Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Immunity ; 54(12): 2908-2921.e6, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788600

RESUMO

Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.


Assuntos
Betacoronavirus/fisiologia , Vacinas contra COVID-19/imunologia , Infecções por Coronavirus/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sequência Conservada/genética , Evolução Molecular , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Desenvolvimento de Vacinas
3.
BMC Med ; 21(1): 106, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949456

RESUMO

BACKGROUND: Influenza is a major year-round cause of respiratory illness in Kenya, particularly in children under 5. Current influenza vaccines result in short-term, strain-specific immunity and were found in a previous study not to be cost-effective in Kenya. However, next-generation vaccines are in development that may have a greater impact and cost-effectiveness profile. METHODS: We expanded a model previously used to evaluate the cost-effectiveness of seasonal influenza vaccines in Kenya to include next-generation vaccines by allowing for enhanced vaccine characteristics and multi-annual immunity. We specifically examined vaccinating children under 5 years of age with improved vaccines, evaluating vaccines with combinations of increased vaccine effectiveness, cross-protection between strains (breadth) and duration of immunity. We evaluated cost-effectiveness using incremental cost-effectiveness ratios (ICERs) and incremental net monetary benefits (INMBs) for a range of values for the willingness-to-pay (WTP) per DALY averted. Finally, we estimated threshold per-dose vaccine prices at which vaccination becomes cost-effective. RESULTS: Next-generation vaccines can be cost-effective, dependent on the vaccine characteristics and assumed WTP thresholds. Universal vaccines (assumed to provide long-term and broad immunity) are most cost-effective in Kenya across three of four WTP thresholds evaluated, with the lowest median value of ICER per DALY averted ($263, 95% Credible Interval (CrI): $ - 1698, $1061) and the highest median INMBs. At a WTP of $623, universal vaccines are cost-effective at or below a median price of $5.16 per dose (95% CrI: $0.94, $18.57). We also show that the assumed mechanism underlying infection-derived immunity strongly impacts vaccine outcomes. CONCLUSIONS: This evaluation provides evidence for country-level decision makers about future next-generation vaccine introduction, as well as global research funders about the potential market for these vaccines. Next-generation vaccines may offer a cost-effective intervention to reduce influenza burden in low-income countries with year-round seasonality like Kenya.


Assuntos
Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Pré-Escolar , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Análise Custo-Benefício , Quênia/epidemiologia , Vacinação
4.
BMC Med ; 21(1): 301, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559086

RESUMO

We recently published an article in BMC Medicine looking at the potential health and economic impact of paediatric vaccination using next-generation influenza vaccines in Kenya: a modelling study. In their commentary on our article, Lafond et al. highlight the potential importance of the wider benefits of vaccination on cost-effectiveness. Whilst we agree with many points raised in the commentary, we think it raises further interesting discussion points, specifically around model complexity, model assumptions and data availability. These points are both relevant to this manuscript but have wider implications for vaccine cost-effectiveness studies.


Assuntos
Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Vacinas contra Influenza/economia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/economia , Análise Custo-Benefício , Vacinação/economia , Quênia/epidemiologia
5.
Expert Opin Ther Pat ; 34(3): 171-186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38578253

RESUMO

INTRODUCTION: Nucleic acid-based therapeutics offer groundbreaking potential for treating genetic diseases and advancing next-generation vaccines. Despite their promise, challenges in efficient delivery persist due to the properties of nucleic acids. Nanoparticles (NPs) serve as vital carriers, facilitating effective delivery to target cells, and addressing these challenges. Understanding the global landscape of patents in this field is essential for fostering innovation and guiding decision-making for researchers, the pharmaceutical industry, and regulatory agencies. AREAS COVERED: This review provides a comprehensive overview of patent compositions, applications, and manufacturing aspects concerning NPs as nucleic acid delivery systems. It delves into temporal trends, protection locations, market dynamics, and the most influential technological domains. In this work, we provide valuable insights into the advancements and potential of NP-based nucleic acid delivery systems, with a special focus on their pivotal role in advancing cutting-edge therapeutic solutions. EXPERT OPINION: Investment in NPs for nucleic acid delivery has significantly surged in recent years. However, translating these therapies into clinical practice faces obstacles, including the need for robust clinical evidence, regulatory compliance, and streamlined manufacturing processes. To address these challenges, our review article summarizes recent advances. We aim to engage researchers worldwide in the development of these promising technologies.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Ácidos Nucleicos , Patentes como Assunto , Humanos , Ácidos Nucleicos/administração & dosagem , Animais , Portadores de Fármacos/química , Terapia Genética/métodos
6.
Cureus ; 16(6): e62429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39011185

RESUMO

Rabies, a millennia-old viral infection transmitted through animal bites, poses a lethal threat to humans, with a historic fatality rate of 100% if left untreated. Louis Pasteur's introduction of the rabies vaccine in 1885 marked a turning point in the battle against rabies, preventing numerous cases. The purpose of this paper is to review the historical development, current challenges, and future prospects of rabies vaccination and treatment, with emphasis on the importance of continued research and collaborative efforts in the quest to eradicate this deadly infection. Historical vaccine development progressed from inactivated to live-attenuated forms, with modern recombinant techniques showing promise. The preventive measures at present primarily involve vaccination, but challenges persist, such as differing safety profiles and immunogenicity among vaccine types. Pre-exposure prophylaxis with a three-dose vaccine series is crucial, especially in high-risk scenarios. Post-exposure prophylaxis combines human rabies immunoglobulin and inactivated rabies virus vaccine. The quest for the next generation of vaccines explores genetically modified and viral vector-based approaches; emerging treatments include gene therapy, virus-like particles, and monoclonal antibodies, offering hope for improved outcomes. Economic barriers to post-exposure prophylaxis, limited education, and awareness challenge rabies control. Cost-effective solutions and comprehensive awareness campaigns are vital for the successful eradication of rabies. More research and collaborative endeavors remain pivotal in the ongoing journey to eradicate rabies, one of the deadliest infectious diseases known to humans, if not met with prophylactic measures.

7.
Heliyon ; 10(5): e26423, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434363

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.

8.
Mol Biotechnol ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578574

RESUMO

This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.

9.
Vaccine X ; 15: 100400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37965276

RESUMO

The global emergency of unexpected pathogens, exemplified by SARS-CoV-2, has emphasized the importance of vaccines in thwarting infection and curtailing the progression of severe disease. The scourge of tuberculosis (TB), emanating from the Mycobacterium tuberculosis (Mtb) complex, has inflicted a more profound toll in terms of mortality and morbidity than any other infectious agents prior to the SARS-CoV-2 pandemic. Despite the existence of Bacillus Calmette-Guérin (BCG), the only licensed vaccine developed a century ago, its efficacy against TB remains unsatisfactory, particularly in preventing pulmonary Mtb infections in adolescents and adults. However, collaborations between academic and industrial entities have led to a renewed impetus in the development of TB vaccines, with numerous candidates, particularly subunit vaccines with specialized adjuvants, exhibiting promising outcomes in recent clinical studies. Adjuvants are crucial in modulating optimal immunological responses, by endowing immune cells with sufficient antigen and immune signals. As exemplified by the COVID-19 vaccine landscape, the interplay between vaccine efficacy and adverse effects is of paramount importance, particularly for the elderly and individuals with underlying ailments such as diabetes and concurrent infections. In this regard, adjuvants hold the key to optimizing vaccine efficacy and safety. This review accentuates the pivotal roles of adjuvants and their underlying mechanisms in the development of TB vaccines. Furthermore, we expound on the prospects for the development of more efficacious adjuvants and their synergistic combinations for individuals in diverse states, such as aging, HIV co-infection, and diabetes, by examining the immunological alterations that arise with aging and comparing them with those observed in younger cohorts.

10.
Front Med (Lausanne) ; 10: 1155751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215733

RESUMO

Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.

11.
Front Immunol ; 14: 1172000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138878

RESUMO

Type I interferons (IFNs-α/ß) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.


Assuntos
Interferon Tipo I , Vírus de RNA , Vacinas , Animais , Evasão da Resposta Imune , Antivirais/farmacologia
12.
Vaccine ; 41(41): 6017-6024, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37633749

RESUMO

Next generation influenza vaccines are in development and have the potential for widespread health and economic benefits. Determining the potential health and economic impact for these vaccines is needed to drive investment in bringing these vaccines to the market, and to inform which groups public health policies on influenza vaccination should target. We used a mathematical modelling approach to estimate the epidemiological impact and cost-effectiveness of next generation influenza vaccines in England and Wales. We used data from an existing fitted model, and evaluated new vaccines with different characteristics ranging from improved vaccines with increased efficacy duration and breadth of protection, to universal vaccines, defined in line with the World Health Organisation (WHO) Preferred Product Characteristics (PPC). We calculated the cost effectiveness of new vaccines in comparison to the current seasonal vaccination programme. We calculated and compared the Incremental Cost-Effectiveness Ratio and Incremental Net Monetary Benefit for each new vaccine type. All analysis was conducted in R. We show that next generation influenza vaccines may result in a 21% to 77% reduction in influenza infections, dependent on vaccine characteristics. Our economic modelling shows that using any of these next generation vaccines at 2019 coverage levels would be highly cost-effective at a willingness to pay threshold of £20,000 for a range of vaccine prices. The vaccine threshold price for the best next generation vaccines in £-2019 is £230 (95%CrI £192 - £269) per dose, but even minimally-improved influenza vaccines could be priced at £18 (95%CrI £16 - £21) per dose and still remain cost-effective. This evaluation demonstrates the promise of next generation influenza vaccines for impact on influenza epidemics, and likely cost-effectiveness profiles. We have provided evidence towards a full value of vaccines assessment which bolsters the investment case for development and roll-out of next-generation influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Análise Custo-Benefício , País de Gales/epidemiologia , Vacinação , Inglaterra/epidemiologia
13.
Vaccines (Basel) ; 10(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423027

RESUMO

Although parental vaccines offer long-term protection against homologous strains, they rely exclusively on adaptive immune memory to produce neutralizing antibodies that are ineffective against emerging viral variants. Growing evidence highlights the multifaceted functions of trained immunity to elicit a rapid and enhanced innate response against unrelated stimuli or pathogens to subsequent triggers. This review discusses the protective role of trained immunity against respiratory pathogens and the experimental models essential for evaluating novel inducers of trained immunity. The review further elaborates on the potential of trained immunity to leverage protection against pathogens via the molecular patterns of antigens by pathogen recognition receptors (PPRs) on innate immune cells. The review also focuses on integrating trained innate memory with adaptive memory to shape next-generation vaccines by coupling each one's unique characteristics.

14.
Hum Vaccin Immunother ; 18(1): 1895644, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33974507

RESUMO

Despite the existence of a highly efficient yellow fever vaccine, yellow fever reemergence throughout Africa and the Americas has put 900 million people in 47 countries at risk of contracting the disease. Although the vaccine has been key to controlling yellow fever epidemics, its live-attenuated nature comes with a range of contraindications that prompts advising against its administration to pregnant and lactating women, immunocompromised individuals, and those with hypersensitivity to chicken egg proteins. Additionally, large outbreaks have highlighted problems with insufficient vaccine supply, whereby manufacturers rely on slow traditional manufacturing processes that prevent them from ramping up production. These limitations have contributed to an inadequate control of yellow fever and have favored the pursuit of novel yellow fever vaccine candidates that aim to circumvent the licensed vaccine's restrictions. Here, we review the live-attenuated vaccine's limitations and explore the epitome of a yellow fever vaccine, whilst scrutinizing next-generation vaccine candidates.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Surtos de Doenças , Feminino , Humanos , Lactação , Vacinas Atenuadas , Febre Amarela/prevenção & controle , Vírus da Febre Amarela
15.
Vaccines (Basel) ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960236

RESUMO

Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, Virus-like Particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.

16.
Vaccines (Basel) ; 8(3)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718042

RESUMO

Each year, influenza causes a significant acute respiratory disease burden. In addition, influenza pandemics periodically occur. Annual vaccination is the best tool for influenza prevention, but its effectiveness can vary from year to year. The narrow specificity of conventional vaccines and the drug resistance of currently circulating viruses reduce the effectiveness of prophylaxis and treatment and require the development of new broad-spectrum preparations. Furthermore, the challenge of creating a highly effective universal influenza vaccine takes on renewed intensity in the face of the COVID-19 pandemic.

17.
Immunotherapy ; 9(2): 173-181, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28128712

RESUMO

Up to today treatment of leukemia patients remains challenging and different therapies have been developed, among them the generation of dendritic cell (DC) vaccines. DCs, highly specific for immunogenic cancer antigens, are generated either ex vivo or in vivo and boost the immune response against leukemic cells. Nevertheless, response rates are still heterogeneous and DC vaccines need improvement. New methods for generating DC vaccines have been summed up under the term 'next-generation DC vaccines'. They range from the analysis of human leukocyte antigen-ligandomes to immunogenic cell death inducers, from the production of viral vectors to mRNA transfection and finally from delivering peptides to DCs in vivo through either antibodies or cell-penetrating peptides. This review gives an overview of the latest developments in this still evolving field.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Leucemia/terapia , Animais , Antígenos de Neoplasias/metabolismo , Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Células Dendríticas/transplante , Antígenos HLA/metabolismo , Humanos , Imunização , Imunoterapia Adotiva/tendências , Leucemia/imunologia , Vacinas de Subunidades Antigênicas
19.
Springerplus ; 5: 65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839758

RESUMO

To treat current infectious diseases, different therapies are used that include drugs or vaccines or both. Currently, the world is facing an increasing problem of drug resistance from many pathogenic microorganisms. In majority of cases, when vaccines are used, formulations consist of live attenuated microorganisms. This poses an additional risk of infection in immunocompromised patients and people suffering from malnutrition in developing countries. Therefore, there is need to improve drug therapy as well as to develop next generation vaccines, in particular against infectious diseases with highest mortality rates. For patients in developing countries, costs related to treatments are one of the major hurdles to reduce the disease burden. In many cases, use of prophylactic vaccines can help to control the incidence of infectious diseases. In the present review, we describe some infectious diseases with high impact on health of people in low and middle income countries. We discuss the prospects of plants as alternative platform for the development of next-generation subunit vaccines that can be a cost-effective source for mass immunization of people in developing countries.

20.
Expert Rev Vaccines ; 14(12): 1563-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26434947

RESUMO

Vaccines represent one of the greatest contributions of the scientific community to global health. Yet, many pathogens remain either unchallenged or inadequately hindered by commercially available vaccines. Respiratory viruses pose distinct and difficult challenges due to their ability to rapidly spread, adapt, and modify the host immune response. Considerable research has been directed to understand the role of respiratory virus immunomodulatory proteins and how they influence the host immune response. We review here efforts to develop next-generation vaccines through targeting these key immunomodulatory genes in influenza virus, coronaviruses, respiratory syncytial virus, measles virus, and mumps virus.


Assuntos
Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/imunologia , Coronavirus/genética , Coronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Sarampo/imunologia , Sarampo/prevenção & controle , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Caxumba/imunologia , Caxumba/prevenção & controle , Vírus da Caxumba/genética , Vírus da Caxumba/imunologia , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , Vacinas Atenuadas/uso terapêutico , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas Virais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA