Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell Mol Neurobiol ; 43(3): 1267-1280, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35771293

RESUMO

Controlling axonal mitochondria is important for maintaining normal function of the neural network. Oxygen-glucose deprivation (OGD), a model used for mimicking ischemia, eventually induces neuronal cell death similar to axonal degeneration. Axonal mitochondria are disrupted during OGD-induced neural degeneration; however, the mechanism underlying mitochondrial dysfunction has not been completely understood. We focused on the dynamics of mitochondria in axons exposed to OGD; we observed that the number of motile mitochondria significantly reduced in 1 h following OGD exposure. In our observation, the decreased length of stationary mitochondria was affected by the following factors: first, the halt of motile mitochondria; second, the fission of longer stationary mitochondria; and third, a transformation from tubular to spherical shape in OGD-exposed axons. Motile mitochondria reduction preceded stationary mitochondria fragmentation in OGD exposure; these conditions induced the decrease of stationary mitochondria in three different ways. Our results suggest that mitochondrial morphological changes precede the axonal degeneration while ischemia-induced neurodegeneration.


Assuntos
Glucose , Oxigênio , Ratos , Animais , Oxigênio/metabolismo , Glucose/metabolismo , Gânglios Espinais/metabolismo , Ratos Sprague-Dawley , Axônios/metabolismo , Células Cultivadas , Mitocôndrias/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5271-5277, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114116

RESUMO

This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Ratos , Animais , Células PC12 , Proteínas Proto-Oncogênicas c-akt/genética , Glucose/uso terapêutico , Oxigênio/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico
3.
J Cell Biochem ; 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835525

RESUMO

Herkinorin is a novel opioid receptor agonist. Activation of opioid receptors, a member of G protein coupled receptors (GPCRs), may play an important role in Herkinorin neuroprotection. GPCRs may modulate NOD-like receptor protein 3 (NLRP3)-mediated inflammatory responses in the mechanisms of inflammation-associated disease and pathological processes. In this study, we investigated the effects of Herkinorin on NLRP3 and the underlying receptor and molecular mechanisms in oxygen-glucose deprivation/reperfusion (OGD/R)-treated rat cortex neurons. First, Western blot analysis showed that Herkinorin can inhibit the activation of NLRP3 and Caspase-1, decrease the expression of interleukin (IL)-1ß, and decrease the secretion of IL-6 and tumour necrosis factor α detected by enzyme-linked immunosorbent assay in OGD/R-treated neurons. Then we found that Herkinorin downregulated NLRP3 levels by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway, reducing the phosphorylation level of p65 and IκBα in OGD/R-treated neurons (p < .05 or .01, n = 3 per group). Instead, both the mu opioid receptor (MOR) inhibitor, ß-funaltrexamine, and MOR knockdown reversed the effects of Herkinorin on NLRP3 (p < .05 or .01, n = 3 per group). Further, we found that the level of ß-arrestin2 decreased in the cell membrane and increased in the cytoplasm after Herkinorin pretreatment in OGD/R-treated neurons. In co-immunoprecipitation experiments, Herkinorin increased the binding of IκBα with ß-arrestin2, decreased the ubiquitination level of IκBα, and ß-arrestin2 knockdown reversed the effects of Herkinorin on IκBα in OGD/R-treated neurons (p < .05 or .01, n = 3 per group). Our data demonstrated that Herkinorin negatively regulated NLRP3 inflammasome to alleviate neuronal ischemic injury through inhibiting NF-κB pathway mediated primarily by MOR activation. Inhibition of the NF-κB pathway by Herkinorin may be achieved by decreasing the ubiquitination level of IκBα, in which ß-arrestin2 may play an important role.

4.
J Stroke Cerebrovasc Dis ; 29(9): 104942, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807413

RESUMO

BACKGROUND AND OBJECTIVES: Studies implicate the lung in moderating systemic immune activation via effects on circulating leukocytes. In this study, we investigated whether targeted expression of the antioxidant extracellular superoxide dismutase (SOD3) within the lung would influence post-ischemic peripheral neutrophil activation and CNS reperfusion injury. METHODS: Adult, male mice expressing human SOD3 within type II pneumocytes were subjected to 15 min of transient global cerebral ischemia. Three days post-reperfusion, lung and brain tissue was collected and analyzed by immunohistochemistry for inflammation and injury markers. In vitro motility and neurotoxicity assays were conducted to ascertain the direct effects of hSOD3 on PMN activation. Results were compared against C57BL/6 age and sex-matched controls. RESULTS: Relative to wild-type controls, hSOD3 heterozygous mice exhibited a reduction in lung inflammation, blood-brain barrier damage, and post-ischemic neuronal injury within the hippocampus and cortex. PMNs harvested from hSOD3 mice were also resistant to LPS priming, slower-moving, and less toxic to primary neuronal cultures. CONCLUSIONS: Constitutive, focal expression of hSOD3 is neuroprotective in a model of global cerebral ischemia-reperfusion injury. The underlying mechanism of SOD3-dependent protection is attributable in part to effects on the activation state and toxic potential of circulating neutrophils. These results implicate lung-brain coupling as a determinant of cerebral ischemia-reperfusion injury and highlight post-stroke lung inflammation as a potential therapeutic target in acute ischemic cerebrovascular injuries.


Assuntos
Células Epiteliais Alveolares/enzimologia , Isquemia Encefálica/enzimologia , Encéfalo/metabolismo , Neurônios/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Pneumonia/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Superóxido Dismutase/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade Inata , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Neutrófilos/imunologia , Pneumonia/enzimologia , Pneumonia/genética , Pneumonia/imunologia , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Transdução de Sinais , Superóxido Dismutase/genética
5.
Zhongguo Zhong Yao Za Zhi ; 45(19): 4686-4691, 2020 Oct.
Artigo em Zh | MEDLINE | ID: mdl-33164433

RESUMO

In this study, the oxygen-glucose deprivation(OGD) model in the human brain microvascular endothelial cell(HBMEC) was used to simulate the ischemic neuronal damage and observe the inflammatory response, explore the possible mechanisms for treating cerebral ischemia/reperfusion and improving memory impairment from the view point of inhibiting inflammatory response, which is of great reference significance for related Chinese medicine treatment of ischemic diseases. HBMECs were given with drugs at the same time of OGD injury, and reoxygenated for 2 h after 4 h treatment. Cell supernatant was then collected, and the inflammatory factors in cell supernatant were detected. Immunofluorescence assay was used to detect HBMECs morphology and expression of p-nuclear factor kappa-light-chain-enhancer of activated B(p-NF-κB); Western blot was used to detect expression changes of Toll like receptor 4(TLR4), myeloid differentiation primary response 88(MYD88) and p-NF-κB. The results showed that, after OGD modeling, the levels of interleukin 6(IL-6), IL-1α, IL-1ß and tumor necrosis factor-α(TNF-α) were significantly increased; baicalin protected HBMEC, inhibited intranuclear transcription of p-NF-κB, significantly decreased HBMEC release of inflammatory factors caused by OGD injury, and inhibited the expression of TLR4, MYD88, and p-NF-κB. The studies suggested that baicalin had obvious protective effect on HBMECs damaged by OGD, and could inhibit inflammatory response. Its protection mechanism may be related to inhibiting TLR4 signaling pathways.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Flavonoides , Humanos , Hipóxia , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
J Cell Biochem ; 120(4): 4872-4882, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30614047

RESUMO

N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+ , Gap26 peptide, 18ß-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801's apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.


Assuntos
Apoptose , Sinalização do Cálcio , Sistema de Sinalização das MAP Quinases , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Humanos , Isquemia Miocárdica/patologia , Miócitos Cardíacos/patologia
7.
Neurochem Res ; 44(11): 2577-2589, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31541352

RESUMO

Cerebral ischemia is known to trigger a series of intracellular events such as changes in metabolism, membrane function and intracellular transduction, which eventually leads to cell death. Many of these processes are mediated by intracellular signaling cascades that involve protein kinase activation. Among all the kinases activated, the serine/threonine kinase family, protein kinase C (PKC), particularly, has been implicated in mediating cellular response to cerebral ischemic and reperfusion injury. In this study, using oxygen-glucose deprivation (OGD) in acute cortical slices as an in vitro model of cerebral ischemia, I show that PKC family of isozymes, specifically PKCγ and PKCε are differentially activated during OGD. Detecting the expression and activation levels of these isozymes in response to different durations of OGD insult revealed an early activation of PKCε and delayed activation of PKCγ, signifying their roles in response to different durations and stages of ischemic stress. Specific inhibition of PKCγ and PKCε significantly attenuated OGD induced cytotoxicity, rise in intracellular calcium, membrane depolarization and reactive oxygen species formation, thereby enhancing neuronal viability. This study clearly suggests that PKC family of isozymes; specifically PKCγ and PKCε are involved in OGD induced intracellular responses which lead to neuronal death. Thus isozyme specific modulation of PKC activity may serve as a promising therapeutic route for the treatment of acute cerebral ischemic injury.


Assuntos
Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Hipóxia Celular/fisiologia , Glucose/deficiência , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
8.
Cell Physiol Biochem ; 51(4): 1852-1862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504707

RESUMO

BACKGROUND/AIMS: Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) exposure to myocardial cells mimics ischemia-reperfusion injuries. We studied the potential activity of ciliary neurotrophic factor (CNTF) on OGDR-treated myocardial cells. METHODS: CNTF and CNTFR expression were tested by RT-PCR assay and Western blotting assay. Cell viability and death were tested by MTT assay and LDH release assay, respectively. Akt-Nrf2 signalings were tested by Western blotting assay and qPCR assay. RESULTS: CNTF and its receptor CNTFR were functionally expressed in established H9c2 myocardial cells and primary murine myocardiocytes. Pretreatment of CNTF significantly attenuated OGDR-induced viability reduction and death in myocardial cells. Further studies show that in the myocardial cells CNTF activated NF-E2-related factor 2 (Nrf2) signaling to inhibit OGDR-induced reactive oxygen species (ROS) production and programmed necrosis, preventing adenine nucleotide translocator 1 (ANT-1)-p53-cyclophilin D (Cyp-D) mitochondrial association and mitochondrial depolarization. Nrf2 silencing or knockout almost abolished CNTF-induced H9c2 cytoprotection against OGDR. CNTF activated Akt in H9c2 cells and primary murine myocardiocytes. Conversely, Akt blockage by the pharmacological inhibitors not only blocked CNTF-induced Nrf2 Ser-40 phosphorylation and activation, but also nullified anti-OGDR actions by CNTF in myocardial cells. CONCLUSION: CNTF activates Akt-Nrf2 signaling to protect myocardial cells from OGDR.


Assuntos
Fator Neurotrófico Ciliar/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Oxigênio/metabolismo , Ratos
9.
Biochem Biophys Res Commun ; 498(1): 1-8, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-28676401

RESUMO

The contribution of microglial activation to oligodendrocyte precursor cell (OPC) damage in the brain is considered to be a principal pathophysiological feature of periventricular leukomalacia (PVL). Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent reactive oxygen species (ROS) produced in microglia has been shown to be significantly toxic to OPCs. The voltage-gated proton channel Hv1 is selectively expressed in microglia and is essential for NOX-dependent ROS production in the central nervous system. This study aimed to investigate the effects of microglial Hv1 deficiency on the protection of OPCs from oxygen-glucose deprivation (OGD)-induced injury in vitro. In the present study, the levels of OGD-induced ROS and pro-inflammatory cytokine production were dramatically lower in Hv1-deficient microglia (Hv1-/-) than in wild-type (WT) microglia. Following OGD, OPCs co-cultured with WT microglia had increased apoptosis and decreased proliferation and maturation, while those co-cultured with Hv1-/- microglia had attenuated apoptosis and greater proliferation and differentiation. Furthermore, the attenuated damage and enhanced regeneration of OPCs were associated with decreases in extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase phosphorylation. These results indicate that the protective effects of Hv1 deficiency on OPCs are due to the suppression of ROS and pro-inflammatory cytokine production in microglia. We thus suggest that the microglial proton channel Hv1 may be a potential therapeutic target in PVL.


Assuntos
Citocinas/metabolismo , Glucose/deficiência , Mediadores da Inflamação/metabolismo , Canais Iônicos/metabolismo , Microglia/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Canais Iônicos/deficiência , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Microglia/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Biochem Biophys Res Commun ; 503(2): 665-670, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29908183

RESUMO

Ischemia and oxidative stress play crucial roles in the pathophysiology of sudden sensorineural hearing loss (SSNHL). Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine and serves an important role in hearing function. The present study was designed to evaluate the effect of MIF on oxygen-glucose deprivation (OGD)-induced ototoxicity and to elucidate its molecular mechanism. In HEI-OC1 auditory cells, OGD reduced cell viability and increased supernatant lactate dehydrogenase (LDH) and MIF in a time-dependent manner. However, the reduced cell viability exerted by OGD was attenuated by antioxidant and MIF. Luciferase reporter assay demonstrated that MIF could activate NF-E2-related factor 2 (Nrf2), and real-time PCR showed increased mRNA expressions of Nrf2 and two Nrf2-responsive genes, including heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). MIF also suppressed oxidative stress induced by OGD, as demonstrated by decreased MDA and increased GSH in cellular supernatant. Inhibition of Nrf2 using siRNA suppressed HO-1 protein expression, the protective effect on OGD-induced injury and decrease in oxidative stress by MIF. Moreover, MIF prevented OGD-induced reduction of Akt1 phosphorylation at Ser473. LY294002, an inhibitor of PI3K/Akt signaling, attenuated the enhancement of Nrf2 protein and protective effect of MIF in OGD-treated cochlear cells. We demonstrate that MIF protects cochlear cells against OGD-induced injury through activation of Akt-Nrf2-HO-1 pathway.


Assuntos
Cóclea/metabolismo , Heme Oxigenase-1/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Animais , Hipóxia Celular , Linhagem Celular , Cóclea/citologia , Cóclea/patologia , Glucose/metabolismo , Camundongos , Estresse Oxidativo , Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia
11.
Cell Mol Biol (Noisy-le-grand) ; 64(9): 64-69, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30030955

RESUMO

To investigate the expression changes and roles of Semaphorin3A (Sema3A) and Neuropilin-1 (Nrp1) in cultured rat cortical neurons after oxygen glucose deprivation (OGD). Cultured cortical neurons of newborn SD rats were divided randomly into control group and OGD treatment group. Western blot was performed to detect the expression of Sema3A and Nrp-1 protein and TUNEL was used to detect apoptosis. With the increase of OGD treatment time, the cells become swollen, the axon disintegrated and death cells increased. After 2 hours of OGD treatment, the expression levels of Sema3A and Nrp1 were increased by 6.86 and 5.92 times of normal control, respectively. After transfection of Sema3A, apoptosis was significantly reduced with OGD treatment for 2 hours. OGD treatment could induce the up-regulation of Sema3A and Nrp1 expression and transfection of Sema3A could reduce apoptosis after OGD treatment. The results suggest that Sema3A plays a protective role for the neuron cell in OGD treatment.


Assuntos
Glucose/metabolismo , Neuropilina-1/metabolismo , Oxigênio/metabolismo , Semaforina-3A/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Regulação da Expressão Gênica , Neurônios/citologia , Neurônios/metabolismo , Neuropilina-1/genética , Ratos , Ratos Sprague-Dawley , Semaforina-3A/genética
12.
Int J Mol Sci ; 19(1)2018 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316653

RESUMO

Histone deacetylation, together with altered acetylation of NF-κB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275), respectively, an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs), synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD), valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL). Resveratrol and valproate restored the acetylation of histone H3 (K9/18), and they reduced the RelA(K310) acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18) acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO), the association of resveratrol 680 µg/kg and valproate 200 µg/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estilbenos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Ácido Valproico/uso terapêutico , Acetilação/efeitos dos fármacos , Animais , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Resveratrol , Estilbenos/farmacologia , Acidente Vascular Cerebral/patologia , Fator de Transcrição RelA/metabolismo , Ácido Valproico/farmacologia
13.
Apoptosis ; 22(11): 1353-1361, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28951984

RESUMO

In previous clinical trials, we showed that remote ischemic preconditioning (rIPC) reduced myocardial damage in children undergoing treatment for congenital heart defects and postoperative renal failure in patients undergoing abdominal aortic aneurysm surgery. In rabbit experiments, pre-treatment with plasma and plasma dialysate (obtained using 15-kDa cut-off dialysis membrane) from donor rabbits subjected to rIPC similarly protected against cardiac infarction. However, the protective substances containing in rIPC plasma have been unknown. In the present study, we showed that rIPC plasma exerted anti-apoptotic and anti-oxidative effects on human neural stem cells under oxygen glucose deprivation (OGD) that mimics brain ischemia. Additionally, we applied the sample to the liquid chromatography integrated with mass spectrometry to identify candidate key molecules in the rIPC plasma and determine its role in protecting neural stem cells from OGD-induced cell death. Thioredoxin increased significantly after rIPC compared to pre-IPC. Pretreatment with thioredoxin, the antioxidant protein, markedly protected human neural stem cells from OGD-induced cell death. The effect of thioredoxin on brain ischemia in animals should be further evaluated. However, the present study first evaluated the effect of rIPC in the ischemic cellular model.


Assuntos
Antioxidantes/farmacologia , Proteínas Sanguíneas/farmacologia , Meios de Cultura/farmacologia , Precondicionamento Isquêmico , Células-Tronco Neurais/efeitos dos fármacos , Tiorredoxinas/farmacologia , Adulto , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Sanguíneas/isolamento & purificação , Hipóxia Celular , Linhagem Celular Transformada , Glucose/deficiência , Glucose/farmacologia , Voluntários Saudáveis , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Estresse Oxidativo , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/isolamento & purificação
14.
Biochem Biophys Res Commun ; 493(1): 788-793, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28844675

RESUMO

The let-7 family of microRNAs (miRNAs) plays an important role on endothelial cell function. However, there have been few studies on their role under ischemic conditions. In this study, we demonstrate that let-7i, belonging to the let-7 family, rescues human brain microvascular endothelial cells (HBMECs) in an oxygen-glucose deprivation (OGD) model. Our data show that the expression of let-7 family miRNAs was downregulated after OGD. Overexpression of let-7i significantly alleviated cell death and improved survival of OGD-treated HBMECs. Let-7i also protected permeability in an in vitro blood brain barrier (BBB) model. Further, let-7i downregulated the expression of toll-like receptor 4 (TLR4), an inflammation trigger. Moreover, overexpression of let-7i decreased matrix metallopeptidase 9 (MMP9) and inducible nitric oxide synthase (iNOS) expression under OGD. Upon silencing TLR4 expression in HBMECs, the anti-inflammatory effect of let-7i was abolished. Our research suggests that let-7i promotes OGD-induced inflammation via downregulating TLR4 expression.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Microvasos/metabolismo , Receptor 4 Toll-Like/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Células Endoteliais/patologia , Glucose/metabolismo , Humanos , Microvasos/patologia , Oxigênio/metabolismo
15.
Biochem Biophys Res Commun ; 490(2): 71-77, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28347817

RESUMO

Brain microvascular endothelial cells (BMECs) play vital roles in cerebral ischemia, during which many signal pathways mediate BMECs apoptosis. In this study, we explored the potential role of Wnt3α/ß-catenin signal in BMECs apoptosis induced by ischemia. Here, we found that oxygen-glucose deprivation (OGD) could induce apoptosis of BMECs with Wnt3a mRNA expression decrease. Meanwhile, activation Wnt3a/ß-catenin signal with exogenous Wnt3α protein (100 ng/ml) or Lithium Chloride (LiCl, 4 mM) decreased significantly apoptosis of BMECs induced by OGD with increasing expression of Bcl-2 in the whole cell and ß-catenin in the nucleus. But, inhibition Wnt3a/ß-catenin signal with DKK1 (100 ng/ml) or 2.4-diamino quinazoline (DQ, 0.2 µM) increased apoptosis of BMECs with decreasing expression of Bcl-2. These results suggest that activation Wnt3α/ß-catenin signal attenuate apoptosis of BMECs induced by ischemia.


Assuntos
Apoptose/efeitos dos fármacos , Cérebro/irrigação sanguínea , Células Endoteliais/efeitos dos fármacos , Glucose/deficiência , Oxigênio/metabolismo , Proteína Wnt3/metabolismo , beta Catenina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Circulação Cerebrovascular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cloreto de Lítio/farmacologia , Microvasos/citologia , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3/agonistas , beta Catenina/agonistas
16.
Cell Mol Neurobiol ; 37(4): 619-633, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27380043

RESUMO

Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/metabolismo , Microvasos/efeitos dos fármacos , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Glucose/metabolismo , Masculino , Microvasos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxigênio/metabolismo , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley
17.
J Neurochem ; 138(1): 101-16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27087120

RESUMO

The putative neuroprotective properties of various flavonoids have long been reported. Among this class of chemicals, quercetin, a major flavone/flavonol naturally occurring in plants, deserves focused attention because of the myriad of beneficial effects observed in various in vitro and in vivo models of central nervous system damage/degeneration. However, the mechanisms governing the beneficial outcomes mediated by quercetin remain to be elucidated. In an effort to define the underlying molecular mechanisms, our study employed human/rat neuroblastoma cell lines (SHSY5Y and B35, respectively) and E18-derived rat primary cortical neurons upon which the effects of various flavonoids were examined. Of note, increases in the levels of global SUMOylation, a post-translational modification with the Small Ubiquitin-like MOdifier (SUMO) were pronounced. Quercetin treatment increased SUMOylation levels in both SHSY5Y cells and rat cortical neurons in a dose and time-dependent manner, possibly via the direct inactivation of certain SENPs (SUMO-specific isopeptidases). Of particular interest, cells treated with quercetin displayed increased tolerance to oxygen/glucose deprivation exposure, an in vitro model of ischemia. SHSY5Y cells treated with quercetin also increased the expression of Nrf2 (via a decrease in the levels of Keap1), heme oxygenase-1 (HO-1), and nitric oxide synthase 1 (NOS1), which provide further protection from oxidative stress. In addition, the increased SUMOylation of HIF-1α was noted and deemed to be significant. We hypothesize that SUMOylated HIF-1α plays a fundamental role in the protection afforded and may underlie some of quercetin's ability to protect cells from oxygen/glucose deprivation-induced cell death, via an up-regulation of HO-1 and NOS1, which ultimately leads to the induction of pro-life NOS1/protein kinase G signaling. Quercetin acts to increase survival in the face of ischemia via an increase of SENP3 expression, the possible inactivation of SENPs 1/2, and via a decrease in KEAP1 levels (thereby increasing Nrf2 stability). These changes may then lead to increase in HIF-1α SUMOylation and HO-1 activation, followed by an up-regulation of NOS1/PKG signaling. Pathways altered via quercetin treatment within our experimental system are represented by blue arrowheads. Solid black arrows represent relationships that have been explored while a dotted arrow represents a relationship that has yet to be confirmed.


Assuntos
Glucose/deficiência , Hipóxia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Humanos , L-Lactato Desidrogenase/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Gravidez , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
18.
Biochem Biophys Res Commun ; 480(3): 355-361, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27769861

RESUMO

Activin A (Act A), a member of the transforming growth factor-beta (TGF-ß), reduces neuronal apoptosis during cerebral ischemia through Act A/Smads signaling pathway. However, little is known about the effect of Act A/Smads pathway on autophagy in neurons. Here, we found that oxygen-glucose deprivation (OGD)-induced autophagy was suppressed by exogenous Act A in a concentration-dependent manner and enhanced by Act A/Smads pathway inhibitor (ActRIIA-Ab) in neuronal PC12 cells. These results indicate that Act A/Smads pathway negatively regulates autophagy in OGD-treated PC12 cells. In addition, we found that c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways are involved in the OGD-induced autophagy. The activation of JNK and p38 MAPK pathways in OGD-treated PC12 cells was suppressed by exogenous Act A and enhanced by ActRIIA-Ab. Together, our results suggest that Act A/Smads signaling pathway negatively regulates OGD-induced autophagy via suppression of JNK and p38 MAPK pathways in neuronal PC12 cells.


Assuntos
Subunidades beta de Inibinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Autofagia/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Estresse Oxidativo/fisiologia , Células PC12 , Ratos , Proteínas Smad/metabolismo , Estresse Fisiológico/fisiologia
19.
Biochem Biophys Res Commun ; 469(3): 753-60, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26686418

RESUMO

Here we found that low-concentration of perifosine, an Akt inhibitor, surprisingly protected cardiomyocytes from oxygen glucose deprivation (OGD)/re-oxygenation. In H9c2 cardiomyocytes, non-cytotoxic perifosine (0.1-0.5 µM) suppressed OGD/re-oxygenation-induced reactive oxygen species (ROS) production, p53 mitochondrial translocation and cyclophilin D complexation, as well as mitochondrial membrane potential (MMP) reduction. Molecularly, perifosine activated AMP-activated kinase (AMPK) signaling to increase intracellular NADPH (nicotinamide adenine dinucleotide phosphate) content in H9c2 cells. On the other hand, AMPK inhibition by AMPKα1 shRNA-knockdown in H9c2 cells significantly reduced perifosine-induced NADPH production, and alleviated perifosine-mediated anti-oxidant and cytoprotective activities against OGD/re-oxygenation. In primary murine cardiomyocytes, perifosine similarly activated AMPK signaling, and offered significant protection against OGD/re-oxygenation, which was largely attenuated with siRNA knockdown of AMPKα1. We demonstrate an unexpected function of perifosine (low-concentration) in protecting cardiomyocytes from OGD/re-oxygenation.


Assuntos
Glucose/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/fisiologia , Fosforilcolina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cardiotônicos/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilcolina/administração & dosagem , Ratos
20.
J Biol Chem ; 289(10): 6681-6694, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24425870

RESUMO

Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival.


Assuntos
Neurônios/metabolismo , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Transporte Proteico , Ratos , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA