Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.066
Filtrar
Mais filtros

Coleção Fiocruz
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2317574121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530899

RESUMO

Fine particulate matter (PM2.5) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM2.5 components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM2.5-associated health effects are scarce. In the present study, we comprehensively characterized and compared the primary PM2.5 constituents and their altered metabolites from two locations: Taiyuan and Guangzhou. Analysis of year-long PM2.5 samples revealed 84 major components, encompassing organic carbon, elemental carbon, ions, metals, and organic chemicals. PM2.5 from Taiyuan exhibited higher contamination, associated health risks, dithiothreitol activity, and cytotoxicities than Guangzhou's counterpart. Applying metabolomics, BEAS-2B lung cells exposed to PM2.5 from both cities were screened for significant alterations. A correlation analysis revealed the metabolites altered by PM2.5 and the critical toxic PM2.5 components in both regions. Among the PM2.5-down-regulated metabolites, phosphocholine emerged as a promising intervention for PM2.5 cytotoxicities. Its supplementation effectively attenuated PM2.5-induced energy metabolism disorder and cell death via activating fatty acid oxidation and inhibiting Phospho1 expression. The highlighted toxic chemicals displayed combined toxicities, potentially counteracted by phosphocholine. Our study offered a promising functional metabolite to alleviate PM2.5-induced cellular disorder and provided insights into the geo-based variability in toxic PM2.5 components.


Assuntos
Poluentes Atmosféricos , Doenças Mitocondriais , Humanos , Poluentes Atmosféricos/análise , Fosforilcolina , Material Particulado/análise , Pulmão , Carbono/análise , Monitoramento Ambiental
2.
Proc Natl Acad Sci U S A ; 121(21): e2319595121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739786

RESUMO

As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.


Assuntos
Ansiedade , Depressão , Material Particulado , Receptores de Dopamina D1 , Animais , Material Particulado/toxicidade , Camundongos , Masculino , Ansiedade/metabolismo , Depressão/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Poluentes Atmosféricos/toxicidade , Comportamento Animal/efeitos dos fármacos , Simulação de Acoplamento Molecular
3.
Annu Rev Pharmacol Toxicol ; 63: 143-163, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36028225

RESUMO

Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Síndromes Neurotóxicas , Animais , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Longevidade , Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Encéfalo , Síndromes Neurotóxicas/etiologia
4.
Proc Natl Acad Sci U S A ; 120(50): e2308832120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048461

RESUMO

Building conditions, outdoor climate, and human behavior influence residential concentrations of fine particulate matter (PM2.5). To study PM2.5 spatiotemporal variability in residences, we acquired paired indoor and outdoor PM2.5 measurements at 3,977 residences across the United States totaling >10,000 monitor-years of time-resolved data (10-min resolution) from the PurpleAir network. Time-series analysis and statistical modeling apportioned residential PM2.5 concentrations to outdoor sources (median residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, CV = 112%). Residences in the temperate marine climate zone experienced higher infiltration factors, consistent with expectations for more time with open windows in milder climates. Likewise, for all climate zones, infiltration factors were highest in summer and lowest in winter, decreasing by approximately half in most climate zones. Large outdoor-indoor temperature differences were associated with lower infiltration factors, suggesting particle losses from active filtration occurred during heating and cooling. Absolute contributions from both outdoor and indoor sources increased during wildfire events. Infiltration factors decreased during periods of high outdoor PM2.5, such as during wildfires, reducing potential exposures from outdoor-origin particles but increasing potential exposures to indoor-origin particles. Time-of-day analysis reveals that episodic emission events are most frequent during mealtimes as well as on holidays (Thanksgiving and Christmas), indicating that cooking-related activities are a strong episodic emission source of indoor PM2.5 in monitored residences.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Crowdsourcing , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Tamanho da Partícula
5.
Proc Natl Acad Sci U S A ; 120(1): e2211282119, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574646

RESUMO

Growing evidence suggests that fine particulate matter (PM2.5) likely increases the risks of dementia, yet little is known about the relative contributions of different constituents. Here, we conducted a nationwide population-based cohort study (2000 to 2017) by integrating the Medicare Chronic Conditions Warehouse database and two independently sourced datasets of high-resolution PM2.5 major chemical composition, including black carbon (BC), organic matter (OM), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+), and soil dust (DUST). To investigate the impact of long-term exposure to PM2.5 constituents on incident all-cause dementia and Alzheimer's disease (AD), hazard ratios for dementia and AD were estimated using Cox proportional hazards models, and penalized splines were used to evaluate potential nonlinear concentration-response (C-R) relationships. Results using two exposure datasets consistently indicated higher rates of incident dementia and AD for an increased exposure to PM2.5 and its major constituents. An interquartile range increase in PM2.5 mass was associated with a 6 to 7% increase in dementia incidence and a 9% increase in AD incidence. For different PM2.5 constituents, associations remained significant for BC, OM, SO42-, and NH4+ for both end points (even after adjustments of other constituents), among which BC and SO42- showed the strongest associations. All constituents had largely linear C-R relationships in the low exposure range, but most tailed off at higher exposure concentrations. Our findings suggest that long-term exposure to PM2.5 is significantly associated with higher rates of incident dementia and AD and that SO42-, BC, and OM related to traffic and fossil fuel combustion might drive the observed associations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Demência , Humanos , Idoso , Estados Unidos/epidemiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos de Coortes , Medicare , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poeira , Demência/induzido quimicamente , Demência/epidemiologia , Exposição Ambiental/efeitos adversos , China
6.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613355

RESUMO

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Cofator PQQ/farmacologia , Transição Epitelial-Mesenquimal , Células Epiteliais Alveolares , Material Particulado/toxicidade
7.
Am J Epidemiol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907335

RESUMO

China's Clean Air Act (CCAA) has been demonstrated to reduce the public health burden of ambient air pollution. Few studies have assessed the health effects of CCAA on lung function. We aimed to investigate the effects of CCAA and PM2.5 exposures on peak expiratory flow (PEF) in middle-aged and older people in China. Three waves (2011, 2013, and 2015) of the China Health and Retirement Longitudinal Study (CHARLS) were included in this study. We performed a difference-in-difference (DID) model and mixed effect method to assess the association between CCAA, PM2.5, and PEF. To increase the reliability, multiple environmental factors were considered, and spline function was utilized to fit the spatial autocorrelations. We found that the risk of decreased PEF in the policy intervention group was reduced by 46% (95% CI: 23%~62%). The estimate showed a 10µg/m3 increase in PM2.5 would increase the risk of decreased PEF by 10% (95% CI: 3%~18%). The results of the mixed effect model showed a 10 µg/m3 increase in PM2.5 concentration was associated with a 2.23% (95% CI: 1.35%~3.06%) decrease in the PEF. These results contributed to the limited epidemiology evidence on demonstrating the effect of PM2.5 on lung function.

8.
Am J Epidemiol ; 193(10): 1372-1383, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38770979

RESUMO

Racial/ethnic disparities in the association between short-term (eg, days, weeks), ambient fine particulate matter (PM2.5) and temperature exposures and stillbirth in the United States have been understudied. A time-stratified, case-crossover design using a distributed lag nonlinear model (0- to 6-day lag) was used to estimate stillbirth odds due to short-term increases in average daily PM2.5 and temperature exposures among 118 632 Medicaid recipients from 2000 to 2014. Disparities by maternal race/ethnicity (Black, White, Hispanic, Asian, American Indian) and zip code-level socioeconomic status (SES) were assessed. In the temperature-adjusted model, a 10 µg m-3 increase in PM2.5 concentration was marginally associated with increased stillbirth odds at lag 1 (0.68%; 95% CI, -0.04% to 1.40%) and lag 2 (0.52%; 95% CI, -0.03 to 1.06) but not lag 0-6 (2.80%; 95% CI, -0.81 to 6.45). An association between daily PM2.5 concentrations and stillbirth odds was found among Black individuals at the cumulative lag (0-6 days: 9.26% 95% CI, 3.12%-15.77%) but not among other races or ethnicities. A stronger association between PM2.5 concentrations and stillbirth odds existed among Black individuals living in zip codes with the lowest median household income (lag 0-6: 14.13%; 95% CI, 4.64%-25.79%). Short-term temperature increases were not associated with stillbirth risk among any race/ethnicity. Black Medicaid enrollees, and especially those living in lower SES areas, may be more vulnerable to stillbirth due to short-term increases in PM2.5 exposure. This article is part of a Special Collection on Environmental Epidemiology.


Assuntos
Disparidades nos Níveis de Saúde , Medicaid , Material Particulado , Natimorto , Adulto , Feminino , Humanos , Gravidez , Adulto Jovem , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Estudos Cross-Over , Exposição Ambiental/efeitos adversos , Etnicidade , Material Particulado/análise , Grupos Raciais , Fatores Socioeconômicos , Natimorto/etnologia , Natimorto/epidemiologia , Temperatura , Estados Unidos/epidemiologia
9.
Cancer ; 130(22): 3870-3878, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39106101

RESUMO

BACKGROUND: Particulate matter consisting of fine particles measuring 2.5 microns or less in diameter (PM2.5), a component of air pollution, has been linked to adverse health outcomes. The objective of this study was to assess the association between ambient PM2.5 exposure and survival in children with cancer in the United States. METHODS: Individuals aged birth to 19 years who were diagnosed with cancer between January 1, 2004, and December 31, 2019, were selected from the National Cancer Database. The association between the annual PM2.5 level at the patient's zip code of residence at the time of diagnosis and overall survival was evaluated using time-varying Cox proportional hazards models (crude and adjusted for diagnosis year and age). To address concerns that exposure to air pollution is correlated with other social determinants of health, the authors tested the association between PM2.5 levels and survival among sociodemographic subgroups. RESULTS: Of the 172,550 patients included, 27,456 (15.9%) resided in areas with annual PM2.5 concentrations above the US Environmental Protection Agency (EPA) annual PM2.5 standard of 12 µg/m3. Residing in these high-pollution areas was associated with worse overall survival (adjusted hazard ratio [aHR], 1.06; 95% confidence interval [CI], 1.012-1.10). Similarly, when PM2.5 was evaluated as a linear measure, each unit increase in PM2.5 exposure was associated with worse survival (aHR, 1.011; CI, 1.005-1.017). Exposure to PM2.5 at levels above the EPA standards was also significantly associated with worse overall survival among sociodemographic subgroups. CONCLUSIONS: Exposure to PM2.5 was significantly associated with worse overall survival among children with cancer, even at levels below EPA air quality standards. These results underscore the importance of setting appropriate air quality standards to protect the health of this sensitive population. PLAIN LANGUAGE SUMMARY: The authors investigated how living in areas with high air pollution (defined as particulate matter consisting of fine particles measuring 2.5 microns or less in diameter; PM2.5) affects the overall survival of children with cancer in the United States. The results indicated that children living in areas with higher PM2.5 levels, and even at levels below prior and current US Environmental Protection Agency standards, had lower survival rates than children living in areas with lower levels of PM2.5. This finding emphasizes the need for stricter air quality standards to better protect children, particularly those with serious health conditions like childhood cancer.


Assuntos
Poluição do Ar , Exposição Ambiental , Neoplasias , Material Particulado , Humanos , Criança , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Material Particulado/efeitos adversos , Adolescente , Pré-Escolar , Feminino , Lactente , Masculino , Neoplasias/mortalidade , Neoplasias/epidemiologia , Estados Unidos/epidemiologia , Recém-Nascido , Adulto Jovem , Exposição Ambiental/efeitos adversos , Análise de Sobrevida , Modelos de Riscos Proporcionais
10.
Cancer Causes Control ; 35(5): 749-760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38145439

RESUMO

INTRODUCTION: The NIH All of Us Research Program has enrolled over 544,000 participants across the US with unprecedented racial/ethnic diversity, offering opportunities to investigate myriad exposures and diseases. This paper aims to investigate the association between PM2.5 exposure and cancer risks. MATERIALS AND METHODS: This work was performed on data from 409,876 All of Us Research Program participants using the All of Us Researcher Workbench. Cancer case ascertainment was performed using data from electronic health records and the self-reported Personal Medical History questionnaire. PM2.5 exposure was retrieved from NASA's Earth Observing System Data and Information Center and assigned using participants' 3-digit zip code prefixes. Multivariate logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (CI). Generalized additive models (GAMs) were used to investigate non-linear relationships. RESULTS: A total of 33,387 participants and 46,176 prevalent cancer cases were ascertained from participant EHR data, while 20,297 cases were ascertained from self-reported survey data from 18,133 participants; 9,502 cancer cases were captured in both the EHR and survey data. Average PM2.5 level from 2007 to 2016 was 8.90 µg/m3 (min 2.56, max 15.05). In analysis of cancer cases from EHR, an increased odds for breast cancer (OR 1.17, 95% CI 1.09-1.25), endometrial cancer (OR 1.33, 95% CI 1.09-1.62) and ovarian cancer (OR 1.20, 95% CI 1.01-1.42) in the 4th quartile of exposure compared to the 1st. In GAM, higher PM2.5 concentration was associated with increased odds for blood cancer, bone cancer, brain cancer, breast cancer, colon and rectum cancer, endocrine system cancer, lung cancer, pancreatic cancer, prostate cancer, and thyroid cancer. CONCLUSIONS: We found evidence of an association of PM2.5 with breast, ovarian, and endometrial cancers. There is little to no prior evidence in the literature on the impact of PM2.5 on risk of these cancers, warranting further investigation.


Assuntos
Neoplasias , Humanos , Feminino , Masculino , Neoplasias/epidemiologia , Neoplasias/etiologia , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Adulto , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Fatores de Risco , Idoso , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Adulto Jovem
11.
J Pediatr ; 275: 114241, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151604

RESUMO

OBJECTIVE: To determine the association between indoor air pollution and respiratory morbidities in children with bronchopulmonary dysplasia (BPD) recruited from the multicenter BPD Collaborative. STUDY DESIGN: A cross-sectional study was performed among participants <3 years old in the BPD Collaborative Outpatient Registry. Indoor air pollution was defined as any reported exposure to tobacco or marijuana smoke, electronic cigarette emissions, gas stoves, and/or wood stoves. Clinical data included acute care use and chronic respiratory symptoms in the past 4 weeks. RESULTS: A total of 1011 participants born at a mean gestational age of 26.4 ± 2.2 weeks were included. Most (66.6%) had severe BPD. More than 40% of participants were exposed to ≥1 source of indoor air pollution. The odds of reporting an emergency department visit (OR, 1.7; 95% CI, 1.18-2.45), antibiotic use (OR, 1.9; 95% CI, 1.12-3.21), or a systemic steroid course (OR, 2.18; 95% CI, 1.24-3.84) were significantly higher in participants reporting exposure to secondhand smoke (SHS) compared with those without SHS exposure. Participants reporting exposure to air pollution (not including SHS) also had a significantly greater odds (OR, 1.48; 95% CI, 1.08-2.03) of antibiotic use as well. Indoor air pollution exposure (including SHS) was not associated with chronic respiratory symptoms or rescue medication use. CONCLUSIONS: Exposure to indoor air pollution, especially SHS, was associated with acute respiratory morbidities, including emergency department visits, antibiotics for respiratory illnesses, and systemic steroid use.

12.
Respir Res ; 25(1): 90, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355515

RESUMO

BACKGROUND: Exposure to PM2.5 has been implicated in a range of detrimental health effects, particularly affecting the respiratory system. However, the precise underlying mechanisms remain elusive. METHODS: To address this objective, we collected ambient PM2.5 and administered intranasal challenges to mice, followed by single-cell RNA sequencing (scRNA-seq) to unravel the heterogeneity of neutrophils and unveil their gene expression profiles. Flow cytometry and immunofluorescence staining were subsequently conducted to validate the obtained results. Furthermore, we assessed the phagocytic potential of neutrophils upon PM2.5 exposure using gene analysis of phagocytosis signatures and bacterial uptake assays. Additionally, we utilized a mouse pneumonia model to evaluate the susceptibility of PM2.5-exposed mice to Pseudomonas aeruginosa infection. RESULTS: Our study revealed a significant increase in neutrophil recruitment within the lungs of PM2.5-exposed mice, with subclustering of neutrophils uncovering subsets with distinct gene expression profiles. Notably, exposure to PM2.5 was associated with an expansion of PD-L1high neutrophils, which exhibited impaired phagocytic function dependent upon PD-L1 expression. Furthermore, PM2.5 exposure was found to increase the susceptibility of mice to Pseudomonas aeruginosa, due in part to increased PD-L1 expression on neutrophils. Importantly, monoclonal antibody targeting of PD-L1 significantly reduced bacterial burden, dissemination, and lung inflammation in PM2.5-exposed mice upon Pseudomonas aeruginosa infection. CONCLUSIONS: Our study suggests that PM2.5 exposure promotes expansion of PD-L1high neutrophils with impaired phagocytic function in mouse lungs, contributing to increased vulnerability to bacterial infection, and therefore targeting PD-L1 may be a therapeutic strategy for reducing the harmful effects of PM2.5 exposure on the immune system.


Assuntos
Pneumonia , Infecções por Pseudomonas , Animais , Camundongos , Neutrófilos/metabolismo , Material Particulado/toxicidade , Infecções por Pseudomonas/microbiologia , Antígeno B7-H1/metabolismo , Pulmão , Pneumonia/metabolismo , Pseudomonas aeruginosa
13.
Respir Res ; 25(1): 14, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178075

RESUMO

BACKGROUND: Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS: Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS: DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.


Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
14.
Allergy ; 79(5): 1219-1229, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180309

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) is thought to result from complex interactions between the host immune system, microbiota, and environmental exposures. Currently, there is limited data regarding the impact of ambient particulate matter ≤2.5 µm in diameter (PM2.5) in the pathogenesis of CRS, despite evidence linking PM2.5 to other respiratory diseases. We hypothesized that PM2.5 may result in differential cytokine patterns that could inform our mechanistic understanding of the effect of environmental factors on CRS. METHODS: We conducted an analysis of data prospectively collected from 308 CRS patients undergoing endoscopic sinus surgery. Cytokines were quantified in intraoperative mucus specimens using a multiplex flow cytometric bead assay. Clinical and demographic data including zip codes were extracted and used to obtain tract-level income and rurality measures. A spatiotemporal machine learning model was used to estimate daily PM2.5 levels for the year prior to each patient's surgery date. Spearman correlations and regression analysis were performed to characterize the relationship between mucus cytokines and PM2.5. RESULTS: Several inflammatory cytokines including IL-2, IL-5/IL-13, IL-12, and 21 were significantly correlated with estimated average 6, 9, and 12-month preoperative PM2.5 levels. These relationships were maintained for most cytokines after adjusting for age, income, body mass index, rurality, polyps, asthma, and allergic rhinitis (AR) (p < .05). There were also higher odds of asthma (OR = 1.5, p = .01) and AR (OR = 1.48, p = .03) with increasing 12-month PM2.5 exposure. Higher tissue eosinophil counts were associated with increasing PM2.5 levels across multiple timeframes (p < .05). CONCLUSIONS: Chronic PM2.5 exposure may be an independent risk factor for development of a mixed, type-2 dominant CRS inflammatory response.


Assuntos
Citocinas , Exposição Ambiental , Eosinófilos , Material Particulado , Rinossinusite , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Crônica , Citocinas/metabolismo , Exposição Ambiental/efeitos adversos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Mediadores da Inflamação/metabolismo , Material Particulado/efeitos adversos , Rinossinusite/etiologia , Rinossinusite/imunologia
15.
Allergy ; 79(11): 2953-2965, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38868934

RESUMO

BACKGROUND AND OBJECTIVE: The updated World Health Organization (WHO) air quality guideline recommends an annual mean concentration of fine particulate matter (PM2.5) not exceeding 5 or 15 µg/m3 in the short-term (24 h) for no more than 3-4 days annually. However, more than 90% of the global population is currently exposed to daily concentrations surpassing these limits, especially during extreme weather conditions and due to transboundary dust transport influenced by climate change. Herein, the effect of respirable

Assuntos
Poeira , Células Epiteliais , Dispositivos Lab-On-A-Chip , Material Particulado , Mucosa Respiratória , Humanos , Material Particulado/análise , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Linhagem Celular
16.
Environ Sci Technol ; 58(22): 9536-9547, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771144

RESUMO

Recent studies found the intrusion and retention of exogenous fine particles into joints, but epidemiological data for long- and intermediate-term exposure associations are scare. Here, all urban working, retired employee, and rural residents (16.78 million) in Beijing from January 1, 2011 to December 31, 2019 were included to investigate the effects of long- and intermediate-term ambient particulate exposure on development of osteoarthritis. We identified 1,742,067 participants as first-visit patients with osteoarthritis. For each interquartile range increase in annual PM2.5 (23.32 µg/m3) and PM10 (23.92 µg/m3) exposure concentration, the pooled hazard ratios were respectively 1.238 (95% CI: 1.228, 1.249) and 1.178 (95% CI: 1.168, 1.189) for first osteoarthritis outpatient visits. Moreover, age at first osteoarthritis outpatient visits significantly decreased by 4.52 (95% CI: 3.45 to 5.40) days per µg/m3 for annual PM2.5 exposure at below 67.85 µg/m3. Finally, among the six constituents analyzed, black carbon appears to be the most important component associated with the association between PM2.5 exposure and the three osteoarthritis-related outcomes.


Assuntos
Osteoartrite , Material Particulado , Humanos , Osteoartrite/epidemiologia , Estudos Prospectivos , Poluição do Ar , Masculino , Poluentes Atmosféricos , Feminino , Exposição Ambiental , Pessoa de Meia-Idade , Fatores de Risco , Pequim/epidemiologia , Idoso
17.
Environ Sci Technol ; 58(23): 9980-9990, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38819024

RESUMO

Exposure to fine particulate matter (PM2.5) during pregnancy has been inversely associated with neonatal neurological development. However, the associations of exposure to specific PM2.5 constituents with neonatal neurological development remain unclear. We investigated these associations and examined the mediating role of meconium metabolites in a Chinese birth cohort consisting of 294 mother-infant pairs. Our results revealed that exposure to PM2.5 and its specific constituents (i.e., organic matter, black carbon, sulfate, nitrate, and ammonium) in the second trimester, but not in the first or third trimester, was inversely associated with the total neonatal behavioral neurological assessment (NBNA) scores. The PM2.5 constituent mixture in the second trimester was also inversely associated with NBNA scores, and sulfate was identified as the largest contributor. Furthermore, meconium metabolome analysis identified four metabolites, namely, threonine, lysine, leucine, and saccharopine, that were associated with both PM2.5 constituents and NBNA scores. Threonine was identified as an important mediator, accounting for a considerable proportion (14.53-15.33%) of the observed inverse associations. Our findings suggest that maternal exposure to PM2.5 and specific constituents may adversely affect neonatal behavioral development, in which meconium metabolites may play a mediating role.


Assuntos
Exposição Materna , Mecônio , Material Particulado , Humanos , Feminino , Mecônio/química , Gravidez , Estudos de Coortes , Recém-Nascido , Adulto , Poluentes Atmosféricos
18.
Environ Sci Technol ; 58(24): 10458-10469, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836430

RESUMO

Hepatic steatosis is the first step in a series of events that drives hepatic disease and has been considerably associated with exposure to fine particulate matter (PM2.5). Although the chemical constituents of particles matter in the negative health effects, the specific components of PM2.5 that trigger hepatic steatosis remain unclear. New strategies prioritizing the identification of the key components with the highest potential to cause adverse effects among the numerous components of PM2.5 are needed. Herein, we established a high-resolution mass spectrometry (MS) data set comprising the hydrophobic organic components corresponding to 67 PM2.5 samples in total from Taiyuan and Guangzhou, two representative cities in North and South China, respectively. The lipid accumulation bioeffect profiles of the above samples were also obtained. Considerable hepatocyte lipid accumulation was observed in most PM2.5 extracts. Subsequently, 40 of 695 components were initially screened through machine learning-assisted data filtering based on an integrated bioassay with MS data. Next, nine compounds were further selected as candidates contributing to hepatocellular steatosis based on absorption, distribution, metabolism, and excretion evaluation and molecular dockingin silico. Finally, seven components were confirmed in vitro. This study provided a multilevel screening strategy for key active components in PM2.5 and provided insight into the hydrophobic PM2.5 components that induce hepatocellular steatosis.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Material Particulado , Fígado Gorduroso/induzido quimicamente , Humanos , China , Poluentes Atmosféricos
19.
Environ Sci Technol ; 58(20): 8685-8695, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709795

RESUMO

Forecasting alterations in ambient air pollution and the consequent health implications is crucial for safeguarding public health, advancing environmental sustainability, informing economic decision making, and promoting appropriate policy and regulatory action. However, predicting such changes poses a substantial challenge, requiring accurate data, sophisticated modeling methodologies, and a meticulous evaluation of multiple drivers. In this study, we calculate premature deaths due to ambient fine particulate matter (PM2.5) exposure in India from the 2020s (2016-2020) to the 2100s (2095-2100) under four different socioeconomic and climate scenarios (SSPs) based on four CMIP6 models. PM2.5 concentrations decreased in all SSP scenarios except for SSP3-7.0, with the lowest concentration observed in SSP1-2.6. The results indicate an upward trend in the five-year average number of deaths across all scenarios, ranging from 1.01 million in the 2020s to 4.12-5.44 million in the 2100s. Further analysis revealed that the benefits of reducing PM2.5 concentrations under all scenarios are largely mitigated by population aging and growth. These findings underscore the importance of proactive measures and an integrated approach in India to improve atmospheric quality and reduce vulnerability to aging under changing climate conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Índia , Humanos , Poluentes Atmosféricos/análise , Exposição Ambiental , Clima
20.
Environ Sci Technol ; 58(10): 4522-4534, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411076

RESUMO

Offline techniques are adopted for studying air pollution health impacts, thus failing to provide in situ observations. Here, we have demonstrated their real-time monitoring by online analyzing an array of gaseous biomarkers from rats' exhaled breath using an integrated exhaled breath array sensor (IEBAS) developed. The biomarkers include total volatile organic compounds (TVOC), CO2, CO, NO, H2S, H2O2, O2, and NH3. Specific breath-borne VOCs were also analyzed by a gas chromatography-ion mobility spectrometer (GC-IMS). After real-life ambient air pollution exposures (2 h), the pollution levels of PM2.5 and O3 were both found to significantly affect the relative levels of multiple gaseous biomarkers in rats' breath. Eleven biomarkers, especially NO, H2S, and 1-propanol, were detected as significantly correlated with PM2.5 concentration, while heptanal was shown to be significantly correlated with O3. Likewise, significant changes were also detected in multiple breath-borne biomarkers from rats under lab-controlled O3 exposures with levels of 150, 300, and 1000 µg/m3 (2 h), compared to synthetic air exposure. Importantly, heptanal was experimentally confirmed as a reliable biomarker for O3 exposure, with a notable dose-response relationship. In contrast, conventional biomarkers of inflammation and oxidative stress in rat sera exhibited insignificant differences after the 2 h exposures. The results imply that breath-borne gaseous biomarkers can serve as an early and sensitive indicator for ambient pollutant exposure. This work pioneered a new research paradigm for online monitoring of air pollution health impacts while obtaining important candidate biomarker information for PM2.5 and O3 exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aldeídos , Animais , Ratos , Poluentes Atmosféricos/análise , Gases , Peróxido de Hidrogênio , Monitoramento Ambiental , Poluição do Ar/análise , Biomarcadores , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA