Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
Stem Cells ; 42(2): 128-145, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38152966

RESUMO

Neurogenesis begins with neural stem cells undergoing symmetric proliferative divisions to expand and then switching to asymmetric differentiative divisions to generate neurons in the developing brain. Chromatin regulation plays a critical role in this switch. Histone lysine-specific demethylase LSD1 demethylates H3K4me1/2 and H3K9me1/2 but the mechanisms of its global regulatory functions in human neuronal development remain unclear. We performed genome-wide ChIP-seq of LSD1 occupancy, RNA-seq, and Histone ChIP-seq upon LSD1 inhibition to identify its repressive role in human neural stem cells. Novel downstream effectors of LSD1 were identified, including the Notch signaling pathway genes and human-neural progenitor-enriched extracellular matrix (ECM) pathway/cell adhesion genes, which were upregulated upon LSD1 inhibition. LSD1 inhibition led to decreased neurogenesis, and overexpression of downstream effectors mimicked this effect. Histone ChIP-seq analysis revealed that active and enhancer markers H3K4me2, H3K4me1, and H3K9me1 were upregulated upon LSD1 inhibition, while the repressive H3K9me2 mark remained mostly unchanged. Our work identifies the human-neural progenitor-enriched ECM pathway/cell adhesion genes and Notch signaling pathway genes as novel downstream effectors of LSD1, regulating neuronal differentiation in human neural stem cells.


Assuntos
Histonas , Células-Tronco Neurais , Humanos , Adesão Celular/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética
2.
Am J Hum Genet ; 108(5): 840-856, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33861953

RESUMO

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.


Assuntos
Proteína Jagged-2/genética , Distrofias Musculares/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Linhagem Celular , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Glucosiltransferases/genética , Haplótipos/genética , Humanos , Proteína Jagged-1/genética , Proteína Jagged-2/química , Proteína Jagged-2/deficiência , Proteína Jagged-2/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Músculos/metabolismo , Músculos/patologia , Distrofias Musculares/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Linhagem , Fenótipo , Receptores Notch/metabolismo , Transdução de Sinais , Sequenciamento do Exoma , Adulto Jovem
3.
J Virol ; 97(6): e0068923, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289083

RESUMO

Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.


Assuntos
Infecções por Coronavirus , Células Caliciformes , Receptores Notch , Doenças dos Suínos , Animais , Coronavirus , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Células Caliciformes/citologia , Transdução de Sinais , Suínos , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Células-Tronco/citologia , Diferenciação Celular , Receptores Notch/metabolismo
4.
FASEB J ; 37(9): e23109, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527216

RESUMO

LAMA5 (laminin α5) is a member of the laminin family. Despite the recent research implicating LAMA5 in cancer, the function of LAMA5 has remained uncertain in the progression of ovarian cancer (OC). Here, we investigated the functional influences of LAMA5 knockdown on OC in vitro and in vivo. In this study, we used immunohistochemistry (IHC) analysis to detect the relative expression of LAMA5 in OC and non-cancer tissues, and we analyzed its connection with the overall survival (OS) of OC patients. To prove the role of LAMA5 in cell proliferation, migration, and invasion, LAMA5 expression in OC cell lines was inhibited by lentivirus. Compared with normal fallopian tube tissue, epithelial ovarian cancer (EOC) tissue showed critically higher LAMA5 expression levels; additionally, high LAMA5 levels were a poor predictor of OS. We found that cell progression was restrained in LAMA5-knockdown OC cell lines in vivo and in vitro. Finally, LAMA5 might be a commanding inducer of the expression of epithelial-mesenchymal transition (EMT) and Notch signaling pathway-related markers. Together, our research indicates that LAMA5 is highly connected to OC progression as it may play a role in the EMT process through the Notch signaling pathway.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica
5.
Cell Biol Int ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080995

RESUMO

Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2'deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.

6.
BMC Gastroenterol ; 24(1): 84, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395762

RESUMO

BACKGROUND: The activation of hepatic stellate cells (HSCs) has been emphasized as a leading event of the pathogenesis of liver cirrhosis, while the exact mechanism of its activation is largely unknown. Furthermore, the novel non-invasive predictors of prognosis in cirrhotic patients warrant more exploration. miR-541 has been identified as a tumor suppressor in hepatocellular carcinoma and a regulator of fibrotic disease, such as lung fibrosis and renal fibrosis. However, its role in liver cirrhosis has not been reported. METHODS: Real-time PCR was used to detect miR-541 expression in the liver tissues and sera of liver cirrhosis patients and in the human LX-2. Gain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the activation of LX-2. Bioinformatics analysis and a luciferase reporter assay were conducted to investigate the target gene of miR-541. RESULTS: miR-541 was downregulated in the tissues and sera of patients with liver cirrhosis, which was exacerbated by deteriorating disease severity. Importantly, the lower expression of miR-541 was associated with more episodes of complications including ascites and hepatic encephalopathy, a shorter overall lifespan, and decompensation-free survival. Moreover, multivariate Cox's regression analysis verified lower serum miR-541 as an independent risk factor for liver-related death in cirrhotic patients (HR = 0.394; 95% CI: 0.164-0.947; P = 0.037). miR-541 was also decreased in LX-2 cells activated by TGF-ß and the overexpression of miR-541 inhibited the proliferation, activation and hydroxyproline secretion of LX-2 cells. JAG2 is an important ligand of Notch signaling and was identified as a direct target gene of miR-541. The expression of JAG2 was upregulated in the liver tissues of cirrhotic patients and was inversely correlated with miR-541 levels. A rescue assay further confirmed that JAG2 was involved in the function of miR-541 when regulating LX-2 activation and Notch signaling. CONCLUSIONS: Dysregulation of miR-541/JAG2 axis might be a as a new mechanism of liver fibrosis, and miR-541 could serve as a novel non-invasive biomarker and therapeutic targets for liver cirrhosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Humanos , Proliferação de Células/genética , Células Estreladas do Fígado/metabolismo , Proteína Jagged-2/metabolismo , Proteína Jagged-2/farmacologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico
7.
Cell Mol Life Sci ; 80(12): 359, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951845

RESUMO

Pathological cardiac remodeling plays an essential role in the progression of cardiovascular diseases, and numerous microRNAs have been reported to participate in pathological cardiac remodeling. However, the potential role of microRNA-455-5p (miR-455-5p) in this process remains to be elucidated. In the present study, we focused on clarifying the function and searching the direct target of miR-455-5p, as well as exploring its underlying mechanisms in pathological cardiac remodeling. We found that overexpression of miR-455-5p by transfection of miR-455-5p mimic in vitro or tail vain injection of miR-455-5p agomir in vivo provoked cardiac remodeling, whereas genetic knockdown of miR-455-5p attenuated the isoprenaline-induced cardiac remodeling. Besides, miR-455-5p directly targeted to 3'-untranslated region of protein arginine methyltransferase 1 (PRMT1) and subsequently downregulated PRMT1 level. Furthermore, we found that PRMT1 protected against cardiac hypertrophy and fibrosis in vitro. Mechanistically, miR-455-5p induced cardiac remodeling by downregulating PRMT1-induced asymmetric di-methylation on R1748, R1750, R1751 and R1752 of Notch1, resulting in suppression of recruitment of Presenilin, Notch1 cleavage, NICD releasing and Notch signaling pathway. Finally, circulating miR-455-5p was positively correlated with parameters of left ventricular wall thickening. Taken together, miR-455-5p plays a provocative role in cardiac remodeling via inactivation of the PRMT1-mediated Notch signaling pathway, suggesting miR-455-5p/PRMT1/Notch1 signaling axis as potential therapeutic targets for pathological cardiac remodeling.


Assuntos
MicroRNAs , Remodelação Ventricular , Humanos , Remodelação Ventricular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Coração , Cardiomegalia/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38641164

RESUMO

The Notch signaling pathway plays a pivotal role in governing cell fate determinations within the gonadal niche. This study provides an extensive elucidation of the male and female gonadal niches within Crassostrea gigas. Examination via transmission electron microscopy revealed the presence of desmosome-like connection not only between germ cells and niche cells but also among adjacent niche cells within the oyster gonad. Transcriptomic analysis identified several putative Notch pathway components, including CgJAG1, CgNOTCH1, CgSuh, and CgHey1. Phylogenetic analysis indicated a close evolutionary relationship between CgJAG1, CgNOTCH1, and CgHey1 and Notch members present in Drosophila. Expression profiling results indicated a notable abundance of CgHey1 in the gonads, while CgJAG1 and CgNOTCH1 displayed distinct expression patterns associated with sexual dimorphism. In situ hybridization findings corroborated the predominant expression of CgJAG1 in male niche cells, while CgNOTCH1 was expressed in both male and female germ cells, as well as female niche cells. These findings demonstrate the important role of the Notch signaling pathway in the gonadal niche of oysters.


Assuntos
Comunicação Celular , Crassostrea , Gônadas , Filogenia , Receptores Notch , Transdução de Sinais , Animais , Crassostrea/genética , Crassostrea/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Masculino , Feminino , Gônadas/metabolismo , Células Germinativas/metabolismo
9.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542296

RESUMO

The highly conserved Notch signaling pathway affects embryonic development, neurogenesis, homeostasis, tissue repair, immunity, and numerous other essential processes. Although previous studies have demonstrated the location and function of the core components of Notch signaling in various animal phyla, a more comprehensive summary of the Notch core components in lower organisms is still required. In this review, we objectively summarize the molecular features of the Notch signaling pathway constituents, their current expression profiles, and their functions in invertebrates, with emphasis on their effects on neurogenesis and regeneration. We also analyze the evolution and other facets of Notch signaling and hope that the contents of this review will be useful to interested researchers.


Assuntos
Invertebrados , Receptores Notch , Animais , Receptores Notch/genética , Receptores Notch/metabolismo , Invertebrados/metabolismo , Transdução de Sinais
10.
Int Heart J ; 65(3): 475-486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825493

RESUMO

This study aimed to investigate the molecular mechanisms underlying the protective effects of cyclooxygenase (cox) inhibitors against myocardial hypertrophy.Rat H9c2 cardiomyocytes were induced by mechanical stretching. SD rats underwent transverse aortic constriction to induce pressure overload myocardial hypertrophy. Rats were subjected to echocardiography and tail arterial pressure in 12W. qPCR and western blot were used to detect the expression of Notch-related signaling. The inflammatory factors were tested by ELISA in serum, heart tissue, and cell culture supernatant.Compared with control, levels of pro-inflammatory cytokines IL-6, TNF-α, and IL-1ß were increased and anti-inflammatory cytokine IL-10 was reduced in myocardial tissues and serum of rat models. Levels of Notch1 and Hes1 were reduced in myocardial tissues. However, cox inhibitor treatment (aspirin and celecoxib), the improvement of exacerbated myocardial hypertrophy, fibrosis, dysfunction, and inflammation was parallel to the activation of Notch1/Hes1 pathway. Moreover, in vitro experiments showed that, in cardiomyocyte H9c2 cells, application of ~20% mechanical stretching activated inflammatory mediators (IL-6, TNF-α, and IL-1ß) and hypertrophic markers (ANP and BNP). Moreover, expression levels of Notch1 and Hes1 were decreased. These changes were effectively alleviated by aspirin and celecoxib.Cox inhibitors may protect heart from hypertrophy and inflammation possibly via the Notch1/Hes1 signaling pathway.


Assuntos
Aspirina , Cardiomegalia , Celecoxib , Miócitos Cardíacos , Animais , Ratos , Aspirina/farmacologia , Aspirina/uso terapêutico , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Cardiomegalia/etiologia , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Modelos Animais de Doenças , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor Notch1/efeitos dos fármacos , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição HES-1/efeitos dos fármacos , Fatores de Transcrição HES-1/metabolismo
11.
J Neurochem ; 166(5): 847-861, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526008

RESUMO

Single-cell RNA sequencing (scRNA-seq) technologies enable the profiling and analysis of the transcriptomes of single cells and hold promise for clarifying gene mechanisms at single-cell resolution. We based this study on scRNA-seq data to reveal glaucoma-related genes and downstream pathways with neuroprotection effects. The scRNA-seq datasets related to glaucoma of retinal tissue samples of human beings and Atonal Homolog 7 (ATOH7)-null mice were obtained from the GEO database. The 74 top marker genes and 20 cell clusters were obtained in human retinal tissue samples. The key gene ATOH7 was found after the intersection with genes from GeneCards data. In the ATOH7-null mouse retinal tissue samples, pseudotime inference demonstrated significant changes in cell differentiation. Moreover, mouse retinal photoreceptor cells (PRCs) were cultured and treated with lentivirus carrying oe-ATOH7 alone or in combination with Notch signaling pathway activator Jagged-1/FC, after which cell biological functions were determined. The involvement of ATOH7 in glaucoma was identified through regulating PRCs. Furthermore, ATOH7 conferred neuroprotection in PRCs in glaucoma by mediating the Notch signaling pathway. In vitro data confirmed that ATOH7 overexpression promoted the differentiation of PRCs and inhibited their apoptosis by suppressing the Notch signaling pathway. The evidence provided by our study highlighted the involvement of ATOH7 in the blockade of the Notch signaling pathway, resulting in the neuroprotection for PRCs in glaucoma.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Glaucoma , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neuroproteção , Células Fotorreceptoras/metabolismo , Retina/metabolismo
12.
J Transl Med ; 21(1): 811, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964363

RESUMO

BACKGROUND: While the efficacy of neoadjuvant chemotherapy (NACT) in treating triple-negative breast cancer (TNBC) is generally accepted, not all patients derive benefit from this preoperative treatment. Presently, there are no validated biomarkers to predict the NACT response, and previous attempts to develop predictive classifiers based on gene expression data have not demonstrated clinical utility. However, predictive models incorporating biological constraints have shown increased robustness and improved performance compared to agnostic classifiers. METHODS: We used the preoperative transcriptomic profiles from 298 patients with TNBC to train and test a rank-based classifier, k-top scoring pairs, to predict whether the patient will have pathological complete response (pCR) or residual disease (RD) following NACT. To reduce overfitting and enhance the signature's interpretability, we constrained the training process to genes involved in the Notch signaling pathway. Subsequently, we evaluated the signature performance on two independent cohorts with 75 and 71 patients. Finally, we assessed the prognostic value of the signature by examining its association with relapse-free survival (RFS) using Kaplan‒Meier (KM) survival estimates and a multivariate Cox proportional hazards model. RESULTS: The final signature consists of five gene pairs, whose relative ordering can be predictive of the NACT response. The signature has a robust performance at predicting pCR in TNBC patients with an area under the ROC curve (AUC) of 0.76 and 0.85 in the first and second testing cohorts, respectively, outperforming other gene signatures developed for the same purpose. Additionally, the signature was significantly associated with RFS in an independent TNBC patient cohort even after adjusting for T stage, patient age at the time of diagnosis, type of breast surgery, and menopausal status. CONCLUSION: We introduce a robust gene signature to predict pathological complete response (pCR) in patients with TNBC. This signature applies easily interpretable, rank-based decision rules to genes regulated by the Notch signaling pathway, a known determinant in breast cancer chemoresistance. The robust predictive and prognostic performance of the signature make it a strong candidate for clinical implementation, aiding in the stratification of TNBC patients undergoing NACT.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Terapia Neoadjuvante , Recidiva Local de Neoplasia , Prognóstico , Transcriptoma/genética
13.
Clin Genet ; 104(2): 230-237, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37038048

RESUMO

Spondylocostal dysostosis (SCD), a condition characterized by multiple segmentation defects of the vertebrae and rib malformations, is caused by bi-allelic variants in one of the genes involved in the Notch signaling pathway that tunes the "segmentation clock" of somitogenesis: DLL3, HES7, LFNG, MESP2, RIPPLY2, and TBX6. To date, seven individuals with LFNG variants have been reported in the literature. In this study we describe two newborns and one fetus with SCD, who were found by trio-based exome sequencing (trio-ES) to carry homozygous (c.822-5C>T) or compound heterozygous (c.[863dup];[1063G>A]) and (c.[521G>T];[890T>G]) variants in LFNG. Notably, the c.822-5C>T change, affecting the polypyrimidine tract of intron 5, is the first non-coding variant reported in LFNG. This study further refines the clinical and molecular features of spondylocostal dysostosis 3 and adds to the numerous investigations supporting the usefulness of trio-ES approach in prenatal and neonatal settings.


Assuntos
Anormalidades Múltiplas , Hérnia Diafragmática , Humanos , Recém-Nascido , Coluna Vertebral/anormalidades , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Alelos , Proteínas com Domínio T/genética , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
14.
J Magn Reson Imaging ; 57(3): 884-896, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35929909

RESUMO

BACKGROUND: Noninvasive determination of Notch signaling is important for prognostic evaluation and therapeutic intervention in glioma. PURPOSE: To predict Notch signaling using multiparametric (mp) MRI radiomics and correlate with biological characteristics in gliomas. STUDY TYPE: Retrospective. POPULATION: A total of 63 patients for model construction and 47 patients from two public databases for external testing. FIELD STRENGTH/SEQUENCE: A 1.5 T and 3.0 T, T1-weighted imaging (T1WI), T2WI, T2 fluid attenuated inversion recovery (FLAIR), contrast-enhanced (CE)-T1WI. ASSESSMENT: Radiomic features were extracted from CE-T1WI, T1WI, T2WI, and T2FLAIR and imaging signatures were selected using a least absolute shrinkage and selection operator. Diagnostic performance was compared between single modality and a combined mpMRI radiomics model. A radiomic-clinical nomogram was constructed incorporating the mpMRI radiomic signature and Karnofsky Performance score. The performance was validated in the test set. The radiomic signatures were correlated with immunohistochemistry (IHC) analysis of downstream Notch pathway components. STATISTICAL TESTS: Receiver operating characteristic curve, decision curve analysis (DCA), Pearson correlation, and Hosmer-Lemeshow test. A P value < 0.05 was considered statistically significant. RESULTS: The radiomic signature derived from the combination of all sequences numerically showed highest area under the curve (AUC) in both training and external test sets (AUCs of 0.857 and 0.823). The radiomics nomogram that incorporated the mpMRI radiomic signature and KPS status resulted in AUCs of 0.891 and 0.859 in the training and test sets. The calibration curves showed good agreement between prediction and observation in both sets (P= 0.279 and 0.170, respectively). DCA confirmed the clinical usefulness of the nomogram. IHC identified Notch pathway inactivation and the expression levels of Hes1 correlated with higher combined radiomic scores (r = -0.711) in Notch1 mutant tumors. DATA CONCLUSION: The mpMRI-based radiomics nomogram may reflect the intratumor heterogeneity associated with downstream biofunction that predicts Notch signaling in a noninvasive manner. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Transdução de Sinais
15.
J Neurooncol ; 164(1): 157-170, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37523046

RESUMO

OBJECTIVE: Recent studies have increasingly shown that glioma stem cells (GSCs) are extremely important for developing and treating glioblastoma multiforme (GBM). The Broad-complex, Tram-track, and Bric-a-brac protein family is functionally related to a variety of tumor stem cells, and the role of SPOPL as a member of this family in GSCs deserves to be investigated. METHODS: To investigate the expression of SPOPL in GSCs and its impact on the prognosis of GBM patients by using clinical specimens, patient-derived primary GSCs and public databases. In vivo and in vitro, the effect of SPOPL on the proliferation, self-renewal, and differentiation ability of GSCs was explored. Probing the mechanism by which SPOPL affects the biological function of GSCs using RNA sequencing (RNA-seq) and rescue experiments. RESULTS: The expression of SPOPL was significantly upregulated in GSCs and GBM, and patients with high SPOPL expression had a poorer prognosis. SPOPL enhanced the proliferation and self-renewal ability of GSCs and enhanced the tumorigenicity of GSCs. The Notch signaling pathway was significantly inhibited in SPOPL knockdown GSCs. Activation or inhibition of the Notch signaling pathway rescued changes in the biological function of GSCs caused by altered SPOPL expression. CONCLUSION: SPOPL can be used as a potential prognostic biomarker for GBM in clinical work and promotes the proliferation and stemness of GSCs by activating the Notch signaling pathway, which may be a potential molecule for targeting GSCs to treat GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética
16.
EMBO Rep ; 22(4): e51298, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594776

RESUMO

Notch signaling and epigenetic factors are known to play critical roles in regulating tissue homeostasis in most multicellular organisms, but how Notch signaling coordinates with epigenetic modulators to control differentiation remains poorly understood. Here, we identify heterochromatin protein 1c (HP1c) as an essential epigenetic regulator of gut homeostasis in Drosophila. Specifically, we observe that HP1c loss-of-function phenotypes resemble those observed after Notch signaling perturbation and that HP1c interacts genetically with components of the Notch pathway. HP1c represses the transcription of Notch target genes by directly interacting with Suppressor of Hairless (Su(H)), the key transcription factor of Notch signaling. Moreover, phenotypes caused by depletion of HP1c in Drosophila can be rescued by expressing human HP1γ, suggesting that HP1γ functions similar to HP1c in Drosophila. Taken together, our findings reveal an essential role of HP1c in normal development and gut homeostasis by suppressing Notch signaling.


Assuntos
Proteínas de Drosophila , Animais , Proteínas Cromossômicas não Histona/genética , Drosophila/genética , Proteínas de Drosophila/genética , Heterocromatina , Homeostase , Humanos , Receptores Notch/genética
17.
Prev Med ; 173: 107566, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286091

RESUMO

The purpose of this experiment is to understand how miR-1285-3P regulates the NOTCH signaling pathway by targeting, thereby affecting the proliferation and differentiation of hair follicle stem cells. The cultured Inner Mongolia hair follicle stem cells were used in this experiment, and they were divided into control group, blank transfection group and miR-1285-3P transfection group. Among them, the control group was left untreated; the blank group was given miR-NC transfection; at the same time, the miR-1285-3P transfection group was given miR-1285-3P mimics for transfection. Compared with the control group (97.24 ± 6.81) and blank gro transfection up (97.32 ± 7.20), the cell proliferation ability of the miR-1285-3P transfection group (49.31 ± 3.39) was significantly lower. Compared with the other two groups, The proliferation ability of cells in the miR-1285-3P transfection group was decreased (P < 0.05); compared with the S-phase hair follicle stem cells in the control group (19.23 ± 1.29) and blank transfection group (19.38 ± 1.45), the miR-1285-3P transfection group (15.26 ± 1.26) decreased more significantly (P < 0.05). For hair follicle stem cells in each group, the proportion of cells in the G0-G1 phase was significantly different between the blank transfection group (63.18 ± 2.78) and the control group (64.29 ± 2.09), and the blank transfection group had a higher proportion (P < 0.05). In the process of miR-1285-3P targeting and regulating NOTCH signaling pathway, the proliferation and differentiation ability of hair follicle stem cells is affected. When NOTCH signaling pathway is activated, the differentiation of hair follicle stem cells is accelerated.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Folículo Piloso/metabolismo , Diferenciação Celular , Proliferação de Células , China
18.
Immunol Invest ; 52(2): 241-255, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36562737

RESUMO

The Notch signaling pathway is an important regulator in fate decisions and immune responses of innate lymphoid cells (ILCs). However, the function of Notch signaling in ILCs in acute coronary syndrome is still not fully elucidated. Thirty-one unstable angina pectoris (UAP) patients, 21 acute myocardial infarction (AMI) patients, and 20 controls were included in this study. Peripheral blood mononuclear cells (PBMCs) were isolated. The mRNA expression levels of Notch receptors and ligands were measured by real-time PCR, while ILC subsets were measured by flow cytometry. Lin- cells were purified and stimulated with γ-secretase inhibitor (GSI). ILC subsets, transcription factors, and secreted cytokines were assessed. Notch receptor and ligand mRNA levels were elevated in PBMCs and peripheral lin- cells from AMI patients. There was no significant difference in total lin-CD45+CD161+CD127+ ILC frequency among three groups. The CRTH2-CD117- ILC1 subset was down-regulated, while the CRTH2+ ILC2 subset was up-regulated in AMI patients. The CRTH2-CD117+ ILC3 subpopulation was comparable among the three groups. ILC1% was negatively correlated with Notch1 and Notch2 in AMI patients. Inhibition of Notch signaling pathway by GSI induced elevations in ILC1 frequency, T-bet mRNA expression, and interferon-γ secretion and reduced ILC2 frequency, GATA3 mRNA levels, and interleukin-5/interleukin-13 production by lin- cells from AMI patients. The current data indicated that activation of Notch signaling pathway might contribute to ILC1-to-ILC2 shift in peripheral blood in AMI patients.


Assuntos
Linfócitos , Infarto do Miocárdio , Humanos , Imunidade Inata , Leucócitos Mononucleares , Transdução de Sinais
19.
Mol Divers ; 27(6): 2431-2440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36376717

RESUMO

Breast cancer is recognized globally as one of the leading causes of malignant morbidity. It is a heterogeneous disease that accounts for 30 percent of all women diagnosed with cancer. To bring an anti-cancer drug from the bench to the bedside is an expensive and time-consuming process. The drug repurposing approach targets new enemies (new diseases) with old weapons (known drugs). The present study identified an FDA-approved drug targeting the γ-secretase complex involved in the Notch signaling pathway in breast cancer stem cells (BCSCs). A literature survey and in-silico study identified Venetoclax as a γ-secretase inhibitor (GSI) from 1615 FDA-approved drug compounds. In-silico docking potential of Venetoclax was better than the standard γ-secretase inhibitor RO4929097. Also, the molecular dynamics simulations of 200 ns confirmed the stability of the Venetoclax-γ-secretase complex. These findings suggest that the use of Venetoclax represents a potential γ-secretase inhibitor in breast cancer stem cells. Eventually, the in vitro and clinical evaluation will be needed to confirm the potential chemopreventive and treatment effects of Venetoclax against breast cancer and breast cancer stem cells. Venetoclax appeared as the most promising drug of the 1615 FDA-approved drugs. Our in-silico findings suggest that Venetoclax may act as a γ-secretase inhibitor against the Notch signaling pathway in breast cancer stem cells.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide , Reposicionamento de Medicamentos , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
20.
Hereditas ; 160(1): 15, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055846

RESUMO

BACKGROUND: Gastric cancer is a common cause of death from cancer and an important global health care issue. Consequently, there is an urgent need to find new drugs and therapeutic targets for the treatment of gastric cancer. Recent studies have shown that tocotrienols (T3) have significant anticancer ability in cancer cell lines. Our previous study found that γ-tocotrienol (γ-T3) induced apoptosis in gastric cancer cells. We further explored the possible mechanisms of γ-T3 therapy for gastric cancer. METHODS: In this study, we treated gastric cancer cells with γ-T3, collect and deposit the cells. γ-T3-treated gastric cancer cells group and untreated group were subjected to RNA-seq assay, and analysis of sequencing results. RESULTS: Consistent with our previous findings, the results suggest that γ-T3 can inhibit mitochondrial complexes and oxidative phosphorylation. Analysis reveals that γ-T3 has altered mRNA and ncRNA in gastric cancer cells. Significantly altered signaling pathways after γ-T3 treatment were enriched for human papillomavirus infection (HPV) pathway and notch signaling pathway. The same significantly down-regulated genes notch1 and notch2 were present in both pathways in γ-T3-treated gastric cancer cells compared to controls. CONCLUSIONS: It is indicated that γ-T3 may cure gastric cancer by inhibiting the notch signaling pathway. To provide a new and powerful basis for the clinical treatment of gastric cancer.


Assuntos
Neoplasias Gástricas , Tocotrienóis , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Vitamina E/farmacologia , Vitamina E/uso terapêutico , Tocotrienóis/farmacologia , Tocotrienóis/uso terapêutico , Apoptose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA