Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hum Brain Mapp ; 45(8): e26722, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780442

RESUMO

In this study we explore the spatio-temporal trajectory and clinical relevance of microstructural white matter changes within and beyond subcortical stroke lesions detected by free-water imaging. Twenty-seven patients with subcortical infarct with mean age of 66.73 (SD 11.57) and median initial NIHSS score of 4 (IQR 3-7) received diffusion MRI 3-5 days, 1 month, 3 months, and 12 months after symptom-onset. Extracellular free-water and fractional anisotropy of the tissue (FAT) were averaged within stroke lesions and the surrounding tissue. Linear models showed increased free-water and decreased FAT in the white matter of patients with subcortical stroke (lesion [free-water/FAT, mean relative difference in %, ipsilesional vs. contralesional hemisphere at 3-5 days, 1 month, 3 months, and 12 months after symptom-onset]: +41/-34, +111/-37, +208/-26, +251/-18; perilesional tissue [range in %]: +[5-24]/-[0.2-7], +[2-20]/-[3-16], +[5-43]/-[2-16], +[10-110]/-[2-12]). Microstructural changes were most prominent within the lesion and gradually became less pronounced with increasing distance from the lesion. While free-water elevations continuously increased over time and peaked after 12 months, FAT decreases were most evident 1 month post-stroke, gradually returning to baseline values thereafter. Higher perilesional free-water and higher lesional FAT at baseline were correlated with greater reductions in lesion size (rho = -0.51, p = .03) in unadjusted analyses only, while there were no associations with clinical measures. In summary, we find a characteristic spatio-temporal pattern of extracellular and cellular alterations beyond subcortical stroke lesions, indicating a dynamic parenchymal response to ischemia characterized by vasogenic edema, cellular damage, and white matter atrophy.


Assuntos
Imagem de Difusão por Ressonância Magnética , AVC Isquêmico , Substância Branca , Humanos , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Longitudinais , Água , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Anisotropia
2.
Small ; : e2401061, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963320

RESUMO

The precise mapping of collateral circulation and ischemic penumbra is crucial for diagnosing and treating acute ischemic stroke (AIS). Unfortunately, there exists a significant shortage of high-sensitivity and high-resolution in vivo imaging techniques to fulfill this requirement. Herein, a contrast enhanced susceptibility-weighted imaging (CE-SWI) using the minimalist dextran-modified Fe3O4 nanoparticles (Fe3O4@Dextran NPs) are introduced for the highly sensitive and high-resolution AIS depiction under 9.4 T for the first time. The Fe3O4@Dextran NPs are synthesized via a simple one-pot coprecipitation method using commercial reagents under room temperature. It shows merits of small size (hydrodynamic size 25.8 nm), good solubility, high transverse relaxivity (r2) of 51.3 mM-1s-1 at 9.4 T, and superior biocompatibility. The Fe3O4@Dextran NPs-enhanced SWI can highlight the cerebral vessels readily with significantly improved contrast and ultrahigh resolution of 0.1 mm under 9.4 T MR scanner, enabling the clear spatial identification of collateral circulation in the middle cerebral artery occlusion (MCAO) rat model. Furthermore, Fe3O4@Dextran NPs-enhanced SWI facilitates the precise depiction of ischemia core, collaterals, and ischemic penumbra post AIS through matching analysis with other multimodal MR sequences. The proposed Fe3O4@Dextran NPs-enhanced SWI offers a high-sensitivity and high-resolution imaging tool for individualized characterization and personally precise theranostics of stroke patients.

3.
Magn Reson Med ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923094

RESUMO

PURPOSE: Differentiating ischemic brain damage is critical for decision making in acute stroke treatment for better outcomes. We examined the sensitivity of amide proton transfer (APT) MRI, a pH-weighted imaging technique, to achieve this differentiation. METHODS: In a rat stroke model, the ischemic core, oligemia, and the infarct-growth region (IGR) were identified by tracking the progression of the lesions. APT MRI signals were measured alongside ADC, T1, and T2 maps to evaluate their sensitivity in distinguishing ischemic tissues. Additionally, stroke under hyperglycemic conditions was studied. RESULTS: The APT signal in the IGR decreased by about 10% shortly after stroke onset, and further decreased to 35% at 5 h, indicating a progression from mild to severe acidosis as the lesion evolved into infarction. Although ADC, T1, and T2 contrasts can only detect significant differences between the IGR and oligemia for a portion of the stroke duration, APT contrast consistently differentiates between them at all time points. However, the contrast to variation ratio at 1 h is only about 20% of the contrast to variation ratio between the core and normal tissues, indicating limited sensitivity. In the ischemic core, the APT signal decreases to about 45% and 33% of normal tissue level at 1 h for the normoglycemic and hyperglycemic groups, respectively, confirming more severe acidosis under hyperglycemia. CONCLUSION: The sensitivity of APT MRI is high in detecting severe acidosis of the ischemic core but is much lower in detecting mild acidosis, which may affect the accuracy of differentiation between the IGR and oligemia.

4.
Catheter Cardiovasc Interv ; 103(5): 695-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419416

RESUMO

BACKGROUND: The use of the Indigo CAT RX Aspiration System (Penumbra Inc.) during percutaneous coronary intervention has received limited study. METHODS: We retrospectively examined the clinical, angiographic, and procedural characteristics, outcomes, and follow-up of patients who underwent mechanical aspiration thrombectomy with the Indigo CAT RX system (Penumbra Inc.) at a large tertiary care hospital between January 2019 and April 2023. RESULTS: During the study period, 83 patients (85 lesions) underwent thrombectomy with the Indigo CAT RX. Mean patient age was 64.9 ± 14.48 years and 31.2% were women. The most common presentations were ST-segment elevation myocardial infarction (MI) (66.2%) and non-ST-segment elevation MI (26.5%). A final thrombolysis in MI flow grade of 3 and final myocardial blush grade of 3 were achieved in 76% and 46% of the cases, respectively. Technical success was achieved in 88.9% of the cases that included Indigo CAT RX treatment only, compared with 57.1% of the cases that also included manual aspiration. There were no device-related serious adverse events. At 30-day postprocedure, the incidence of major adverse cardiac events (composite of cardiovascular death, recurrent MI, cardiogenic shock, new or worsening New York Heart Association Class IV heart failure, stroke) was 8.5%: 1.3% stroke (postprocedure, in-hospital), 1.3% MI, 6.1% cardiac death, and 7.5% developed cardiogenic shock. CONCLUSIONS: Use of the Indigo CAT RX system is associated with high technical success and acceptable risk of complications, including stroke.


Assuntos
Trombose Coronária , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Índigo Carmim , Choque Cardiogênico/etiologia , Estudos Retrospectivos , Resultado do Tratamento , Trombectomia/efeitos adversos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Acidente Vascular Cerebral/etiologia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Trombose Coronária/etiologia
5.
Catheter Cardiovasc Interv ; 103(6): 1050-1061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363035

RESUMO

INTRODUCTION: Right-side infective endocarditis (RSIE) is caused by microorganisms and develops into intracardiac and extracardiac complications with high in-hospital and 1-year mortality. Treatments involve antibiotic and surgical intervention. However, those presenting with extremes e.g. heart failure, or septic shock who are not ideal candidates for conventional medical therapy might benefit from minimally invasive procedures. OBJECTIVE: This review summarizes existing observational studies that reported minimally invasive procedures to debulk vegetation due to infective endocarditis either on valve or cardiac implantable electronic devices. METHODS: A targeted literature review was conducted to identify studies published in PubMed/MEDLINE, EMBASE, and Cochrane Central Database from January 1, 2015 to June 5, 2023. The efficacy and/or effectiveness of minimally invasive procedural interventions to debulk vegetation due to RSIE were summarized following PRISMA guidelines. RESULTS: A total of 11 studies with 208 RSIE patients were included. There were 9 studies that assessed the effectiveness of the AngioVac system and 2 assessed the Penumbra system. Overall procedure success rate was 87.9%. Among 8 studies that reported index hospitalization, 4 studies reported no death, while the other 4 studies reported 10 deaths. CONCLUSIONS: This study demonstrates that multiple systems can provide minimally invasive procedure options for patients with RSIE with high procedural success. However, there are mixed results regarding complications and mortality rates. Further large cohort studies or randomized clinical trials are warranted to assess and/or compare the efficacy and safety of these systems.


Assuntos
Endocardite Bacteriana , Humanos , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/instrumentação , Cateterismo Cardíaco/mortalidade , Endocardite/cirurgia , Endocardite/mortalidade , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/mortalidade , Endocardite Bacteriana/cirurgia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/instrumentação , Implante de Prótese de Valva Cardíaca/mortalidade , Estudos Observacionais como Assunto , Infecções Relacionadas à Prótese/mortalidade , Infecções Relacionadas à Prótese/cirurgia , Fatores de Risco , Resultado do Tratamento
6.
J Appl Clin Med Phys ; 25(4): e14247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38131514

RESUMO

BACKGROUND: Beam modifying accessories for proton therapy often need to be placed in close proximity of the patient for optimal dosimetry. However, proton treatment units are larger in size and as a result the planned treatment geometry may not be achievable due to collisions with the patient. A framework that can accurately simulate proton treatment geometry is desired. PURPOSE: A quantitative framework was developed to model patient-specific proton treatment geometry, minimize air gap, and avoid collisions. METHODS: The patient's external contour is converted into the International Electrotechnique Commission (IEC) gantry coordinates following the patient's orientation and each beam's gantry and table angles. All snout components are modeled by three-dimensional (3D) geometric shapes such as columns, cuboids, and frustums. Beam-specific parameters such as isocenter coordinates, snout type and extension are used to determine if any point on the external contour protrudes into the various snout components. A 3D graphical user interface is also provided to the planner to visualize the treatment geometry. In case of a collision, the framework's analytic algorithm quantifies the maximum protrusion of the external contour into the snout components. Without a collision, the framework quantifies the minimum distance of the external contour from the snout components and renders a warning if such distance is less than 5 cm. RESULTS: Three different snout designs are modeled. Examples of potential collision and its aversion by snout retraction are demonstrated. Different patient orientations, including a sitting treatment position, as well as treatment plans with multiple isocenters, are successfully modeled in the framework. Finally, the dosimetric advantage of reduced air gap enabled by this framework is demonstrated by comparing plans with standard and reduced air gaps. CONCLUSION: Implementation of this framework reduces incidence of collisions in the treatment room. In addition, it enables the planners to minimize the air gap and achieve better plan dosimetry.


Assuntos
Terapia com Prótons , Humanos , Prótons , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
7.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791292

RESUMO

Acute ischemic stroke (AIS) is a challenging disease, which needs urgent comprehensive management. Endovascular thrombectomy (EVT), alone or combined with iv thrombolysis, is currently the most effective therapy for patients with acute ischemic stroke (AIS). However, only a limited number of patients are eligible for this time-sensitive treatment. Even though there is still significant room for improvement in the management of this group of patients, up until now there have been no alternative therapies approved for use in clinical practice. However, there is still hope, as clinical research with novel emerging therapies is now generating promising results. These drugs happen to stop or palliate some of the underlying molecular mechanisms involved in cerebral ischemia and secondary brain damage. The aim of this review is to provide a deep understanding of these mechanisms and the pathogenesis of AIS. Later, we will discuss the potential therapies that have already demonstrated, in preclinical or clinical studies, to improve the outcomes of patients with AIS.


Assuntos
Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/terapia , AVC Isquêmico/terapia , Animais , Trombectomia/métodos , Gerenciamento Clínico , Isquemia Encefálica/terapia , Terapia Trombolítica/métodos
8.
Phys Imaging Radiat Oncol ; 29: 100564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38544867

RESUMO

Background and Purpose: The effort to translate clinical findings across institutions employing different relative biological effectiveness (RBE) models of ion radiotherapy has rapidly grown in recent years. Nevertheless, even for a chosen RBE model, different implementations exist. These approaches might consider or disregard the dose-dependence of the RBE and the radial variation of the radiation quality around the beam axis. This study investigated the theoretical impact of disregarding these effects during the RBE calculations. Materials and Methods: Microdosimetric simulations were carried out using the Monte Carlo code PHITS along the spread out Bragg peaks of 1H, 4He, 12C, 16O, and 20Ne ions in a water phantom. The RBE was computed using different implementations of the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM) and the modified MKM, considering or not the radial variation of the radiation quality in the penumbra of the ion beams and the dose-dependence of the RBE. Results: For an OAR located 5 mm laterally from the target volume, disregarding the radial variation of the radiation quality or the dose-dependence of the RBE could result in an overestimation of the RBE-weighted dose up to a factor of âˆ¼ 3.5 or âˆ¼ 1.7, respectively. Conclusions: The RBE-weighted dose to OARs close to the tumor volume was substantially impacted by the approach employed for the RBE calculations, even when using the same RBE model and cell line. Therefore, care should be taken in considering these differences while translating clinical findings between institutions with dissimilar approaches.

9.
Cardiovasc Intervent Radiol ; 47(3): 379-385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409560

RESUMO

PURPOSE: Residual or undertreated inflow disease is a major cause of stent occlusion following endovascular thrombectomy for iliofemoral deep venous thrombosis (DVT). The profunda femoral vein (PFV) is an important inflow vessel alongside the femoral vein but is traditionally challenging to treat via an antegrade popliteal approach. This technical note describes a novel approach for PFV clearance in iliofemoral thrombectomy via the popliteal vein. MATERIALS AND METHODS: Eight patients underwent PFV clearance as part of iliofemoral DVT thrombectomy via an antegrade popliteal approach. In seven patients, a popliteal-profunda communicating vessel was identified permitting PFV access and thrombectomy. In one patient, a popliteal-profunda communicator was not identified and an 'up and over' approach via the femoral bifurcation from the same popliteal access was utilised. Thrombectomy was performed using the Inari ClotTriever device or Penumbra's Indigo system. RESULTS: Technical success in PFV thrombectomy was 100%. Six patients (75%) underwent stenting for an iliac stenotic lesion or May Thurner compression point. At the four-week ultrasound follow-up, the pelvic iliofemoral segment was patent in 7 patients (87.5%). The PFV was patent in 7 patients (87.5%) whereas the FV was only patent in 4 patients (50%). One patient underwent reintervention for iliofemoral stent occlusion. No PFV injury occurred and no post-procedure profunda reflux was identified. CONCLUSION: PFV clearance can be achieved via an antegrade popliteal approach in iliofemoral thrombectomy to optimise inflow, negating the need for alternative or additional venous access. PFV may maintain upstream iliofemoral vein patency even with an occluded femoral vein. LEVEL OF EVIDENCE: Level 4, Case Series.


Assuntos
Veia Femoral , Trombose Venosa , Humanos , Terapia Trombolítica/métodos , Resultado do Tratamento , Trombectomia/métodos , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/cirurgia , Stents , Veia Ilíaca/diagnóstico por imagem , Veia Ilíaca/cirurgia , Estudos Retrospectivos , Grau de Desobstrução Vascular
10.
Neuromolecular Med ; 26(1): 8, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546874

RESUMO

This study focuses on understanding the role of c-Myc, a cancer-associated transcription factor, in the penumbra following ischemic stroke. While its involvement in cell death and survival is recognized, its post-translational modifications, particularly acetylation, remain understudied in ischemia models. Investigating these modifications could have significant clinical implications for controlling c-Myc activity in the central nervous system. Although previous studies on c-Myc acetylation have been limited to non-neuronal cells, our research examines its expression in perifocal cells during stroke recovery to explore regulatory mechanisms via acetylation. We found that in peri-infarct neurons, c-Myc is upregulated with acetylation at K148 but not K323 during the acute phase of stroke, with SIRT2 deacetylase primarily affecting K148 acetylation. Molecular dynamics simulations suggest that lysine 148 plays a crucial role in stabilizing c-Myc spatial structure. Increased acetylation at K148 reduces c-Myc compaction, potentially limiting its nuclear penetration, promoting calpain-mediated cleavage, and decreasing nuclear localization. Additionally, cytoplasmic acetylation at K148 may alter c-Myc's interaction with unidentified proteins, potentially influencing its pro-apoptotic effects and promoting cytoplasmic accumulation. Targeting SIRT2 with selective inhibitors could be a promising avenue for future stroke therapy strategies.


Assuntos
Sirtuína 2 , Acidente Vascular Cerebral , Humanos , Lisina/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Acidente Vascular Cerebral/metabolismo , Isquemia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
11.
J Cereb Blood Flow Metab ; : 271678X241248502, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639008

RESUMO

Ischaemic stroke results in the formation of a cerebral infarction bordered by an ischaemic penumbra. Characterising the proteins within the ischaemic penumbra may identify neuro-protective targets and novel circulating markers to improve patient care. This review assessed data from studies using proteomic platforms to compare ischaemic penumbra tissues to controls following experimental stroke in animal models. Proteins reported to differ significantly between penumbra and control tissues were analysed in silico to identify protein-protein interactions and over-represented pathways. Sixteen studies using rat (n = 12), mouse (n = 2) or primate (n = 2) models were included. Heterogeneity in the design of the studies and definition of the penumbra were observed. Analyses showed high abundance of p53 in the penumbra within 24 hours of permanent ischaemic stroke and was implicated in driving apoptosis, cell cycle progression, and ATM- MAPK- and p53- signalling. Between 1 and 7 days after stroke there were changes in the abundance of proteins involved in the complement and coagulation pathways. Favourable recovery 1 month after stroke was associated with an increase in the abundance of proteins involved in wound healing. Poor recovery was associated with increases in prostaglandin signalling. Findings suggest that p53 may be a target for novel therapeutics for ischaemic stroke.

12.
Neurotherapeutics ; : e00387, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38918128

RESUMO

The precise oxygen content thresholds of ischemic deep parenchymal (OCIDP) and that in cortical microcirculation (OCCM), which leads to ischemic penumbra converting into the infarcted core, remain uncertain. This study employed an invasive fiber-optic oxygen meter and a newly developed oxygen-responsive probe called RuA3-Cy5-rtPA (RC-rtPA) based on recombinant tissue-type plasminogen activator (rtPA) to examine the oxygen content thresholds. A mouse model of middle cerebral artery occlusion was generated and animals were randomly divided into a sham, 24-h reperfusion after 3-h ischemia (IR 3-h), and IR 6-h groups, all of which were sacrificed following reperfusion. Stroke severity was evaluated based on the infarction area, neurological symptoms, microcirculation perfusion, and microemboli in microcirculation. OCIDP was characterized based on its extent and distribution, whereas OCCM was measured using RC-rtPA. During ischemia, stroke severity escalation manifested as increasing infarction area, severe neurologic symptoms, and poorer microcirculation perfusion with more microthrombi depositions. OCIDP presented rapid decline following artery occlusion along with a gradual increase in the hypoxic area. Within 3 â€‹h following ischemia induction, the ischemic tissue that experienced hypoxia could be rescued, and this reversibility would disappear after 6 â€‹h. Within 6 â€‹h, OCCM continued to decrease. A significant decrease in oxygen content in cortical venules and cortical parenchyma was observed. These findings assist in establishing the extent of the ischemic penumbra at the microcirculation level and offer a foundation for assessing the ischemic penumbra that could respond positively to reperfusion therapy beyond the typical time window.

13.
J Neuroimaging ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932469

RESUMO

BACKGROUND AND PURPOSE: In acute ischemic stroke (AIS) due to large-vessel occlusion (LVO), the relationship between cerebral oxygen extraction fraction (OEF) as the hallmark of the ischemic penumbra and leptomeningeal collateral supply is not well established. We aimed to investigate the relationship between pial collateralization and tissue oxygen extraction in patients with LVO using magnetic resonance imaging (MRI). METHODS: Data from 14 patients with anterior circulation LVO who underwent MRI before acute stroke treatment were analyzed. In addition to diffusion-weighted imaging and perfusion-weighted imaging (PWI), the protocol comprised sequences for multiparametric quantitative blood-oxygen-level-dependent imaging for the calculation of relative OEF (rOEF). Pial collateral supply was quantitatively assessed by analyzing the signal variance in T2*-weighted PWI time series. Relationships between collateral supply, infarct volume, rOEF in peri-infarct hypoperfused tissue, and clinical stroke severity were assessed. RESULTS: The PWI-based parameter quantifying collateral supply was negatively correlated with baseline ischemic core volume and rOEF in the hypoperfused peri-infarct area (p < .01). Both reduced collateral supply and increased rOEF correlated significantly with higher scores on the National Institutes of Health Stroke Scale (p < .05). Increased rOEF within hypoperfused tissue was associated with higher baseline (p = .043) and follow-up infarct volume (p = .009). CONCLUSIONS: Signal variance-based mapping of collaterals with PWI depicts pial collateral supply, which is closely tied to tissue pathophysiology and clinical and imaging outcomes. Magnetic-resonance-derived mapping of cerebral rOEF reveals penumbral characteristics of hypoperfused tissue and might provide a promising imaging biomarker in AIS.

14.
Redox Biol ; 73: 103185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759419

RESUMO

During cerebral ischemia-reperfusion conditions, the excessive reactive oxygen species in the ischemic penumbra region, resulting in neuronal oxidative stress, constitute the main pathological mechanism behind ischemia-reperfusion damage. Swiftly reinstating blood perfusion in the ischemic penumbra zone and suppressing neuronal oxidative injury are key to effective treatment. Presently, antioxidants in clinical use suffer from low bioavailability, a singular mechanism of action, and substantial side effects, severely restricting their therapeutic impact and widespread clinical usage. Recently, nanomedicines, owing to their controllable size and shape and surface modifiability, have demonstrated good application potential in biomedicine, potentially breaking through the bottleneck in developing neuroprotective drugs for ischemic strokes. This manuscript intends to clarify the mechanisms of cerebral ischemia-reperfusion injury and provides a comprehensive review of the design and synthesis of antioxidant nanomedicines, their action mechanisms and applications in reversing neuronal oxidative damage, thus presenting novel approaches for ischemic stroke prevention and treatment.


Assuntos
Antioxidantes , Isquemia Encefálica , Nanomedicina , Estresse Oxidativo , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/administração & dosagem , Humanos , Nanomedicina/métodos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem
15.
Artigo em Inglês | MEDLINE | ID: mdl-39151448

RESUMO

PURPOSE: This work investigates the small-field dosimetric characteristics of a 2.5 MV sintered diamond target beam and its feasibility for use in linac-based intracranial stereotactic treatments. Due to the increased proportion of low energy photons in the low-Z beam, it was hypothesized that this novel beam would provide sharper dose fall-off compared to the 6 MV beam owing to the reduced energy, and therefore range, of secondary electrons. MATERIAL AND METHODS: Stereotactic treatments of ocular melanoma and trigeminal neuralgia were simulated for 2.5 MV low-Z and 6 MV beams using Monte Carlo to calculate dose in a voxelized anatomical phantom. Two collimation methods were investigated, including a 5x3 mm2 HDMLC field and a 4 mm cone to demonstrate isolated and combined effects of geometric and radiological contributions to the penumbral width. RESULTS: The measured 2.5 MV low-Z dosimetric profiles demonstrated reduced penumbra by 0.5 mm in both the inline and crossline directions across all depths for both collimation methods, compared to 6 MV. In both treatment cases, the 2.5 MV low-Z beam collimated with the 4 mm cone produced the sharpest dose fall off in profiles captured through isocenter. This improved fall-off resulted in a 59% decrease to the maximum brainstem dose in the trigeminal neuralgia case for the 2.5 MV low-Z MLC collimated beam compared to 6 MV. Reductions to the maximum and mean doses to ipsilateral and contralateral OARs in the ocular melanoma case were observed for the 2.5 MV low-Z beam compared to 6 MV with both collimation methods. CONCLUSIONS: While the low dose rate of this novel beam prohibits immediate clinical translation, the results of this study support the further development of this prototype beam to decrease toxicity in intracranial SRS treatments. .

16.
Cureus ; 16(7): e64482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39139331

RESUMO

One of the recent trends in radiation therapy is to increase conformal and accurate dose delivery such as in stereotactic radiosurgery (SRS). Treating small lesions and brain disorders requires the accurate placement of small radiation fields deep inside the human cranium. To design a collimator meeting these requirements, a new numerical concept was developed, which is presented here. The algorithm proposed here can generate beam profiles of plural collimation apertures and arbitrary initial beam spot distributions in a time-efficient method. It is an ideal tool to optimize collimator design for penumbra, dose rate, and field size. The intensity of the source beam spot is divided into slices, and each slice is projected onto the treatment plane at the isocenter through the collimator apertures. The illuminated field range and intensity are determined by geometry and the intensity of that slice of beam source, respectively. By integrating the projected intensity across all the slices of the source profile, the profile on the treatment plane is obtained. The algorithm is used to generate beam profiles of a conical pencil beam collimator system and compare them to the Monte Carlo simulation as well as measurements. It can also be used to demonstrate the impact of collimator shape on the beam penumbra, dose rate, and field size. The projection integration method provides a quick and informative tool for collimator design. The results were validated with the Monte Carlo simulation and measurements. This method was demonstrated to be effective for optimizing beam characteristics.

17.
J Egypt Natl Canc Inst ; 36(1): 22, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910202

RESUMO

BACKGROUND: Innovations in cancer treatment have contributed to the improved survival rate of cancer patients. The cancer survival rates have been growing and nearly two third of those survivors have been exposed to clinical radiation during their treatment. The study of long-term radiation effects, especially secondary cancer induction, has become increasingly important. An accurate assessment of out-of-field/peripheral dose (PDs) is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. This study was designed to measure the PDs as a function of dose, distances, and depths from Telecobalt-60 (Co-60) beam in water phantom using thermoluminescent dosimeter-100 (TLD-100). METHODS: The PDs were measured for Co-60 beam at specified depths of 0 cm (surface), 5 cm, 10 cm, and 15 cm outside the radiation beam at distances of 5, 10, and 13 cm away from the radiation field edge using TLD-100 (G1 cards) as detectors. These calibrated cards were placed on the acrylic disc in circular tracks. The radiation dose of 2000 mGy of Co-60 beam was applied inside 10 × 10 cm2 field size at constant source to surface distance (SSD) of 80 cm. RESULTS: The results showed maximum and minimum PDs at surface and 5 cm depth respectively at all distances from the radiation field edge. Dose distributions out of the field edge with respect to distance were isotropic. The decrease in PDs at 5 cm depth was due to dominant forward scattering of Co-60 gamma rays. The increase in PDs beyond 5 cm depth was due to increase in the irradiated volume, increase in penumbra, increase in source to axis distance (SAD), and increase in field size due to inverse square factor. CONCLUSION: It is concluded that the PDs depends upon depth and distance from the radiation field edge. All the measurements show PDs in the homogenous medium (water); therefore, it estimates absorbed dose to the organ at risk (OAR) adjacent to cancer tissues/planning target volume (PTV). It is suggested that PDs can be minimized by using the SAD technique, as this technique controls sources of scattered radiation like inverse square factor and effect of penumbra up-to some extent.


Assuntos
Radioisótopos de Cobalto , Imagens de Fantasmas , Dosagem Radioterapêutica , Dosimetria Termoluminescente , Humanos , Dosimetria Termoluminescente/métodos , Água , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias/radioterapia , Doses de Radiação , Órgãos em Risco/efeitos da radiação
18.
Biomedicines ; 12(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38672167

RESUMO

Ischemic stroke poses a significant global health challenge, necessitating ongoing exploration of its pathophysiology and treatment strategies. This comprehensive review integrates various aspects of ischemic stroke research, emphasizing crucial mechanisms, therapeutic approaches, and the role of clinical imaging in disease management. It discusses the multifaceted role of Netrin-1, highlighting its potential in promoting neurovascular repair and mitigating post-stroke neurological decline. It also examines the impact of blood-brain barrier permeability on stroke outcomes and explores alternative therapeutic targets such as statins and sphingosine-1-phosphate signaling. Neurocardiology investigations underscore the contribution of cardiac factors to post-stroke mortality, emphasizing the importance of understanding the brain-heart axis for targeted interventions. Additionally, the review advocates for early reperfusion and neuroprotective agents to counter-time-dependent excitotoxicity and inflammation, aiming to preserve tissue viability. Advanced imaging techniques, including DWI, PI, and MR angiography, are discussed for their role in evaluating ischemic penumbra evolution and guiding therapeutic decisions. By integrating molecular insights with imaging modalities, this interdisciplinary approach enhances our understanding of ischemic stroke and offers promising avenues for future research and clinical interventions to improve patient outcomes.

19.
J Cereb Blood Flow Metab ; : 271678X241258569, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806143

RESUMO

This study measured the relationship between pial collateral (leptomeningeal anastomoses, LMA) flow, intraparenchymal cortical cerebral blood flow (cCBF) and brain tissue oxygenation (btO2) during acute ischemic stroke to investigate how pial flow translates to downstream cCBF and btO2 and examined how this relationship is altered in hypertension. Proximal transient middle cerebral artery occlusion (tMCAO) was performed in male Wistar (n = 8/group) and Spontaneously Hypertensive Rats (SHR, n = 8/group). A combination laser Doppler-oxygen probe was placed within the expected cortical peri-infarct in addition to a surface laser doppler probe which measured LMA flow. Phenylephrine (PE) was infused 30 minutes into tMCAO to increase blood pressure (BP) by 30% for 10 minutes and assessed CBF autoregulation. During the initial 30-minute period of tMCAO, btO2 and cCBF were lower in SHR compared to Wistar rats (btO2: 11.5 ± 10.5 vs 17.5 ± 10.8 mmHg and cCBF: -29.7 ± 23.3% vs -17.8 ± 41.9%); however, LMA flow was similar between groups. The relationship between LMA flow, cCBF and btO2 were interdependent in Wistar rats. However, this relationship was disrupted in SHR rats and partially restored by induced hypertension. This study provides evidence that cCBF and btO2 were diminished during tMCAO in chronic hypertension, and that induced hypertension was beneficial regardless of hypertensive status.

20.
Magn Reson Imaging ; 112: 47-53, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38909765

RESUMO

INTRODUCTION: Although ischemia-reperfusion (I/R) injury varies between cortical and subcortical regions, its effects on specific regions remain unclear. In this study, we used various magnetic resonance imaging (MRI) techniques to examine the spatiotemporal dynamics of I/R injury within the salvaged ischemic penumbra (IP) and reperfused ischemic core (IC) of a rodent model, with the aim of enhancing therapeutic strategies by elucidating these dynamics. MATERIALS AND METHODS: A total of 17 Sprague-Dawley rats were subjected to 1 h of transient middle cerebral artery occlusion with a suture model. MRI, including diffusion tensor imaging (DTI), T2-weighted imaging, perfusion-weighted imaging, and T1 mapping, was conducted at multiple time points for up to 5 days during the I/R phases. The spatiotemporal dynamics of blood-brain barrier (BBB) modifications were characterized through changes in T1 within the IP and IC regions and compared with mean diffusivity (MD), T2, and cerebral blood flow. RESULTS: During the I/R phases, the MD of the IC initially decreased, normalized after recanalization, decreased again at 24 h, and peaked on day 5. By contrast, the IP remained relatively stable. Both the IP and IC exhibited hyperperfusion, with the IP reaching its peak at 24 h, followed by resolution, whereas hyperperfusion was maintained in the IC until day 5. Despite hyperperfusion, the IP maintained an intact BBB, whereas the IC experienced persistent BBB leakage. At 24 h, the IC exhibited an increase in the T2 signal, corresponding to regions exhibiting BBB disruption at 5 days. CONCLUSIONS: Hyperperfusion and BBB impairment have distinct patterns in the IP and IC. Quantitative T1 mapping may serve as a supplementary tool for the early detection of malignant hyperemia accompanied by BBB leakage, aiding in precise interventions after recanalization. These findings underscore the value of MRI markers in monitoring ischemia-specific regions and customizing therapeutic strategies to improve patient outcomes.


Assuntos
Circulação Cerebrovascular , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Ratos , Traumatismo por Reperfusão/diagnóstico por imagem , Masculino , Modelos Animais de Doenças , Barreira Hematoencefálica/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Isquemia Encefálica/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA