Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Neurochem ; 168(3): 185-204, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308495

RESUMO

Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Morfina/farmacologia , Comportamento Exploratório , HIV-1/metabolismo , Dopamina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Camundongos Transgênicos , Analgésicos Opioides/farmacologia , Ácido Homovanílico , Neurotransmissores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
2.
J Neurovirol ; 30(1): 1-21, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38280928

RESUMO

Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fentanila , HIV-1 , Camundongos Transgênicos , Doenças Neuroinflamatórias , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Camundongos , Fentanila/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia , Transtornos Relacionados ao Uso de Opioides/metabolismo
3.
J Neurovirol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600307

RESUMO

The human immunodeficiency virus (HIV) epidemic is an ongoing global health problem affecting 38 million people worldwide with nearly 1.6 million new infections every year. Despite the advent of combined antiretroviral therapy (cART), a large percentage of people with HIV (PWH) still develop neurological deficits, grouped into the term of HIV-associated neurocognitive disorders (HAND). Investigating the neuropathology of HIV is important for understanding mechanisms associated with cognitive impairment seen in PWH. The major obstacle for studying neuroHIV is the lack of suitable in vitro human culture models that could shed light into the HIV-CNS interactions. Recent advances in induced pluripotent stem cell (iPSC) culture and 3D brain organoid systems have allowed the generation of 2D and 3D culture methods that possess a potential to serve as a model of neurotropic viral diseases, including HIV. In this study, we first generated and characterized several hiPSC lines from healthy human donor skin fibroblast cells. hiPSCs were then used for the generation of microglia-containing human cerebral organoids (hCOs). Once fully characterized, hCOs were infected with HIV-1 in the presence and absence of cART regimens and viral infection was studied by cellular, molecular/biochemical, and virological assays. Our results revealed that hCOs were productively infected with HIV-1 as evident by viral p24-ELISA in culture media, RT-qPCR and RNAscope analysis of viral RNA, as well as ddPCR analysis of proviral HIV-1 in genomic DNA samples. More interestingly, replication and gene expression of HIV-1 were also greatly suppressed by cART in hCOs as early as 7 days post-infections. Our results suggest that hCOs derived from hiPSCs support HIV-1 replication and gene expression and may serve as a unique platform to better understand neuropathology of HIV infection in the brain.

4.
Curr HIV/AIDS Rep ; 21(3): 87-115, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38602558

RESUMO

PURPOSE OF REVIEW: Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS: Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.


Assuntos
Cognição , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/psicologia , Cognição/efeitos dos fármacos , Cannabis/efeitos adversos , Canabinoides/uso terapêutico , Canabinoides/efeitos adversos , Canabinoides/farmacologia , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , Uso da Maconha/efeitos adversos
5.
Cereb Cortex ; 33(6): 3181-3192, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35855581

RESUMO

Adults with HIV frequently develop a form of mild cognitive impairment known as HIV-associated neurocognitive disorder (HAND), but presumably cognitive decline in older persons with HIV could also be attributable to Alzheimer's disease (AD). However, distinguishing these two conditions in individual patients is exceedingly difficult, as the distinct neural and neuropsychological features are poorly understood and most studies to date have only investigated HAND or AD spectrum (ADS) disorders in isolation. The current study examined the neural dynamics underlying visuospatial processing using magnetoencephalography (MEG) in 31 biomarker-confirmed patients on the ADS, 26 older participants who met criteria for HAND, and 31 older cognitively normal controls. MEG data were examined in the time-frequency domain, and a data-driven approach was utilized to identify the neural dynamics underlying visuospatial processing. Both clinical groups (ADS/HAND) were significantly less accurate than controls on the task and exhibited stronger prefrontal theta oscillations compared to controls. Regarding disease-specific alterations, those with HAND exhibited stronger alpha oscillations than those on the ADS in frontoparietal and temporal cortices. These results indicate both common and unique neurophysiological alterations among those with ADS disorders and HAND in regions serving visuospatial processing and suggest the underlying neuropathological features are at least partially distinct.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Infecções por HIV , Adulto , Humanos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , HIV , Infecções por HIV/complicações , Magnetoencefalografia , Disfunção Cognitiva/etiologia , Encéfalo
6.
J Infect Dis ; 227(Suppl 1): S3-S15, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930640

RESUMO

Despite viral suppression with antiretroviral therapy (ART), people with human immunodeficiency virus (HIV) continue to experience central nervous system (CNS) complications, primarily in the form of mild cognitive impairment and mental health disorders (eg, depression, anxiety, other neuropsychiatric problems). The multifactorial pathogenesis and heterogeneity of mechanisms likely underlying CNS complications must be addressed in the development of preventive interventions and effective treatments. The biotyping approach has previously been useful to define phenotypes of other CNS diseases based on underlying mechanisms and could be translated to the field of neuroHIV. The purpose of the Biotype Workshop series, and the Virology, Immunology and Neuropathology Working Group in particular, is to capitalize on current and new technologies and guide future research efforts using the wealth of available immunological, virologic, and neuropathological data collected from people with HIV on and off ART.


Assuntos
Doenças do Sistema Nervoso Central , Disfunção Cognitiva , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Doenças do Sistema Nervoso Central/etiologia , Sistema Nervoso Central
7.
J Infect Dis ; 227(Suppl 1): S58-S61, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930635

RESUMO

Despite effective suppressive antiretroviral therapy, central nervous system (CNS) complications related to human immunodeficiency virus (HIV) remain a significant problem for people with HIV (PWH). Numerous studies have contributed data to define the mechanisms underlying HIV-associated CNS pathophysiology, but causality remains elusive, with no effective therapies to prevent, reduce, or reverse HIV-associated CNS complications. Multiple physiological, clinical, cognitive, behavioral, social, and environmental factors contribute to the observed heterogeneity of adverse CNS outcomes among PWH. The National Institute of Mental Health in collaboration with investigators engaged in research related to HIV associated CNS complications organized a series of meetings to review the state of the science and facilitate the development of biologically based measures to identify the phenotypic heterogeneity of CNS outcomes linked to pathophysiology (biotypes). In this article, we summarize the proceedings of these meetings and explore the precision medicine framework to identify critical factors linked to the etiopathogenesis of CNS outcomes in PWH.


Assuntos
Infecções por HIV , HIV-1 , Estados Unidos/epidemiologia , Humanos , National Institute of Mental Health (U.S.) , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Sistema Nervoso Central , Atenção à Saúde
8.
Neurobiol Dis ; 186: 106283, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683957

RESUMO

People with HIV (PWH) often develop HIV-related neurological impairments known as HIV-associated neurocognitive disorder (HAND), but cognitive dysfunction in older PWH may also be due to age-related disorders such as Alzheimer's disease (AD). Discerning these two conditions is challenging since the specific neural characteristics are not well understood and limited studies have probed HAND and AD spectrum (ADS) directly. We examined the neural dynamics underlying motor processing during cognitive interference using magnetoencephalography (MEG) in 22 biomarker-confirmed patients on the ADS, 22 older participants diagnosed with HAND, and 30 healthy aging controls. MEG data were transformed into the time-frequency domain to examine movement-related oscillatory activity and the impact of cognitive interference on distinct stages of motor programming. Both cognitively impaired groups (ADS/HAND) performed significantly worse on the task (e.g., less accurate and slower reaction time) and exhibited reductions in frontal and cerebellar beta and parietal gamma activity relative to controls. Disease-specific aberrations were also detected such that those with HAND exhibited weaker gamma interference effects than those on the ADS in frontoparietal and motor areas. Additionally, temporally distinct beta interference effects were identified, with ADS participants exhibiting stronger beta interference activity in the temporal cortex during motor planning, along with weaker beta interference oscillations dispersed across frontoparietal and cerebellar cortices during movement execution relative to those with HAND. These results indicate both overlapping and distinct neurophysiological aberrations in those with ADS disorders or HAND in key motor and top-down cognitive processing regions during cognitive interference and provide new evidence for distinct neuropathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Infecções por HIV , Humanos , Idoso , Doença de Alzheimer/complicações , Transtornos Neurocognitivos , Disfunção Cognitiva/etiologia , Envelhecimento
9.
Retrovirology ; 20(1): 13, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563642

RESUMO

A biologically relevant non-human primate (NHP) model of HIV persistence in the central nervous system (CNS) is necessary. Most current NHP/SIV models of HIV infection fail to recapitulate viral persistence in the CNS without encephalitis or fail to employ viruses that authentically represent the ongoing HIV-1 pandemic. Here, we demonstrate viral replication in the brain and neuropathogenesis after combination antiretroviral therapy (ART) in rhesus macaques (RMs) using novel macrophage-tropic transmitted/founder (TF) simian-human immunodeficiency virus SHIV.D.191,859 (SHIV.D). Quantitative immunohistochemistry (IHC) and DNA/RNAscope in situ hybridization (ISH) were performed on three brain regions from six SHIV.D-infected RMs; two necropsied while viremic, two during analytical treatment interruptions, and two on suppressive ART. We demonstrated myeloid-mediated neuroinflammation, viral replication, and proviral DNA in the brain in all animals. These results demonstrate that TF SHIV.D models native HIV-1 CNS replication, pathogenesis, and persistence on ART in rhesus macaques.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Terapia Antirretroviral de Alta Atividade , Vírus da Imunodeficiência Símia/genética , Encéfalo , HIV-1/genética , Replicação Viral/fisiologia , Carga Viral
10.
J Virol ; 96(17): e0095722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975998

RESUMO

HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.


Assuntos
Sistema Nervoso Central , Infecções por HIV , HIV-1 , Inflamação , Macrófagos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Interferon-alfa/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/virologia , Glicoproteínas de Membrana/metabolismo , Microglia/citologia , Microglia/virologia , RNA-Seq , Receptores de HIV/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
11.
HIV Med ; 24(6): 738-748, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890672

RESUMO

BACKGROUND: With ageing, comorbidities such as neurocognitive impairment increase among people living with HIV (PLWH). However, addressing its multifactorial nature is time-consuming and logistically demanding. We developed a neuro-HIV clinic able to assess these complaints in 8 h using a multidisciplinary approach. METHODS: People living with HIV with neurocognitive complaints were referred from outpatient clinics to Lausanne University Hospital. Over 8 h participants underwent formal infectious disease, neurological, neuropsychological and psychiatric evaluations, with opt-out magnetic resonance imaging (MRI) and lumbar puncture. A multidisciplinary panel discussion was performed afterwards, with a final report weighing all findings being produced. RESULTS: Between 2011 and 2019, a total of 185 PLWH (median age 54 years) were evaluated. Of these, 37 (27%) had HIV-associated neurocognitive impairment, but they were mainly asymptomatic (24/37, 64.9%). Most participants had non-HIV-associated neurocognitive impairment (NHNCI), and depression was prevalent across all participants (102/185, 79.5%). Executive function was the principal neurocognitive domain affected among both groups (75.5% and 83.8% of participants impaired, respectively). Polyneuropathy was found in 29 (15.7%) participants. Abnormalities in MRI were found in 45/167 participants (26.9%), being more common among NHNCI (35, 77.8%), and HIV-1 RNA viral escape was detected in 16/142 participants (11.2%). Plasma HIV-RNA was detectable in 18.4% out of 185 participants. CONCLUSIONS: Cognitive complaints remain an important problem among PLWH. Individual assessment from a general practitioner or HIV specialist is not enough. Our observations show the many layers of HIV management and suggest that a multidisciplinary approach could be helpful in determining non-HIV causes of NCI. A 1-day evaluation system is beneficial for both participants and referring physicians.


Assuntos
Infecções por HIV , Humanos , Pessoa de Meia-Idade , Infecções por HIV/complicações , Infecções por HIV/psicologia , Envelhecimento , Inquéritos e Questionários , Comorbidade , Testes Neuropsicológicos
12.
J Neurovirol ; 29(3): 337-345, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37233903

RESUMO

HIV persistence and neuroinflammation are known to contribute to HIV-associated neuropathology. However, the multifaceted pathways driving impairment remain poorly understood. Galectin-glycan interactions have emerged as significant contributors to neuroinflammatory processes and may play a role in neuroHIV. Here, we quantified Galectin-9 (Gal-9), a pleiotropic immunomodulatory protein, in post-mortem brain tissue across multiple regions from HIV-infected and HIV-uninfected donors to determine causal associations with HIV brain injury. We demonstrate that the staining intensity, total staining area, and cell-associated frequency of Gal-9 were elevated, principally in the frontal lobe and basal ganglia. Higher frontal lobe Gal-9 levels correlated with lower pre-mortem neuropsychological performance test scores in areas of attention and motor skills. Our results suggest that Gal-9 activity across the brain plays a role in neuroHIV pathogenesis and constitutes a promising disease-modifying target.


Assuntos
Galectinas , Infecções por HIV , Humanos , Encéfalo , Infecções por HIV/complicações , Cognição
13.
J Neurovirol ; 29(4): 377-388, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37418108

RESUMO

Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.


Assuntos
Infecções por HIV , Transtornos Relacionados ao Uso de Opioides , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Infecções por HIV/tratamento farmacológico , Macaca mulatta , HIV , Carga Viral
14.
J Neurovirol ; 29(1): 15-26, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853588

RESUMO

HIV-associated neurocognitive disorders (HAND) remain pervasive even with increased efficacy/use of antiretroviral therapies. Opioid use/abuse among HIV + individuals is documented to exacerbate CNS deficits. White matter (WM) alterations, including myelin pallor, and volume/structural alterations detected by diffusion tensor imaging are common observations in HIV + individuals, and studies in non-human primates suggest that WM may harbor virus. Using transgenic mice that express the HIV-1 Tat protein, we examined in vivo effects of 2-6 weeks of Tat and morphine exposure on WM using genomic and biochemical methods. RNA sequencing of striatal tissue at 2 weeks revealed robust changes in mRNAs associated with oligodendrocyte precursor populations and myelin integrity, including those for transferrin, the atypical oligodendrocyte marker N-myc downstream regulated 1 (Ndrg1), and myelin regulatory factor (Myrf/Mrf), an oligodendrocyte-specific transcription factor with a significant role in oligodendrocyte differentiation/maturation. Western blots conducted after 6-weeks exposure in 3 brain regions (striatum, corpus callosum, pre-frontal cortex) revealed regional differences in the effect of Tat and morphine on Myrf levels, and on levels of myelin basic protein (MBP), whose transcription is regulated by Myrf. Responses included individual and interactive effects. Although baseline and post-treatment levels of Myrf and MBP differed between brain regions, post-treatment MBP levels in striatum and pre-frontal cortex were compatible with changes in Myrf activity. Additionally, the Myrf regulatory ubiquitin ligase Fbxw7 was identified as a novel target in our model. These results suggest that Myrf and Fbxw7 contribute to altered myelin gene regulation in HIV.


Assuntos
Infecções por HIV , HIV-1 , Animais , Camundongos , Imagem de Tensor de Difusão , Proteína 7 com Repetições F-Box-WD/metabolismo , Lobo Frontal/metabolismo , HIV-1/metabolismo , Camundongos Transgênicos , Morfina , Fatores de Transcrição/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
15.
Cell Mol Neurobiol ; 43(3): 1105-1127, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35695980

RESUMO

The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.


Assuntos
Dopamina , HIV-1 , Animais , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Corpo Estriado/patologia , HIV-1/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfina/farmacologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo
16.
Curr HIV/AIDS Rep ; 20(6): 368-378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999827

RESUMO

PURPOSE OF REVIEW: We aim to review the neurological complications of HIV and the social, cultural, and economic inequalities that contribute to disparities in neuroHIV care. RECENT FINDINGS: Disparities in diagnostics and care of patients with neurological infections and non-infectious conditions associated with HIV in both high-income and low-to-middle-income countries (LMIC) are common. The COVID-19 pandemic has exacerbated these disparities. Factors, such as HIV-related stigma, may deter people from accessing HIV treatment. First-line recommended treatments for neurological infections are not available in many LMICs, leading to inadequate treatment and exposure to agents with more harmful side effect profiles. Access-related factors, such as lack of transportation, lack of health insurance, and inadequate telehealth access, may increase the risk of HIV-related neurological complications. Further research is needed to increase awareness of neurological complications among providers and PWH, and regional guidelines should be considered to better address these complications.


Assuntos
Infecções por HIV , Disparidades em Assistência à Saúde , Humanos , Pandemias , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Continuidade da Assistência ao Paciente , Países em Desenvolvimento
17.
Clin Infect Dis ; 73(8): 1404-1411, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34050746

RESUMO

BACKGROUND: Synaptic injury is a pathological hallmark of neurological impairment in people living with human immunodeficiency virus (HIV, PLWH), a common complication despite viral suppression with antiretroviral therapy (ART). Measurement of synaptic density in living humans may allow better understanding of HIV neuropathogenesis and provide a dynamic biomarker for therapeutic studies. We applied novel synaptic vesical protein 2A (SV2A) positron emission tomographic (PET) imaging to investigate synaptic density in the frontostriatalthalamic region in PLWH and HIV-uninfected participants. METHODS: In this cross-sectional pilot study,13 older male PLWH on ART underwent magnetic resonance imaging (MRI) and PET scanning with the SV2A ligand [11C]UCB-J with partial volume correction and had neurocognitive assessments. SV2A binding potential (BPND) in the frontostriatalthalamic circuit was compared to 13 age-matched HIV-uninfected participants and assessed with respect to neurocognitive performance in PLWH. RESULTS: PLWH had 14% lower frontostriatalthalamic SV2A synaptic density compared to HIV-uninfected (PLWH: mean [SD], 3.93 [0.80]; HIV-uninfected: 4.59 [0.43]; P = .02, effect size 1.02). Differences were observed in widespread additional regions in exploratory analyses. Higher frontostriatalthalamic SV2A BPND associated with better grooved pegboard performance, a measure of motor coordination, in PLWH (r = 0.61, P = .03). CONCLUSIONS: In a pilot study, SV2A PET imaging reveals reduced synaptic density in older male PLWH on ART compared to HIV-uninfected in the frontostriatalthalamic circuit and other cortical areas. Larger studies controlling for factors in addition to age are needed to determine whether differences are attributable to HIV or comorbidities in PLWH. SV2A imaging is a promising biomarker for studies of neuropathogenesis and therapeutic interventions in HIV.


Assuntos
Infecções por HIV , Tomografia por Emissão de Pósitrons , Idoso , Estudos Transversais , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Projetos Piloto
18.
Clin Infect Dis ; 73(7): e2287-e2293, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32948879

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV)-associated neurocognitive impairment remains a prevalent comorbidity that impacts daily functioning and increases morbidity. While HIV infection is known to cause widespread disruptions in the brain, different magnetic resonance imaging (MRI) modalities have not been effectively integrated. In this study, we applied 3-way supervised fusion to investigate how structural and functional coalterations affect cognitive function. METHODS: Participants (59 people living with HIV and 58 without HIV) completed comprehensive neuropsychological testing and multimodal MRI scanning to acquire high-resolution anatomical, diffusion-weighted, and resting-state functional images. Preprocessed data were reduced using voxel-based morphometry, probabilistic tractography, and regional homogeneity, respectively. We applied multimodal canonical correlation analysis with reference plus joint independent component analysis using global cognitive functioning as the reference. RESULTS: Compared with controls, participants living with HIV had lower global cognitive functioning. One joint component was both group discriminating and correlated with cognitive function. This component included the following covarying regions: fractional anisotropy in the corpus callosum, short and long association fiber tracts, and corticopontine fibers; gray matter volume in the thalamus, prefrontal cortex, precuneus, posterior parietal regions, and occipital lobe; and functional connectivity in frontoparietal and visual processing regions. Component loadings for fractional anisotropy also correlated with immunosuppression. CONCLUSIONS: These results suggest that coalterations in brain structure and function can distinguish people with and without HIV and may drive cognitive impairment. As MRI becomes more commonplace in HIV care, multimodal fusion may provide neural biomarkers to support diagnosis and treatment of cognitive impairment.


Assuntos
Infecções por HIV , Substância Branca , Encéfalo/diagnóstico por imagem , Cognição , HIV , Infecções por HIV/complicações , Humanos , Imageamento por Ressonância Magnética
19.
J Neurochem ; 158(2): 429-443, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33655498

RESUMO

The major barrier to eradicating Human immunodeficiency virus-1 (HIV) infection is the generation of tissue-associated quiescent long-lasting viral reservoirs refractory to therapy. Upon interruption of anti-retroviral therapy (ART), HIV replication can be reactivated. Within the brain, microglia/macrophages and a small population of astrocytes are infected with HIV. However, the role of astrocytes as a potential viral reservoir is becoming more recognized because of the improved detection and quantification of HIV viral reservoirs. In this report, we examined the infectivity of human primary astrocytes in vivo and in vitro, and their capacity to maintain HIV infection, become latently infected, be reactivated, and transfer new HIV virions into neighboring cells. Analysis of human brain tissue sections obtained from HIV-infected individuals under effective and prolonged ART indicates that a small population of astrocytes has integrated HIV-DNA. In vitro experiments using HIV-infected human primary astrocyte cultures confirmed a low percentage of astrocytes had integrated HIV-DNA, with poor to undetectable replication. Even in the absence of ART, long-term culture results in latency that could be transiently reactivated with histone deacetylase inhibitor, tumor necrosis factor-alpha (TNF-α), or methamphetamine. Reactivation resulted in poor viral production but efficient cell-to-cell viral transfer into cells that support high viral replication. Together, our data provide a new understanding of astrocytes' role as viral reservoirs within the central nervous system (CNS).


Assuntos
Astrócitos/virologia , Encéfalo/virologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV , Replicação Viral/efeitos dos fármacos , Adulto , Idoso , Terapia Antirretroviral de Alta Atividade , Pré-Escolar , DNA Viral/genética , Feminino , Infecções por HIV/transmissão , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Metanfetamina/farmacologia , Pessoa de Meia-Idade , Cultura Primária de Células , Fator de Necrose Tumoral alfa/farmacologia
20.
Retrovirology ; 18(1): 24, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429135

RESUMO

The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1/patogenicidade , Doenças Neuroinflamatórias/virologia , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Receptores de HIV/metabolismo , Transdução de Sinais , Animais , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/uso terapêutico , Ensaios Clínicos como Assunto , Infecções por HIV/complicações , HIV-1/efeitos dos fármacos , Humanos , Camundongos , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/fisiopatologia , Receptores CCR5/imunologia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Receptores de HIV/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA