Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430888

RESUMO

While Molecular Dynamics simulation programs are probably superior for predicting the binding and affinity of aptamers and their cognate ligands, such molecular dynamics programs require more computing power and analysis time than static docking programs that are more widely accessible to the scientific community on the internet. Static docking programs can be used to investigate the geometric fit of rigid DNA or RNA aptamer 3D structures and their ligands to aid in predicting the relative affinities and cross-reactivity of various potential ligands. Herein, the author describes when such static 3D docking analysis has worked well to produce useful predictions or confirmation of high-affinity aptamer interactions or successful aptamer beacon behavior and when it has not worked well. The analysis of why failures may occur with static 3D computer models is also discussed.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Fenômenos Biofísicos , Ligantes , Simulação de Dinâmica Molecular
2.
Drug Dev Res ; 82(1): 86-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32770567

RESUMO

SARS-CoV-2 or COVID-19 pandemic global outbreak created the most unstable situation of human health-economy. In the past two decades different parts of the word experienced smaller or bigger outbreak related to human coronaviruses. The spike glycoproteins of the COVID-19 (similar to SARS-CoV) attach to the angiotensin-converting enzyme (ACE2) and transit over a stabilized open state for the viral internalization to the host cells and propagate with great efficacy. Higher rate of mutability makes this virus unpredictable/less sensitive to the protein/nucleic acid based drugs. In this emergent situation, drug-induced destabilization of spike binding to RBD could be a good strategy. In the current study we demonstrated by bioinformatics (CASTp: computed atlas of surface topography of protein, PyMol: molecular visualization) and molecular docking (PatchDock and Autodock) experiments that tea flavonoids catechin products mainly epigallocatechin gallate or other like theaflavin gallate demonstrated higher atomic contact energy (ACE) value, binding energy, Ki value, ligand efficiency, surface area and more amino acid interactions than hydroxychloroquine (HCQ) during binding in the central channel of the spike protein. Moreover, out of three distinct binding sites (I, II and III) of spike core when HCQ binds only with site III (farthest from the nCoV-RBD of ACE2 contact), epigallocatechin gallate and theaflavin gallate bind all three sites. As sites I and II are in closer contact with open state location and viral-host contact area, these drugs might have significant effects. Taking into account the toxicity/side effects by chloroquine/HCQ, present drugs may be important. Our laboratory is working on tea flavonoids and other phytochemicals in the protection from toxicity, DNA/mitochondrial damage, inflammation and so on. The present data might be helpful for further analysis of flavonoids in this emergent pandemic situation.


Assuntos
Biflavonoides/metabolismo , Catequina/análogos & derivados , Biologia Computacional/métodos , Ácido Gálico/análogos & derivados , Hidroxicloroquina/metabolismo , Simulação de Acoplamento Molecular/métodos , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Biflavonoides/química , Sítios de Ligação/fisiologia , COVID-19/metabolismo , Catequina/química , Catequina/metabolismo , Ácido Gálico/química , Ácido Gálico/metabolismo , Humanos , Hidroxicloroquina/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Glicoproteína da Espícula de Coronavírus/química , Difração de Raios X/métodos
3.
BMC Bioinformatics ; 19(Suppl 13): 426, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717654

RESUMO

BACKGROUND: Molecular docking studies on protein-peptide interactions are a challenging and time-consuming task because peptides are generally more flexible than proteins and tend to adopt numerous conformations. There are several benchmarking studies on protein-protein, protein-ligand and nucleic acid-ligand docking interactions. However, a series of docking methods is not rigorously validated for protein-peptide complexes in the literature. Considering the importance and wide application of peptide docking, we describe benchmarking of 6 docking methods on 133 protein-peptide complexes having peptide length between 9 to 15 residues. The performance of docking methods was evaluated using CAPRI parameters like FNAT, I-RMSD, L-RMSD. RESULT: Firstly, we performed blind docking and evaluate the performance of the top docking pose of each method. It was observed that FRODOCK performed better than other methods with average L-RMSD of 12.46 Å. The performance of all methods improved significantly for their best docking pose and achieved highest average L-RMSD of 3.72 Å in case of FRODOCK. Similarly, we performed re-docking and evaluated the performance of the top and best docking pose of each method. We achieved the best performance in case of ZDOCK with average L-RMSD 8.60 Å and 2.88 Å for the top and best docking pose respectively. Methods were also evaluated on 40 protein-peptide complexes used in the previous benchmarking study, where peptide have length up to 5 residues. In case of best docking pose, we achieved the highest average L-RMSD of 4.45 Å and 2.09 Å for the blind docking using FRODOCK and re-docking using AutoDock Vina respectively. CONCLUSION: The study shows that FRODOCK performed best in case of blind docking and ZDOCK in case of re-docking. There is a need to improve the ranking of docking pose generated by different methods, as the present ranking scheme is not satisfactory. To facilitate the scientific community for calculating CAPRI parameters between native and docked complexes, we developed a web-based service named PPDbench ( http://webs.iiitd.edu.in/raghava/ppdbench/ ).


Assuntos
Benchmarking , Simulação de Acoplamento Molecular/métodos , Peptídeos/química , Proteínas/química , Algoritmos , Sítios de Ligação , Bases de Dados de Proteínas , Ligação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
4.
J Mol Recognit ; 32(12): e2809, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418487

RESUMO

Several molecular modeling programs including Pep-Fold 3, Vienna RNA, RNA Composer, Avogadro, PatchDock, RasMol, and VMD were used to define the three-dimensional and basic binding characteristics of an extant sandwich DNA aptamer assay complex for human brain natriuretic peptide (BNP). In particular, the theoretical question of demonstrating likely binding of 72 base capture and reporter aptamers to at least two separate "epitopes" or binding sites on the small 32-amino acid BNP target was addressed, and the data support the existence of separate aptamer binding sites on BNP. The binding model was based on first docking BNP to the capture aptamer based on shape complementarity with PatchDock, followed by docking the capture aptamer-BNP complex with the reporter aptamer in PatchDock. Although, shape complementarity clearly dominated this binding model and aptamers are known to be somewhat flexible, the model demonstrates hydrogen bond stabilization within each of the two different aptamers and between the aptamers and the BNP target, thus suggesting a strong binding and high affinity sandwich assay that matches the author's former published assay results (Bruno et al., Microchem. J. 2014;115:32-38) with subpicogram per milliliter sensitivity and good specificity. Other aspects such as capture and reporter aptamer interactions in the absence of BNP are illustrated and suggest means for potentially improving the existing assay by truncating the capture and reporter aptamers where they overlap to further decrease background signal levels.


Assuntos
Aptâmeros de Nucleotídeos/química , Simulação por Computador , Peptídeo Natriurético Encefálico/química , Software , Humanos , Ligação de Hidrogênio , Imageamento Tridimensional , Simulação de Acoplamento Molecular
5.
J Fluoresc ; 29(3): 711-717, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31044327

RESUMO

DNA aptamers were developed against five different peptides from the known binding regions of anti-Cytomegalovirus and anti-Herpes Simplex Virus-2 antibodies and the aptamers were ranked by relative affinity based on an ELISA-like (ELASA) microplate assay. The secondary structures of the top five highest affinity aptamers were studied for stem-loop commonalities and the most probable peptide binding sites. Two of these stem-loop structures were converted into beacons by addition of TYE 665 dye on the 5' end and Iowa Black quencher on the 3' end. When competed against increasing concentrations of each of the five peptides, only three of the possible ten interactions demonstrated "lights on" fluorescence beacon responses. When modeled by generation of PDB files, after passage through PATCHDOCK and YASARA, two of the aptamer beacon-peptide interactions showed no theoretical evidence of separating the G-C stem-loop region, despite clear empirical evidence of separation of the fluorophore and quencher beyond the Förster distance leading to abundant fluorescence. And in the second beacon's case, YASARA modeling suggested that the beacon was always open despite clear empirical evidence that it was not (no fluorescence response) and only opened in the presence of one of the five peptides. These results are interpreted as a demonstration that 3-dimensional docking software such as PATCHDOCK and YASARA, which are based on rigid receptor-ligand shape complementarity may not reflect the "induced-fit" interactions between aptamers and their cognate targets. Therefore, for the most complete and accurate picture of aptamer-peptide binding, several theoretical and empirical (e.g., beacon fluorescence) analysis methods may be needed.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Ligantes , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Ligação Proteica , Espectrometria de Fluorescência
6.
Toxicol Ind Health ; 30(8): 765-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23081860

RESUMO

The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic, nuclear receptor that is responsible for the early events involved in the transcription of a complex set of genes comprising the CYP450 gene family. In the present computational study, homology modelling and molecular docking were carried out with the objective of predicting the relationship between the binding efficiency and the lipophilicity of different polychlorinated biphenyl (PCB) congeners and the AHR in silico. Homology model of the murine AHR was constructed by several automated servers and assessed by PROCHECK, ERRAT, VERIFY3D and WHAT IF. The resulting model of the AHR by MODWEB was used to carry out molecular docking of 36 PCB congeners using PatchDock server. The lipophilicity of the congeners was predicted using the XLOGP3 tool. The results suggest that the lipophilicity influences binding energy scores and is positively correlated with the same. Score and Log P were correlated with r = +0.506 at p = 0.01 level. In addition, the number of chlorine (Cl) atoms and Log P were highly correlated with r = +0.900 at p = 0.01 level. The number of Cl atoms and scores also showed a moderate positive correlation of r = +0.481 at p = 0.01 level. To the best of our knowledge, this is the first study employing PatchDock in the docking of AHR to the environmentally deleterious congeners and attempting to correlate structural features of the AHR with its biochemical properties with regards to PCBs. The result of this study are consistent with those of other computational studies reported in the previous literature that suggests that a combination of docking, scoring and ranking organic pollutants could be a possible predictive tool for investigating ligand-mediated toxicity, for their subsequent validation using wet lab-based studies.


Assuntos
Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Software
7.
J Mol Graph Model ; 129: 108759, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492406

RESUMO

The leishmaniases are NDTs (neglected tropical diseases) that affect people all over the world. They are brought on by protozoans from the genus Leishmania and disseminated by phlebotomine flies that are afflicted with the disease. The best option to manage and lower the incidence of these diseases has been thought by the creation of a safe and effective vaccination. This research used an in silico based mining approach to look for high potential epitopes that might bind to MHC Class I and MHC Class II molecules (mainly; HLA-A*02:01 & HLA-DRB1*03:01) from human population in order to promote vaccine development. Based on the presence of signal peptides, GPI anchors, antigenicity predictions, and a subtractive proteomic technique, we have screened 17 putative antigenic proteins from the 8083 total proteins of L. major. After that thorough immunogenic epitope prediction were done using IEDB-AR tools. We isolated five immunogenic epitopes (three 9-mer & two 15-mer) from five antigenic proteins through docking and MD simulation analysis. Finally, these five anticipated epitopes, viz., TLPEIPVNV, ELMAPVFGL, TLAAAVALL, NSINIRLDGVTSAGF and NVPLVVDASSLFRVA have considerably stronger binding potential with their respective alleles and may trigger immunological responses. The goal of this work was to identify MHC restricted epitopes for CD8+ and CD4+ T cells activation using immunoinformatics in order to identify potential vaccine candidates against L. major parasites.


Assuntos
Epitopos de Linfócito T , Leishmania major , Humanos , Epitopos de Linfócito T/química , Leishmania major/metabolismo , Proteoma , Imunoinformática , Proteômica , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Biologia Computacional
8.
J Funct Biomater ; 14(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976059

RESUMO

Microtubules are cylindrical protein polymers assembled in the cytoplasm of all eukaryotic cells by polymerization of aß tubulin dimers, which are involved in cell division, migration, signaling, and intracellular traffic. These functions make them essential in the proliferation of cancerous cells and metastases. Tubulin has been the molecular target of many anticancer drugs because of its crucial role in the cell proliferation process. By developing drug resistance, tumor cells severely limit the successful outcomes of cancer chemotherapy. Hence, overcoming drug resistance motivates the design of new anticancer therapeutics. Here, we retrieve short peptides obtained from the data repository of antimicrobial peptides (DRAMP) and report on the computational screening of their predicted tertiary structures for the ability to inhibit tubulin polymerization using multiple combinatorial docking programs, namely PATCHDOCK, FIREDOCK, and ClusPro. The interaction visualizations show that all the best peptides from the docking analysis bind to the interface residues of the tubulin isoforms αßl, αßll, αßlll, and αßlV, respectively. The docking studies were further confirmed by a molecular dynamics simulation, in which the computed root-mean-square deviation (RMSD), and root-mean-square fluctuation (RMSF), verified the stable nature of the peptide-tubulin complexes. Physiochemical toxicity and allergenicity studies were also performed. This present study suggests that these identified anticancer peptide molecules might destabilize the tubulin polymerization process and hence can be suitable candidates for novel drug development. It is concluded that wet-lab experiments are needed to validate these findings.

9.
Front Mol Biosci ; 10: 1203672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635941

RESUMO

Pseudomonas aeruginosa is an infectious pathogen which has the ability to cause primary and secondary contagions in the blood, lungs, and other body parts of immunosuppressed individuals, as well as community-acquired diseases, such as folliculitis, osteomyelitis, pneumonia, and others. This opportunistic bacterium displays drug resistance and regulates its pathogenicity via the quorum sensing (QS) mechanism, which includes the LasI/R, RhlI/R, and PQS/MvfR systems. Targeting the QS systems might be an excellent way to treat P. aeruginosa infections. Although a wide array of antibiotics, namely, newer penicillins, cephalosporins, and combination drugs are being used, the use of selenium nanoparticles (SeNPs) to cure P. aeruginosa infections is extremely rare as their mechanistic interactions are weakly understood, which results in carrying out this study. The present study demonstrates a computational approach of binding the interaction pattern between SeNPs and the QS signaling proteins in P. aeruginosa, utilizing multiple bioinformatics approaches. The computational investigation revealed that SeNPs were acutely 'locked' into the active region of the relevant proteins by the abundant residues in their surroundings. The PatchDock-based molecular docking analysis evidently indicated the strong and significant interaction between SeNPs and the catalytic cleft of LasI synthase (Phe105-Se = 2.7 Å and Thr121-Se = 3.8 Å), RhlI synthase (Leu102-Se = 3.7 Å and Val138-Se = 3.2 Å), transcriptional receptor protein LasR (Lys42-Se = 3.9 Å, Arg122-Se = 3.2 Å, and Glu124-Se = 3.9 Å), RhlR (Tyr43-Se = 2.9 Å, Tyr45-Se = 3.4 Å, and His61-Se = 3.5 Å), and MvfR (Leu208-Se = 3.2 Å and Arg209-Se = 4.0 Å). The production of acyl homoserine lactones (AHLs) was inhibited by the use of SeNPs, thereby preventing QS as well. Obstructing the binding affinity of transcriptional regulatory proteins may cause the suppression of LasR, RhlR, and MvfR systems to become inactive, thereby blocking the activation of QS-regulated virulence factors along with their associated gene expression. Our findings clearly showed that SeNPs have anti-QS properties against the established QS systems of P. aeruginosa, which strongly advocated that SeNPs might be a potent solution to tackle drug resistance and a viable alternative to conventional antibiotics along with being helpful in therapeutic development to cure P. aeruginosa infections.

10.
Microb Drug Resist ; 27(5): 602-615, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33983855

RESUMO

Incidence of drug resistance in clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) is attributed to its diverse repertoire of virulence factors. Of these virulence determinants, Panton-Valentine Leukocidin (PVL) has been experimentally validated as a prospective drug target due to its conspicuous and comprehensive role in nosocomial infections. This study encompassed an in silico approach to elucidate the antimicrobial potentiality of human cathelicidin LL-37 against PVL toxin of MRSA. Molecular docking studies of LL-37 and its segments with the PVL toxin subunits LukS and LukF were carried out using PatchDock server and the results were refined using FireDock server. The paramount ligand-receptor combination was selected and analyzed based on diverse parametric attributes and compared with the commercial inhibitors of PVL viz. Andrimid, Beclobrate, Beta-sitosterol, Diathymosulfone, and Probucol to determine the most potent inhibitor among them. Our results elucidated that the interaction of LL-37 with the LukS subunit of PVL toxin (minimum global energy of -61.82 kcal/mol) depicted 34 molecular interactions, while the commercial PVL inhibitors depicted fewer and insubstantial interactions. SWISS-ADME (Absorption, Distribution, Metabolism, and Excretion) and ToxinPred analysis of LL-37 further corroborated its null potency of toxicity in systemic milieu. The results obtained may credit this study as basis for the development of LL-37 as a potential inhibitor against virulent MRSA toxins, thereby exalting the treatment regimes for nosocomial infections in health care facilities worldwide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Exotoxinas/antagonistas & inibidores , Leucocidinas/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Catelicidinas
11.
Bioinformation ; 5(3): 136-40, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21364794

RESUMO

The novel 3-methyladenine DNA glycosylase enzyme from oral pathogen Streptococcus sanguinisin involves in DNA repair mechanisms and participates in base excision repair. Its 3D structure is still unknown which may be a potential drug target, therefore here we proposed its putative 3D structure by homology modeling approach. EsyPred3d software produced more precise modeled structure as compare to Swiss model software. The modeled structure was further verified by PROCHECK analysis and subjected to functional site prediction servers for active site residues prediction. The functional site was further validated by molecular docking approach with ligand EDA (3- [2- Deoxyribofuranosyl] - 3H- 1, 3, 4, 5A, 8-Pentaaza- Asindacene-5- monophosphate) from 1F4R. The EDR docked at the cavity of modeled structure of 3-methyladenine DNA glycosylase enzyme with highest Patchdock score of 3966 and lowest Autodock 4 docking energy of -10.30 Kcal/mol. The YA51, LA105, RA107 residues are surrounding the EDA and matching with ligand binding residues predicted by PROFUNC server.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA