Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Water Res ; 255: 121524, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569360

RESUMO

In the context of circular economy and global shortage of phosphorus (P) fertilizer production, it is crucial to effectively recover P during the treatment and disposal of sewage sludge (SS). Although thermal treatment of SS has been widely applied, a targeted P reclamation route is not yet well established. This study has comprehensively investigated and compared the physicochemical properties of SS and solid residues (hydrochar (HC), biochar (BC), sewage sludge ash (SSA), hydrochar ash (HCA), and biochar ash (BCA)) after application of three typical thermal treatment techniques (i.e., hydrothermal carbonization (180‒240 °C), pyrolysis (400‒600 °C) and combustion (850 ℃). P speciation and transformation during thermal processes were extensively explored followed by a rational proposal of effective P reclamation routes. Specifically, thermal processing decomposed organic P and converted non-apatite P to apatite P. Orthophosphate-P was found to be the main species in all samples. Physicochemical properties of the resulting thermal-derived products were significantly affected by the thermal techniques applied, thereby determining their feasibility for different P reclamation purposes. In particular, ash is not recommended for agricultural use due to higher harmful metals content, while acid leaching can be an alternative solution to synthesize non-Fe-containing P products because of the lower co-dissolved Fe content in the leachate. HC and BC offer the option for synthesis of Fe containing products. Eventually, HC and BC demonstrate great potential for agriculture application, however, a comprehensive risk assessment should be conducted before their real-world applications.

2.
Bioresour Technol ; 266: 374-381, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29982060

RESUMO

Using microalgae to treat landfill leachate is a promising approach due to the effective nutrients reclamation ability and additional profit of bio-lipid production. To offset the negative effect of landfill leachate on microalgae cells, a membrane photobioreactor (m-PBR) was adopted in the study, in which microalgae biomass concentration was improved from 0.66 in traditional photobioreactor (T-PBR) to 0.95 g/L. Nutrients reclamation efficiencies of leachate were analyzed according to elemental balance, and the results showed that nitrogen reclamation efficiency was generally lower than 50% while phosphorus reclamation efficiency was higher than 70% due to elemental availability. The nitrogen and phosphorus reclamation efficiencies in the m-PBR were much higher than that in the T-PBR. Besides, lipid produced from the m-PBR had a high cetane number of 60.96% and low linolenic acid content of 8.32%, which demonstrated good combustion properties of the microalgae-based lipid when using landfill leachate as nutrients source.


Assuntos
Chlorella vulgaris , Lipídeos/biossíntese , Fotobiorreatores , Biomassa , Chlorella , Microalgas , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA