RESUMO
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
RESUMO
There is a growing shift from the use of conventional pharmaceutical oral care products to the use of herbal extracts and traditional remedies in dental caries prevention. This is attributed to the potential environmental and health implications of contemporary oral products. This comprehensive review aims at the analysis of plant-derived compounds as preventive modalities in dental caries research. It focuses on data collected from 2019 until recently, trying to emphasize current trends in this topic. The research findings suggest that several plant-derived compounds, either aqueous or ethanolic, exhibit notable antibacterial effects against Streptococcus mutans and other bacteria related to dental caries, with some extracts demonstrating an efficacy comparable to that of chlorhexidine. Furthermore, in vivo studies using plant-derived compounds incorporated in food derivatives, such as lollipops, have shown promising results by significantly reducing Streptococcus mutans in high-risk caries children. In vitro studies on plant-derived compounds have revealed bactericidal and bacteriostatic activity against S. mutans, suggesting their potential use as dental caries preventive agents. Medicinal plants, plant-derived phytochemicals, essential oils, and other food compounds have exhibited promising antimicrobial activity against oral pathogens, either by their anti-adhesion activity, the inhibition of extracellular microbial enzymes, or their direct action on microbial species and acid production. However, further research is needed to assess their antimicrobial activity and to evaluate the cytotoxicity and safety profiles of these plant-derived compounds before their widespread clinical use can be recommended.
RESUMO
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Farmacorresistência Bacteriana MúltiplaRESUMO
Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.
Assuntos
Amidas , Suplementos Nutricionais , Etanolaminas , Neuralgia , Ácidos Palmíticos , Plantas Medicinais , Etanolaminas/farmacologia , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/administração & dosagem , Animais , Neuralgia/tratamento farmacológico , Amidas/farmacologia , Amidas/química , Plantas Medicinais/química , Polifenóis/farmacologia , Polifenóis/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos , Masculino , Antioxidantes/farmacologia , Ginkgo biloba/química , HumanosRESUMO
The present work aims to study the possibilities of developing silver nanoparticles using natural extracts of grape pomace wastes originating from the native variety of Feteasca Neagra 6 Èt. This study focused on investigating the influence of grape pomace extract obtained by two different extraction methods (classical temperature extraction and microwave-assisted extraction) in the phytosynthesis process of metal nanoparticles. The total phenolic content of the extracts was assessed using the spectrophotometric method with the Folin-Ciocâlteu reagent, while the identification and quantification of specific components were conducted through high-performance liquid chromatography with a diode array detector (HPLC-DAD). The obtained nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), along with assessing their antioxidant and antimicrobial properties against Gram-positive bacteria. The data collected from the experiments indicated that the nanoparticles were formed in a relatively short period of time (96 h) and, for the experimental variant involving the use of a 1:1 ratio (v/v, grape pomace extract: silver nitrate) for the nanoparticle phytosynthesis, the smallest crystallite sizes (from X-ray diffraction-4.58 nm and 5.14 nm) as well as spherical or semispherical nanoparticles with the lowest average diameters were obtained (19.99-23 nm, from TEM analysis). The phytosynthesis process was shown to enhance the antioxidant properties (determined using the DPPH assay) and the antimicrobial potential (tested against Gram-positive strains) of the nanoparticles, as evidenced by comparing their properties with those of the parent extracts; at the same time, the nanoparticles exhibited a selectivity in action, being active against the Staphylococcus aureus strain while presenting no antimicrobial potential against the Enterococcus faecalis strain.
Assuntos
Antioxidantes , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Prata , Vitis , Vitis/química , Nanopartículas Metálicas/química , Prata/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Química Verde/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Difração de Raios XRESUMO
This study investigates the chemical composition, nutritional, and biological properties of extracts obtained from A. melanocarpa berries using different extraction methods and solvents. Hydrodistillation and supercritical fluid extraction with CO2 allowed us to isolate fruit essential oil (HDEX) and fixed oil (SFEEX), respectively. A phenol-enriched extract was obtained using a mild ultrasound-assisted maceration with methanol (UAMM). The HDEX most abundant component, using gas chromatography-mass spectrometry (GC/MS), was italicene epoxide (17.2%), followed by hexadecanoic acid (12.4%), khusinol (10.5%), limonene (9.7%), dodecanoic acid (9.7%), and (E)-anethole (6.1%). Linoleic (348.9 mg/g of extract, 70.5%), oleic (88.9 mg/g, 17.9%), and palmitic (40.8 mg/g, 8.2%) acids, followed by α-linolenic and stearic acids, were the main fatty acids in SFEEX determined using high-performance liquid chromatography coupled with a photodiode array detector and an evaporative light scattering detector (HPLC-DAD/ELSD). HPLC-DAD analyses of SFEEX identified ß-carotene as the main carotenoid (1.7 mg/g), while HPLC with fluorescence detection (FLU) evidenced α-tocopherol (1.2 mg/g) as the most abundant tocopherol isoform in SFEEX. Liquid chromatography-electrospray ionization-MS (LC-ESI-MS) analysis of UAMM showed the presence of quercetin-sulfate (15.6%, major component), malvidin 3-O-(6-O-p-coumaroyl) glucoside-4-vinylphenol adduct (pigment B) (9.3%), di-caffeoyl coumaroyl spermidine (7.6%), methyl-epigallocatechin (5.68%), and phloretin (4.1%), while flavonoids (70.5%) and phenolic acids (23.9%) emerged as the most abundant polyphenol classes. UAMM exerted a complete inhibition of the cholesterol oxidative degradation at 140 °C from 75 µg of extract, showing 50% protection at 30.6 µg (IA50). Furthermore, UAMM significantly reduced viability (31-48%) in A375 melanoma cells in the range of 500-2000 µg/mL after 96 h of incubation (MTT assay), with a low toxic effect in normal HaCaT keratinocytes. The results of this research extend the knowledge of the nutritional and biological properties of A. melanocarpa berries, providing useful information on specific extracts for potential food, cosmetic, and pharmaceutical applications.
Assuntos
Frutas , Photinia , Extratos Vegetais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Frutas/química , Photinia/química , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Ácidos Graxos/análise , Ácidos Graxos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análiseRESUMO
Titanium dioxide (TiO2) nanoparticles were synthesized via a novel eco-friendly green chemistry approach using marine natural extracts of two red algae (Bostrychia tenella and Laurencia obtusa), a green alga (Halimeda tuna), and a brown alga (Sargassum filipendula) along with a marine sponge sample identified as Carteriospongia foliascens. X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis, X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) were employed to characterize the crystal structure, surface morphology, and optical properties of the synthesized nanoparticles. Each of the as-synthesized marine extract based TiO2 nanoparticles was individually incorporated as an antifouling agent to form a newly fabricated marine paint formulation. The newly prepared formulations were applied on unprimed steel panels. A comparative study with a commercial antifouling paint (Sipes Transocean Coatings Optima) was carried out. After 108 days of the coated steel panels' immersion in the Eastern Harbour seawater of Alexandria-Egypt, the prepared paints using B. tenella and C. foliascens extracts demonstrated an excellent antifouling performance toward fouling organisms by inhibiting their settlement and controlling their adhesion onto the immersed panels. In contrast, heavy fouling with barnacles was observed on the surface of the coated panel with the commercial paint. The physicochemical parameters of the seawater surrounding the immersed coated panels were estimated to investigate the influence of the fabricated paint formulations. Interestingly, no effects of the immersed coated panels on the physicochemical characteristics of the surrounding seawater were observed. Based on the obtained results and a comparison with commercially available antifouling products, the marine extract based TiO2 nanoparticle preparations of B. tenella and C. foliascens are promising candidates for eco-friendly antifouling agents. Based on the obtained results and a comparison with commercially available antifouling products, the marine extract based TiO2 nanoparticle preparations of B. tenella and C. foliascens are promising candidates for eco-friendly antifouling agents, which could be attributed to the small crystallite sizes of 22.86 and 8.3 nm, respectively, in addition to the incorporation of carbon in the crystal structure of the nanoparticles.
Assuntos
Incrustação Biológica , Nanopartículas Metálicas , Nanopartículas , Incrustação Biológica/prevenção & controle , Titânio/química , Nanopartículas/química , Egito , Extratos Vegetais/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The aim of this study was to investigate the effect of Spirulina platensis (SP) and Salvia verbenaca (SV) extracts added to skimmed milk (SM) extender on ram sperm quality and fertility. Semen was collected using an artificial vagina, extended in SM to reach a final concentration of 0.8 × 109 spermatozoa/mL, stored at 4°C and evaluated at 0, 5 H and 24 H. The experiment has been performed in three steps. Firstly, from four extracts (methanol: MeOH, acetone: Ac, ethyl acetate: EtOAc and hexane: Hex) of SP and SV, only acetonic and hexanoic extracts of SP and acetonic and methanolic extracts of SV showed the highest in vitro antioxidant activities and were then selected for the following step. Thereafter, the effects of four concentrations (1.25, 3.75, 6.25, and 8.75 µg/mL) of each selected extract on stored sperm motility were evaluated. The output of this trial led to select the best concentrations having beneficial effects on sperm quality parameters (viability, abnormalities, membrane integrity, and lipid peroxidation) and fertility after insemination. The results showed that the same concentration (1.25 µg/mL) of both Ac-SP and Hex-SP, as well as 3.75 µg/mL of Ac-SV and 6.25 µg/mL of MeOH-SV, maintain all sperm quality parameters at 4°C during 24 H of storage. Besides, no difference was found in fertility between the selected extracts and the control. In conclusion, SP and SV extracts were shown to improve the quality of ram sperm and to maintain fertility rate after insemination as similar or competitive to many previous studies published in the field.
Assuntos
Análise do Sêmen , Preservação do Sêmen , Feminino , Ovinos , Masculino , Animais , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Sementes , Espermatozoides , FertilizaçãoRESUMO
This investigation aimed to synthesize poly(D,L-lactide) (PLA)-based fibrous scaffolds containing natural essential oils (i.e., linalool and citral) and determine their antimicrobial properties and cytocompatibility as a clinically viable cell-friendly disinfection strategy for regenerative endodontics. PLA-based fibrous scaffolds were fabricated via electrospinning with different concentrations of linalool and citral. The micromorphology and average diameter of the fibers was investigated through scanning electron microscopy (SEM). The chemical composition of the scaffolds was inferred by Fourier-transform infrared spectroscopy (FTIR). Antimicrobial efficacy against Enterococcus faecalis and Actinomyces naeslundii was also evaluated by agar diffusion and colony-forming units (CFU) assays. The scaffolds' cytocompatibility was determined using dental pulp stem cells (DPSCs). Statistical analyses were performed and the significance level was set at α = 5%. Linalool and citral's incorporation in the PLA fibrous scaffolds was confirmed in the FTIR spectra. SEM images indicate no morphological changes upon inclusion of the essential oils, except the reduced diameter of 40% linalool-laden fibers (p < 0.05). Importantly, significant antimicrobial properties were reported for citral-containing scaffolds for CFU/mL counts (p < 0.05), while only 20% and 40% linalool-laden scaffolds reduced CFU/mL (p < 0.05). Meanwhile, the inhibition halos were verified in a concentration-dependent manner for all monoterpenes-laden scaffolds. Citral- and linalool-laden PLA-based fibrous scaffolds showed acceptable cytocompatibility. The incorporation of natural monoterpenes did not alter the scaffolds' fibrous morphology, promoted antimicrobial action against endodontic pathogens, and preserved DPSCs viability. Linalool- and citral-laden electrospun scaffolds hold promise as naturally derived antimicrobial therapeutics for applications in regenerative endodontics.
Assuntos
Anti-Infecciosos , Ciprofloxacina , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Monoterpenos/farmacologia , Anti-Infecciosos/farmacologia , Poliésteres/farmacologia , Alicerces Teciduais/química , Engenharia Tecidual/métodosRESUMO
Bioactive compounds, including terpenoids, polyphenols, alkaloids and other nitrogen-containing constituents, exert various beneficial effects arising from their antioxidant and anti-inflammatory properties. These compounds can be found in vegetables, fruits, grains, spices and their derived foods and beverages such as tea, olive oil, fruit juices, wine, chocolate and beer. Agricultural production and the food supply chain are major sources of food wastes, which can become resources, as they are rich in bioactive compounds. The aim of this review is to highlight recent articles demonstrating the numerous potential uses of products and by-products of the agro-food supply chain, which can have various applications.
Assuntos
Eliminação de Resíduos , Antioxidantes/química , Polifenóis/química , Frutas/química , BebidasRESUMO
This study examined the potential of hydrolysable tannin in comparison to condensed tannins for the production of furanic foams. The results indicate that chestnut tannin presents lower reactivity and requires a stronger acid for the polymerization. Additionally, foamability and density were found to be dependent on both surfactant concentration and tannin type, allowing lower densities for mimosa tannin and lower thermal conductivities for chestnut-based foams. Mimosa tannin was found to have the highest compression strength, followed by quebracho and chestnut, promising thermal conductivity of around 50 mW/m·K for 300 kg/m3 foams, which suggests that chestnut foams have the potential to performing highly when the density is reduced. Chemical analysis revealed that the methylene moieties of the furanics are non-specific and produces new covalent bonds with nucleophilic substrates: -OH groups and free-positions in the flavonoids. Overall, this study opens new perspectives for the application of hydrolysable tannins in polymer and material science.
RESUMO
BACKGROUND: Several findings suggest neuroinflammation as a contributing factor for the onset of psychiatric disorders such as Alzheimer's disease, depression, and anxiety. There is increasing evidence pointing out that the Mediterranean diet influences brain and behavior. Mediterranean herbs and spices have been shown to be within those components of the Mediterranean diet involved in cognitive enhancement. Thus, we investigated the influence of Mediterranean natural extracts (MNE), Rosemary extract (RE) and Glycyrrhiza glabra root extract (GGRE), on cognitive behavior. RESULTS: Adult zebrafish were exposed to RE or GGRE (100 and 250 mg/L) treatments. Both MNE improved memory retention during the T-maze test, although no improvements were observed during the novel object preference. Similarly, chronic administration of RE (150 mg/Kg) and GGRE (150 mg/Kg) improved, respectively, spatial and retention memory, as assessed by the Morris Water Maze (MWM), and the Elevated Plus Maze (EPM) in healthy male rats. However, no improvements were observed during the novel object recognition. Finally, male, and female rats were chronically treated with lipopolysaccharide [(LPS) 300 ug/kg] and orally administered with RE. Interestingly, RE reversed LPS-induced cognitive deficit during the MWM and EPM in female rats. CONCLUSIONS: We found that MNE improved cognition in both zebrafish and rats. Moreover, MNE rescued LPS-induced cognitive impairment in a gender-specific manner. Therefore, our study supports the view that zebrafish represent a valuable preclinical model for drug discovery in neuroscience. These findings contribute to an exciting and growing body of research suggesting that MNE may play an important role in the prevention of cognitive impairment.
Assuntos
Disfunção Cognitiva , Lipopolissacarídeos , Animais , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Hipocampo , Lipopolissacarídeos/efeitos adversos , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Peixe-ZebraRESUMO
Distilleries generate huge amounts of by-products that have a negative impact on the environment, so the management of wastes generated by this sector should be improved. Because distillery by-products are a source of bioactive compounds, the recovery of these compounds not only reduces issues with environmental protection but also provides the basis for a waste-to-profit solution. Following the latest trends in the search for so-called green extraction techniques for recovering valuable products, this study investigated the effect of subcritical water extraction (SWE) conditions (temperature (25-260 °C), time (5-90 min), and solid-to-solvent ratio (1:5-1:50, w:v)) on the efficiency of recovery of bioactive compounds, i.e., polyphenols from distillery stillage, and on the antioxidant activity of the extracts. The highest extraction yield was obtained with 30-min SWE with a solid-to-solvent ratio of 1:15 at either 140 °C (for total polyphenol content and phenolic acid content) or 200 °C (for total flavonoid content), as indicated by the Response Surface Methodology analysis. Phenolic acids in the extracts were present mainly in free forms (up to 88% of the total content). The antioxidant activity, which was measured using several assays, correlated positively with the content of phenolic acids, which confirmed their significant contribution to the bioactive properties of the extracts. The antioxidant effects of the extracts were mostly due to hydroxycinnamic acids (especially ferulic and p-coumaric acids). Principal component analysis showed that the temperature and time of SWE were the factors that can explain the greatest amount of variation in the extraction yield, composition, and bioactive properties of the polyphenols. These results will influence the design of further processes, such as purification and concentration, which are necessary before using the extracted compounds as substrates that are applicable in various industries. Based on the analysis of the elemental composition, the biomass remaining after SWE was evaluated to consider the possibilities of its further utilization.
Assuntos
Antioxidantes , Água , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Fenóis/química , Extratos Vegetais/química , Polifenóis , Solventes/química , Água/químicaRESUMO
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food quality and appearance. Thus, a safe and effective alternative method from natural sources is needed to tackle enzymatic browning prevention. The capabilities of natural anti-browning agents derived from plant- and animal-based resources in inhibiting enzymatic activity have been demonstrated in the literature. Some also possess strong antioxidants properties. This review aims to summarize a recent investigation regarding the use of natural anti-browning extracts from different sources for controlling the browning. The potential applications of genome-editing in preventing browning activity and improving postharvest quality is also discussed. Moreover, the patents on the anti-browning extract from natural sources is also presented in this review. The information reviewed here could provide new insights, contributing to the development of natural anti-browning extracts and genome-editing techniques for the prevention of food browning.
Assuntos
Manipulação de Alimentos/métodos , Frutas/química , Frutas/enzimologia , Edição de Genes , Genoma de Planta , Reação de Maillard/efeitos dos fármacos , Extratos Vegetais/farmacologia , Qualidade dos Alimentos , HumanosRESUMO
The main by-product generated from the olive oil two-phase extraction system, or alperujo, is undoubtedly a rich source of bioactive components, among which phenolics are one of the most important. The evolution of four of its main phenolics: hydroxytyrosol (HT), hydroxytyrosol 4-ß-d-glucoside (Glu-HT), 3,4-dihydroxyphenylglycol (DHPG) and tyrosol (Ty) was studied over two seasons and in ten oil mills under similar climatological and agronomic conditions, for the first time using organic extraction and high-performance liquid chromatography (HPLC-DAD) determination. The results show that HT (200-1600 mg/kg of fresh alperujo) and Ty (10-570 mg/kg) increase, while DHPG (10-370 mg/kg) decreases only in the last month of the season and Glu-HT (1400-0 mg/kg) decreases drastically from the beginning. This evolution is similar between different seasons, with a high correlation between Glu-HT, HT, and Ty. On the other hand, it has been verified that a mixture of alperujos from all the oil mills, which is what the pomace extractor receives, is a viable source of a liquid fraction which is rich in the phenolics studied through organic extractions and especially after the application of a thermal treatment, obtaining values of 4.2 g/L of HT, 0.36 g/L of DHPG, and 0.49 g/L of Ty in the final concentrated liquid fraction.
Assuntos
Olea , Álcool Feniletílico , Azeite de Oliva/análise , Glucosídeos , Resíduos Sólidos/análise , Álcool Feniletílico/química , Fenóis/análise , Olea/químicaRESUMO
Bioactive compounds from olive mill pomace (OMP) were extracted through a two-step solid-liquid extraction procedure considering four factors at five levels of a central composite rotatable response surface design. The influence of the process variables time of the primary extraction (2.0-4.0 h), solvent-to-sample ratio during the primary extraction (5.0-10.0 mL/g), time of the secondary extraction (1.0-2.0 h), and the solvent-to-sample ratio during the secondary extraction (3.0-5.0 mL/g) were examined. The content of bioactive compounds was determined spectrophotometrically, and the individual phenolic compounds were evaluated by reserved-phase high-performance liquid chromatography (RP-HPLC). The Derringer's function was used to optimize the extraction process, and the best conditions were found to be 3.2 h for the primary extraction, 10.0 mL/g for the solvent-to-sample ratio and 1.3 h for the secondary extraction associated with a solvent-to-sample ratio of 3.0 mL/g, obtaining a total phenolic content of 50.0 (expressed as mg gallic acid equivalents (GAE)/g dry weight (dw). The response surface methodology proved to be a great alternative for reducing the number of tests, allowing the optimization of the extraction of phenolic antioxidants from OMP with a reduced number of experiments, promoting reductions in cost and analysis time.
Assuntos
Antioxidantes , Olea , Antioxidantes/química , Olea/química , Fenóis/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Solventes/químicaRESUMO
BACKGROUND: Listeria monocytogenes is a widespread common contaminant in food production facilities during preparation, storage, and distribution, and minimally processed ready-to-eat products are considered at high risk of contamination by this bacterium. Increased antibiotic resistance has led researchers to search for plant-based natural alternatives to control pathogenic microorganisms. Among these products, essential oils and plant extracts have previously shown antimicrobial activity and are possible alternatives to manage food pathogens. In this study, commercial essential oils (cinnamon, clove, oregano, ginger, and thyme) and plant extracts (pomegranate, acorn, olive, strawberry tree, and dog rose) were tested against L. monocytogenes in a dry-cured ham-based model. RESULTS: Essential oils and plant extracts were screened by agar diffusion and minimum inhibitory concentration for anti-L. monocytogenes activity. Cinnamon, pomegranate, and strawberry trees returned the strongest results and were therefore evaluated in a dry-cured ham-based medium assay with water activity of 0.93 or 0.95. The 10% essential oil of cinnamon was capable of completely inhibiting bacterial growth, while strawberry tree and pomegranate extract also showed antilisterial activity (P > 0.05). Water activity influenced the bacterial count of L. monocytogenes in a dry-cured ham-based medium. CONCLUSIONS: There was a reduction in L. monocytogenes with the application of cinnamon essential oil but, because of the negative sensory impact of this particular compound in meat products, we suggest the use of pomegranate or strawberry tree for the biocontrol of Listeria in ready-to-eat products. © 2021 Society of Chemical Industry.
Assuntos
Anti-Infecciosos , Conservação de Alimentos , Listeria monocytogenes , Óleos Voláteis , Carne de Porco , Animais , Anti-Infecciosos/farmacologia , Contagem de Colônia Microbiana , Contaminação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Produtos da Carne , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Triple-negative breast cancer (TNBC) makes up 15 % to 20 % of all breast cancer (BC) cases, and represents one of the most challenging malignancies to treat. For many years, chemotherapy has been the main treatment option for TNBC. Natural products isolated from marine organisms and terrestrial organisms with great structural diversity and high biochemical specificity form a compound library for the assessment and discovery of new drugs. In this review, we mainly focused on natural compounds and extracts (from marine and terrestrial environments) with strong anti-TNBC activities (IC50 <100â µM) and their possible mechanisms reported in the past six years (2015-2021).
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Fusarium graminearum is a fungal pathogen that can colonize small-grain cereals and maize and secrete type B trichothecene (TCTB) mycotoxins. The development of environmental-friendly strategies guaranteeing the safety of food and feed is a key challenge facing agriculture today. One of these strategies lies on the promising capacity of products issued from natural sources to counteract crop pests. In this work, the in vitro efficiency of sixteen extracts obtained from eight natural sources using subcritical water extraction at two temperatures was assessed against fungal growth and TCTB production by F. graminearum. Maritime pine sawdust extract was shown to be extremely efficient, leading to a significant inhibition of up to 89% of the fungal growth and up to 65% reduction of the mycotoxin production by F. graminearum. Liquid chromatography/mass spectrometry analysis of this active extract revealed the presence of three families of phenolics with a predominance of methylated compounds and suggested that the abundance of methylated structures, and therefore of hydrophobic compounds, could be a primary factor underpinning the activity of the maritime pine sawdust extract. Altogether, our data support that wood/forest by-products could be promising sources of bioactive compounds for controlling F. graminearum and its production of mycotoxins.
Assuntos
Florestas , Fusarium/metabolismo , Micotoxinas/biossíntese , Preparações Farmacêuticas/administração & dosagem , Extratos Vegetais/farmacologia , Vinho/análise , Madeira/química , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Preparações Farmacêuticas/metabolismo , Vitis/químicaRESUMO
Nitrite is widely used in meat products as a multifunctional additive, combining flavour and colour properties with antioxidant and antimicrobial effects. However, nitrite may form reaction products (i.e., nitrosamine) that are potentially carcinogenic to humans. The meat industry, in response to consumers' demands for nitrite-free products, is seeking natural alternatives to nitrite, such as plant-based extracts. Three types of dry-fermented sausages were manufactured: NIT, containing 30 ppm of sodium nitrite; GSE, containing grape seed extract and olive pomace hydroxytyrosol; and CHE, containing chestnut extract and olive pomace hydroxytyrosol. Next-generation sequencing (NGS) was used to analyse microbial consortia, which were correlated with physical and chemical parameters. The prokaryotic community composition was similar among treatments, with a high relative abundance of Staphylococcus xylosus and Lactobacillus sakei, collectively accounting for 87% of the total community. However, significant differences were observed in both operational taxonomic unit (OTU) presence/absence and relative abundance. Ten genera varied in abundance between treatments. The increase in Lactobacillaceae in CHE may explain the reduced pH levels detected in these samples. In conclusion, NGS analysis showed that the prokaryotic community composition was similar in GSE and NIT, while CHE varied in both the composition and relative abundance of different taxa.