-suggesting the organization of the molecular circadian oscillator was different. Moreover, gene expression rhythms associated with glucose metabolism and mTOR signaling also differed between the species. Although the activity of mTORC1 was lower, while that of mTORC2 was higher in naked mole-rat livers compared to mice, unlike that of mice where the expression profiles of glucose metabolism genes were not synchronized, these were highly synchronized in naked mole-rats and likely linked to their use of feeding times at zeitgebers.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica , Glucose/metabolismo , Fígado/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas CLOCK/genética , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Ratos-Toupeira , Serina-Treonina Quinases TOR/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-35731263

RESUMO

The naked mole rat has unique biologic characteristics that include atypical inflammatory responses. Lipopolysaccharide induces inflammation which triggers brain centers controlling feeding, and behavior to result in "sick animal behavior". We characterized the bodyweight, locomotor, and other behavioral responses of this rodent to lipopolysaccharide administration. Lipopolysaccharide caused weight losses, which were not prevented by TAK 242. In the open field test, lipopolysaccharide did not depress locomotion, while urination, defecation, and activity freezing were rare. The animals exhibited walling but not rearing and fast backward movements that were unaffected by lipopolysaccharide. Failure to depress locomotion suggests either a unique immunity-brain crosstalk or motor responses/centers that tolerate depressive effects of inflammation. The absence of activity freezing and rarity of urination and defecation suggests that novel environments or lipopolysaccharide do not induce anxiety, or that anxiety is expressed differently in the animal. The absence of rearing could be due to the design of the animal's locomotor apparatus while fast backward movement could be a mechanism for quick escape from threats in the tunnels of their habitat. Our results elucidate the unique biology of this rodent, which elicits interest in the animal as a model for inflammatory research, although the findings require mechanistic corroborations.


Assuntos
Lipopolissacarídeos , Ratos-Toupeira , Animais , Peso Corporal , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Locomoção , Ratos-Toupeira/fisiologia
15.
Horm Behav ; 143: 105196, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597054

RESUMO

Despite decades of research into the evolutionary drivers of sociality, we know relatively little about the underlying proximate mechanisms. Here we investigate the potential role of prolactin in the highly social naked mole-rat. Naked mole-rats live in large social groups but, only a small number of individuals reproduce. The remaining non-breeders are reproductively suppressed and contribute to burrow maintenance, foraging, and allo-parental care. Prolactin has well-documented links with reproductive timing and parental behaviour, and the discovery that non-breeding naked mole-rats have unusually high prolactin levels has led to the suggestion that prolactin may help maintain naked mole-rat sociality. To test this idea, we investigated whether urinary prolactin was correlated with cooperative behaviour and aggression. We then administered the prolactin-suppressing drug Cabergoline to eight female non-breeders for eight weeks and assessed the physiology and behaviour of the animals relative to controls. Contrary to the mammalian norm, and supporting previous findings for plasma, we found non-breeders had elevated urinary prolactin concentrations that were similar to breeding females. Further, prolactin levels were higher in heavier, socially dominant non-breeders. Urinary prolactin concentrations did not explain variation in working behaviour or patterns of aggression. Furthermore, females receiving Cabergoline did not show any behavioural or hormonal (progesterone) differences, and urinary prolactin did not appear to be suppressed in individuals receiving Cabergoline. While the results add to the relatively limited literature experimentally manipulating prolactin to investigate its role in reproduction and behaviour, they fail to explain why prolactin levels are high in non-breeding naked mole-rats, or how female non-breeding phenotypes are maintained.


Assuntos
Ratos-Toupeira , Prolactina , Animais , Cabergolina , Feminino , Ratos-Toupeira/fisiologia , Reprodução/fisiologia , Comportamento Social
16.
Horm Behav ; 145: 105236, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917594

RESUMO

In some cooperatively breeding groups, individuals have distinct behavioral characteristics that are often stable and predictable across time. However, in others, as in the eusocial naked mole-rat, evidence for behavioral phenotypes is ambiguous. Here, we study whether the naked mole-rat can be divided into discrete phenotypes and if circulating hormone concentrations underpin these differences. Naked mole-rat colonies consist of a single breeding female and large numbers of non-reproductive subordinates that in some cases can exceed several hundred in a colony. The subordinates can potentially be divided into soldiers, who defend the colony; workers, who maintain it; and dispersers, who want to leave it. We established six colonies de novo, tracked them over three years, and assessed the behavior and hormone concentrations of the subordinates. We found that soldiers tended to be from earlier litters and were higher ranked compared to workers, whereas dispersers were distributed throughout litters and rankings. There was no difference in estradiol, testosterone, or dehydroepiandrosterone (DHEA) concentrations among phenotypes. Progesterone concentrations were higher in soldiers, but this difference appeared to be driven by a few individuals. Principal component analysis demonstrated that soldiers separated into a discrete category relative to workers/dispersers, with the highest ranked loadings being age, body mass, and testosterone concentrations. However, the higher testosterone in soldiers was correlated with large body size instead of strictly behavioral phenotype. Workers and dispersers have more overlap with each other and no hormonal differences. Thus the behavioral variation in subordinate naked mole-rats is likely not driven by circulating steroid hormone concentrations, but rather it may stem from alternative neural and/or neuroendocrine mechanisms.


Assuntos
Ratos-Toupeira , Progesterona , Animais , Desidroepiandrosterona , Estradiol , Feminino , Fenótipo , Testosterona
17.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012332

RESUMO

The reason for the exceptional longevity of the naked mole rat (Heterocephalus glaber) remains a mystery to researchers. We assumed that evolutionarily, H. glaber acquired the ability to quickly stabilize the functioning of mitochondria and endoplasmic reticulum (ER) to adjust metabolism to external challenges. To test this, a comparison of the hepatic mitochondria and ER of H. glaber and C57BL/6 mice was done. Electron microscopy showed that 2-months-old mice have more developed rough ER (RER) than smooth ER (SER), occupying ~17 and 2.5% of the hepatocytic area correspondingly, and these values do not change with age. On the other hand, in 1-week-old H. glaber, RER occupies only 13% constantly decreasing with age, while SER occupies 35% in a 1-week-old animal, constantly rising with age. The different localization of mitochondria in H. glaber and mouse hepatocytes was confirmed by confocal and electron microscopy: while in H. glaber, mitochondria were mainly clustered around the nucleus and on the periphery of the cell, in mouse hepatocytes they were evenly distributed throughout the cell. We suggest that the noted structural and spatial features of ER and mitochondria in H. glaber reflect adaptive rearrangements aimed at greater tolerance of the cellular system to challenges, primarily hypoxia and endogenous and exogenous toxins. Different mechanisms of adaptive changes including an activated hepatic detoxification system as a hormetic response, are discussed considering the specific metabolic features of the naked mole rat.


Assuntos
Mitocôndrias , Ratos-Toupeira , Animais , Retículo Endoplasmático , Hepatócitos , Hipertrofia , Camundongos , Camundongos Endogâmicos C57BL
18.
J Proteome Res ; 20(9): 4258-4271, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34351155

RESUMO

Naked mole-rats (NMRs) are a long-lived animal that do not develop age-related diseases including neurodegeneration and cancer. Additionally, NMRs have a profound ability to consume reactive oxygen species (ROS) and survive long periods of oxygen deprivation. Here, we evaluated the unique proteome across selected brain regions of NMRs at different ages. Compared to mice, we observed numerous differentially expressed proteins related to altered mitochondrial function in all brain regions, suggesting that the mitochondria in NMRs may have adapted to compensate for energy demands associated with living in a harsh, underground environment. Keeping in mind that ROS can induce polyunsaturated fatty acid peroxidation under periods of neuronal stress, we investigated docosahexaenoic acid (DHA) and arachidonic acid (AA) peroxidation under oxygen-deprived conditions and observed that NMRs undergo DHA and AA peroxidation to a far less extent compared to mice. Further, our proteomic analysis also suggested enhanced peroxisome proliferator-activated receptor (PPAR)-retinoid X receptor (RXR) activation in NMRs via the PPARα-RXR and PPARγ-RXR complexes. Correspondingly, we present several lines of evidence supporting PPAR activation, including increased eicosapetenoic and omega-3 docosapentaenoic acid, as well as an upregulation of fatty acid-binding protein 3 and 4, known transporters of omega-3 fatty acids and PPAR activators. These results suggest enhanced PPARα and PPARγ signaling as a potential, innate neuroprotective mechanism in NMRs.


Assuntos
PPAR alfa , PPAR gama , Animais , Encéfalo , Camundongos , Ratos-Toupeira , Neuroproteção , Oxigênio , PPAR alfa/genética , PPAR gama/genética , Proteômica
19.
Physiology (Bethesda) ; 35(2): 96-111, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024425

RESUMO

Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.


Assuntos
Adaptação Fisiológica , Envelhecimento , Nanismo/fisiopatologia , Longevidade , Estresse Oxidativo , Animais , Humanos , Camundongos , Ratos-Toupeira , Especificidade da Espécie
20.
J Exp Biol ; 224(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704596

RESUMO

Hearing in subterranean rodents exhibits numerous peculiarities, including low sensitivity and restriction to a narrow range of comparatively low frequencies. Past studies provided two conflicting hypotheses explaining how these derived traits evolved: structural degeneration and adaptive specialization. To further elucidate this issue, we recorded auditory brainstem responses from three species of social subterranean rodents that differ in the degree of specialization to the underground habitat: the naked mole-rat (Heterocephalus glaber) and the Mashona mole-rat (Fukomys darlingi), which represent the ancient lineage of African mole-rats (Bathyergidae), and the coruro (Spalacopus cyanus), a South American rodent (Octodontidae) that adopted a subterranean lifestyle in more recent geological time. Additionally, we measured call amplitudes of social vocalizations to study auditory vocal coupling. We found elevated auditory thresholds and severe hearing range restrictions in the African mole-rats, with hearing in naked mole-rats tending to be more sensitive than in Mashona mole-rats, in which hearing notably deteriorated with increasing age. In contrast, hearing in coruros was similar to that of epigeic rodents, with its range extending into ultrasonic frequencies. However, as in the mole-rats, the coruros' region of best hearing was located at low frequencies close to 1 kHz. We argue that the auditory sensitivity of African mole-rats, although remarkably poor, has been underestimated by recent studies, whereas data on coruros conform to previous results. Considering the available evidence, we propose to be open to both degenerative and adaptive interpretations of hearing physiology in subterranean mammals, as each may provide convincing explanations for specific auditory traits observed.


Assuntos
Audição , Ratos-Toupeira , Animais , Potenciais Evocados Auditivos do Tronco Encefálico , Testes Auditivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA