RESUMO
The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex. The domains of ZC3H4 that contact ARS2 and WDR82 are required for ncRNA restriction, suggesting their presence in a functional complex. Consistently, ZC3H4, WDR82, and ARS2 co-transcriptionally control an overlapping population of ncRNAs. ZC3H4 is proximal to the negative elongation factor, PNUTS, which we show enables restrictor function and is required to terminate the transcription of all major RNA polymerase II transcript classes. In contrast to short ncRNAs, longer protein-coding transcription is supported by U1 snRNA, which shields transcripts from restrictor and PNUTS at hundreds of genes. These data provide important insights into the mechanism and control of transcription by restrictor and PNUTS.
Assuntos
RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Núcleo Celular/metabolismo , RNA não Traduzido/genética , Proteínas Cromossômicas não Histona/genéticaRESUMO
The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.
Assuntos
Proteína 2 de Ligação a Repetições Teloméricas , Tripeptidil-Peptidase 1 , Animais , Mamíferos/genética , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismoRESUMO
Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes.
Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica , Animais , Núcleo Celular/genética , Cromatina/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Quinases/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA , Proteínas Repressoras/genética , Spliceossomos/genéticaRESUMO
Control of transcription speed, which influences many co-transcriptional processes, is poorly understood. We report that PNUTS-PP1 phosphatase is a negative regulator of RNA polymerase II (Pol II) elongation rate. The PNUTS W401A mutation, which disrupts PP1 binding, causes genome-wide acceleration of transcription associated with hyper-phosphorylation of the Spt5 elongation factor. Immediately downstream of poly(A) sites, Pol II decelerates from >2 kb/min to <1 kb/min, which correlates with Spt5 dephosphorylation. Pol II deceleration and Spt5 dephosphorylation require poly(A) site recognition and the PNUTS-PP1 complex, which is in turn necessary for transcription termination. These results lead to a model for termination, the "sitting duck torpedo" mechanism, where poly(A) site-dependent deceleration caused by PNUTS-PP1 and Spt5 dephosphorylation is required to convert Pol II into a viable target for the Xrn2 terminator exonuclease. Spt5 and its bacterial homolog NusG therefore have related functions controlling kinetic competition between RNA polymerases and the termination factors that pursue them.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Proteína Fosfatase 1/metabolismo , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/metabolismo , Terminação da Transcrição Genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Exorribonucleases/genética , Células HEK293 , Humanos , Cinética , Proteínas Nucleares/genética , Fosforilação , Poli A/metabolismo , Ligação Proteica , Proteína Fosfatase 1/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fatores de Elongação da Transcrição/genéticaRESUMO
Phosphoprotein phosphatase 1 (PP1) associates with specific regulatory subunits to achieve, among other functions, substrate selectivity. Among the eight PP1 isotypes in Leishmania, PP1-8e associates with the regulatory protein PNUTS along with the structural factors JBP3 and Wdr82 in the PJW/PP1 complex that modulates RNA polymerase II (pol II) phosphorylation and transcription termination. Little is known regarding interactions involved in PJW/PP1 complex formation, including how PP1-8e is the selective isotype associated with PNUTS. Here, we show that PNUTS uses an established RVxF-ΦΦ-F motif to bind the PP1 catalytic domain with similar interfacial interactions as mammalian PP1-PNUTS and noncanonical motifs. These atypical interactions involve residues within the PP1-8e catalytic domain and N and C terminus for isoform-specific regulator binding. This work advances our understanding of PP1 isoform selectivity and reveals key roles of PP1 residues in regulator binding. We also explore the role of PNUTS as a scaffold protein for the complex by identifying the C-terminal region involved in binding JBP3 and Wdr82 and impact of PNUTS on the stability of complex components and function in pol II transcription in vivo. Taken together, these studies provide a potential mechanism where multiple motifs within PNUTS are used combinatorially to tune binding affinity to PP1, and the C terminus for JBP3 and Wdr82 association, in the Leishmania PJW/PP1 complex. Overall, our data provide insights in the formation of the PJW/PP1 complex involved in regulating pol II transcription in divergent protozoans where little is understood.
Assuntos
Proteínas de Ligação a DNA , Leishmania , Proteínas Nucleares , Proteína Fosfatase 1 , Animais , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Leishmania/genética , Leishmania/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismoRESUMO
Patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein overexpression have very poor prognosis. The cyclin-dependent kinase 7 (CDK7)/super-enhancer inhibitor THZ1 suppresses MYCN gene transcription, reduces neuroblastoma cell proliferation, but does not cause significant cell death. The protein kinase phosphatase 1 nuclear targeting subunit (PNUTS) has recently been shown to interact with c-Myc protein and suppresses c-Myc protein degradation. Here we screened the U.S. Food and Drug Administration-Approved Oncology Drugs Set V from the National Cancer Institute, and identified tyrosine kinase inhibitors (TKIs), including ponatinib and lapatinib, as the Approved Oncology Drugs exerting the best synergistic anticancer effects with THZ1 in MYCN-amplified neuroblastoma cells. Combination therapy with THZ1 and ponatinib or lapatinib synergistically induced neuroblastoma cell apoptosis, while having little effects in normal nonmalignant cells. Differential gene expression analysis identified PNUTS as one of the genes most synergistically reduced by the combination therapy. Reverse transcription polymerase chain reaction and immunoblot analyses confirmed that THZ1 and the TKIs synergistically downregulated PNUTS mRNA and protein expression and reduced N-Myc protein but not N-Myc mRNA expression. In addition, PNUTS knockdown resulted in decreased N-Myc protein but not mRNA expression and decreased MYCN-amplified neuroblastoma cell proliferation and survival. As CDK7 inhibitors are currently under clinical evaluation in patients, our data suggest the addition of the TKI ponatinib or lapatinib in CDK7 inhibitor clinical trials in patients.
Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Fenilenodiaminas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Sinergismo Farmacológico , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Lapatinib/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Piridazinas/farmacologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Quinase Ativadora de Quinase Dependente de CiclinaRESUMO
The protein Ser/Thr phosphatase PP1 catalyzes an important fraction of protein dephosphorylation events and forms highly specific holoenzymes through an association with regulatory interactors of protein phosphatase one (RIPPOs). The functional characterization of individual PP1 holoenzymes is hampered by the lack of straightforward strategies for substrate mapping. Because efficient substrate recruitment often involves binding to both PP1 and its associated RIPPO, here we examined whether PP1-RIPPO fusions can be used to trap substrates for further analysis. Fusions of an hypoactive point mutant of PP1 and either of four tested RIPPOs accumulated in HEK293T cells with their associated substrates and were co-immunoprecipitated for subsequent identification of the substrates by immunoblotting or MS analysis. Hypoactive fusions were also used to study RIPPOs themselves as substrates for associated PP1. In contrast, substrate trapping was barely detected with active PP1-RIPPO fusions or with nonfused PP1 or RIPPO subunits. Our results suggest that hypoactive fusions of PP1 subunits represent an easy-to-use tool for substrate identification of individual holoenzymes.
Assuntos
Núcleo Celular/química , Holoenzimas/química , Proteína Fosfatase 1/química , Receptores de Neuropeptídeo Y/química , Animais , Sítios de Ligação , Células COS , Núcleo Celular/genética , Chlorocebus aethiops/genética , Células HEK293 , Holoenzimas/genética , Humanos , Imunoprecipitação , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/genética , Receptores de Neuropeptídeo Y/genética , Especificidade por SubstratoRESUMO
HIV-1 relies heavily on the host cellular machinery for its replication. During infection, HIV-1 is known to modulate the host-cell miRNA profile. One of the miRNAs, miR-34a, is up-regulated by HIV-1 in T-cells as suggested by miRNA microarray studies. However, the functional consequences and the mechanism behind this phenomenon were not explored. The present study shows that HIV-1 enhances miR-34a in a time-dependent manner in T-cells. Our overexpression and knockdown-based experimental results suggest that miR-34a promotes HIV-1 replication in T-cells. Hence, there is a positive feedback loop between miR-34a and HIV-1 replication. We show that the mechanism of action of miR-34a in HIV-1 replication involves a cellular protein, the phosphatase 1 nuclear-targeting subunit (PNUTS). PNUTS expression levels decrease with the progression of HIV-1 infection in T-cells. Also, the overexpression of PNUTS potently inhibits HIV-1 replication in a dose-dependent manner. We report for the first time that PNUTS negatively regulates HIV-1 transcription by inhibiting the assembly of core components of the transcription elongation factor P-TEFb, i.e. cyclin T1 and CDK9. Thus, HIV-1 increases miR-34a expression in cells to overcome the inhibitory effect of PNUTS on HIV-1 transcription. So, the present study provides new mechanistic details with regard to our understanding of a complex interplay between miR-34a and the HIV-1 transcription machinery involving PNUTS.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , HIV-1/genética , HIV-1/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética , Replicação Viral/fisiologia , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , MicroRNAs/antagonistas & inibidores , Modelos Biológicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Linfócitos T/metabolismo , Linfócitos T/virologia , Transcrição Gênica , Regulação para CimaRESUMO
Mitotic progression is regulated largely through dynamic and reversible protein phosphorylation that is modulated by opposing actions of protein kinases and phosphatases. In this study, we show that phosphatase 1 nuclear targeting subunit (Pnuts) functions as a master regulator of mitosis by modulating protein phosphatase 1 (PP1). Overexpression of Pnuts in Xenopus egg extracts inhibited both mitotic and meiotic exit. Immunodepletion of Pnuts from egg extracts revealed its essential functions in mitotic entry and maintenance. The level of Pnuts oscillates during the cell cycle and peaks in mitosis. Pnuts destruction during M-phase exit is mediated by the anaphase-promoting complex/cyclosome (APC/C)-targeted ubiquitination and proteolysis, and conserved destruction motifs of Pnuts. Disruption of Pnuts degradation delayed M-phase exit, suggesting it as an important mechanism to permit M-phase exit.
Assuntos
Divisão Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Primers do DNA , Meiose , Mitose , Proteólise , Ubiquitinação , XenopusRESUMO
Neuronal excitability depends on the surface concentration of neurotransmitter receptors. Type C gamma-aminobutyric acid receptors (GABA(C)R) are composed of ρ subunits that are highly expressed in the retina. Molecular mechanisms that guide the surface concentration of this receptor type are largely unknown. Previously, we reported physical interactions of GABA(C)R ρ subunits with protein kinase C-ζ (PKCζ) via adapter proteins of the ZIP protein family, as well as of protein phosphatase 1 (PP1) via PNUTS. Here, we demonstrate that co-expressing ρ1 with ZIP3 and PKCζ enhanced basal internalization of GABA(C)R, while receptor internalization was reduced in the presence of PNUTS and PP1. Co-expression of ρ1 with individual binding partners showed no alterations, except for PP1. Heterooligomeric GABA(C)R composed of ρ1 and ρ2 subunits had a significant higher endocytosis rate than ρ1 containing homooligomeric receptors. Mutant constructs lacking binding sites for protein interactions ensured the specificity of our data. Finally, substitution of serine and threonine residues with alanines indicated that GABA(C)R internalization depends on serine/threonine kinases and phosphatases, but not on tyrosine phosphorylation. We conclude that GABA(C)R internalization is reciprocally regulated by PKCζ and PP1 that are anchored to the receptor via ZIP3 or PNUTS respectively.
Assuntos
Proteína Quinase C/metabolismo , Proteína Fosfatase 1/metabolismo , Receptores de GABA/metabolismo , Eletrofisiologia , Endocitose/fisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Transporte Proteico/fisiologia , TransfecçãoRESUMO
The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes â¼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, "Restrictor", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
RESUMO
BACKGROUND: Long non-coding RNAs have been implicated in various cancers as they regulate critical cellular processes such as proliferation, migration, invasion, and apoptosis in tumorous tissues. lncRNA-PNUTS is newly reported as an alternatively-spliced lncRNA from PNUTS pre-mRNA that promotes oncogenesis in breast cancer. However, whether LncRNA-PNUTS plays a role in other forms of cancers, such as liver cancer, remains unknown. METHOD: In the current study, we investigated the potential role of lncRNA-PNUTS in hepatocellular carcinoma (HCC). The levels of lncRNA-PNUTS in tumorous tissues obtained from HCC patients were measured. The potential impacts of lncPNUTS on metastasis and invasion were investigated through gain- or loss- of function experiments in cell models of liver cancers, as well as other cellular assays such as trans-well assays and wound-healing assays. RESULTS: Here, we report that lncPNUTS was upregulated in human HCC tissues. Loss- and gain-of-function experiments indicated lncPNUTS promoted metastasis and invasion. In addition, ZEB1, which is involved in the activation of epithelial-mesenchymal-transition (EMT), was identified as a downstream target of lncPNUTS. CONCLUSION: Our findings indicated lncPNUTS promotes HCC cancer cell metastasis and invasion via targeting ZEB1 to activate the EMT pathway, suggesting that lncPNUTS is a potential prognostic marker and therapeutic target for HCC patients.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismoRESUMO
Reversible protein phosphorylation is accomplished by the opposing activities of kinases and phosphatases. We previously demonstrated the regulation of serine/threonine protein phosphatase (PP) type 2A (PP2A) and 2B (PP2B or calcineurin) during the embryonic diapause process of Bombyx mori. In the present study, we further examine the expressions of other PPs (PP1 and PP4) during embryonic stages. An immunoblot analysis showed that Bombyx eggs contained a 38-kDa PP1 catalytic subunit (PP1-C), a 38-kDa PP4 catalytic subunit (PP4-C), and a 120-kDa PP1 nuclear targeting subunit (PNUTS), each of which underwent differential changes between diapause and developing eggs during the embryonic process. In non-diapause eggs, eggs whose diapause initiation was prevented by HCl, and eggs in which diapause had been terminated by chilling diapausing eggs at 5°C for 70 days and then were transferred to 25°C, protein levels of PP1-C and PP4-C remained relatively high during the early embryonic stages and then decreased during middle (for PP1-C) or later (for PP4-C) embryonic stages. However, protein levels of PP1-C and PP4-C in diapause eggs remained at high levels during the first 8 days after oviposition. PNUTS protein levels showed inverse temporal changes, with increased levels being detected during the later embryonic stages of developing eggs. The direct determination of PP1 enzymatic activity showed higher activity in developing eggs than in diapause eggs. Examination of temporal changes in mRNA expression levels of PP1-C and PP4-C showed no difference between HCl-treated and diapause eggs. These results indicated that differential protein levels of PP1-C/PNUTS and PP4-C, and increased enzymatic activity of PP1 were likely related to the embryonic development of B. mori.
RESUMO
Conflicts between transcription and replication are a major source of replication stress. Our recent findings show that proper dephosphorylation of Serine 5 in the carboxy-terminal domain (CTD) of DNA-directed RNA polymerase II subunit RPB1 is needed to prevent such conflicts in human cells.
RESUMO
Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU uptake, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.
Assuntos
Cromatina/efeitos dos fármacos , Proteínas Cromossômicas não Histona/uso terapêutico , RNA Polimerase II/metabolismo , Proteínas Cromossômicas não Histona/farmacologia , Humanos , TransfecçãoRESUMO
PURPOSE: Ionizing radiation (IR) is widely used for treating nasopharyngeal carcinoma (NPC). However, recent studies indicate that IR can also promote the migration and invasion of malignant tumors. Phosphatase 1 nuclear-targeting subunit (PNUTS), a novel interacting protein, was recently demonstrated to be involved in tumorigenesis and metastasis formation. This protein was hypothesized to take part in IR-induced migration and invasion in NPC cells in this study. MATERIALS AND METHODS: Western blotting was used to detect how PNUTS was expressed in NPC cells with or without IR treatment. Wound-healing and Transwell assays were used to measure cell migration and invasion. Quantitative real-time PCR and Western blotting were used to determine the expression levels of PNUTS and epithelial-mesenchymal transition (EMT) proteins, respectively, after CNE-2 cells were infected with an adenovirus vector, ad-PNUTS, or transfected with PNUTS-specific siRNA. Finally, the expression levels of PI3K/AKT signaling-related proteins were detected by Western blotting. RESULTS: IR significantly promoted PNUTS expression and the migration and invasion in CNE-2 cells. Moreover, after exposure to IR, expression of the mesenchymal markers N-cadherin and vimentin increased, while that of the epithelial marker E-cadherin decreased. Silencing PNUTS remarkably attenuated IR-induced increases in cell migration and invasion and reversed the EMT process. Additionally, the overexpression of PNUTS restored the mobility and invasiveness of CNE-2 cells, which regained EMT characteristics. Furthermore, we found that PNUTS regulated IR-induced EMT via the PI3K/AKT signaling pathway. CONCLUSION: Our research illustrates a relationship between PNUTS and IR-induced cell migration and invasion and provides a novel therapeutic target for preventing radiotherapy-induced metastasis in NPC patients.
RESUMO
SDS22 is an ancient regulator of protein phosphatase-1 (PP1). Our crystal structure of SDS22 shows that its twelve leucine-rich repeats adopt a banana-shaped fold that is shielded from solvent by capping domains at its extremities. Subsequent modeling and biochemical studies revealed that the concave side of SDS22 likely interacts with PP1 helices α5 and α6, which are distal from the binding sites of many previously described PP1 interactors. Accordingly, we found that SDS22 acts as a "third" subunit of multiple PP1 holoenzymes. The crystal structure of SDS22 also revealed a large basic surface patch that enables binding of a phosphorylated form of splicing factor BCLAF1. Taken together, our data provide insights into the formation of PP1:SDS22 and the recruitment of additional interaction proteins, such as BCLAF1.