Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioorg Chem ; 139: 106677, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352721

RESUMO

Here we report a detailed structure-activity relationship (SAR) study related to [1,2,4]triazolo[4,3-a]quinoxaline-based compounds targeting the reader module of bromodomain containing-protein 9 (BRD9). 3D structure-based pharmacophore models, previously introduced by us, were here employed to evaluate a second generation of compounds, exploring different substitution patterns on the heterocyclic core. Starting from the promising data obtained from our previously identified [1,2,4]triazolo[4,3-a]quinoxaline-based compounds 1-4, the combination of in silico studies, chemical synthesis, biophysical and in vitro assays led to the identification of a new set of derivatives, selected for thoroughly exploring the chemical space of the bromodomain binding site. In more details, the investigation of different linkers at C-4 position highlighted the amine spacer as mandatory for the binding with the protein counterpart and the crucial role of the alkyl substituents at C-1 for increasing the selectivity toward BRD9. Additionally, the importance of a hydrogen bond donor group, critical to anchor the ZA region and required for the interaction with Ile53 residue, was inferred from the analysis of our collected results. Herein we also propose an optimization and an update of our previously reported "pharm-druglike2" 3D structure-based pharmacophore model, introducing it as "pharm-druglike2.1". Compounds 24-26, 32, 34 and 36 were identified as new valuable BRD9 binders featuring IC50 values in the low micromolar range. Among them, 24 and 36 displayed an excellent selectivity towards BRD9 and a good antiproliferative effect on a panel of leukemia models, especially toward CCRF-CEM cell line, with no cytotoxicity on healthy cells. Notably, the interaction of 24 and 36 with the bromodomain and PHD finger-containing protein 1 (BRPF1) also emerged, disclosing them as new and unexplored dual inhibitors for these two proteins highly involved in leukemia. These findings highlight the potential for the identification of new attractive dual epidrugs as well as a promising starting point for the development of chemical degraders endowed with anticancer activities.


Assuntos
Leucemia , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Quinoxalinas/farmacologia , Quinoxalinas/química , Relação Estrutura-Atividade , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Bioorg Chem ; 114: 105149, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252860

RESUMO

For the Alzheimer's disease (AD) with complex pathogenesis, single target drugs represent one of the most effective therapeutic strategies in clinical. However, the traditional concept of "a disease, a target" is difficult to find very effective drugs, and multi-target drugs have already become new hot spot in drug development for this disease. In our present study, our efforts toward discovering new cholinesterase (ChE) inhibitors aided by computational methods will provide useful information as anti-AD agents in the future. The best 3D-QSAR acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors pharmacophore hypotheses Hypo1 A and Hypo1 B were generated and validated by HypoGen program in Discovery Studio 2016 based on the training set of flavonoids, and then they were used as 3D query for screening the ZINC database. Next, the hit molecules were then subjected to the ADMET and molecular docking study to prioritize the compounds. Finally, 6 compounds showed good estimated activities and promising ADMET properties. The result of best compound ZINC08751495 with AChE estimate activity (0.028), BChE estimate activity (1.55), AChE fit value (9.369), BChE fit value (8.415), AChE -CDOCKER ENERGY (30.22), BChE -CDOCKER ENERGY (33.13) has the potential for further development as a supplement to treat Alzheimer's disease.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade
3.
Molecules ; 26(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071039

RESUMO

ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 µM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
4.
Bioorg Chem ; 98: 103706, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199302

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is emerging as a promising yet challenging target for drug discovery. To identify natural products as new prototypes for PTP1B inhibitors, we employed a hierarchical protocol combining ligand-based and structure-based approaches for virtual screening against natural product libraries. Twenty-six compounds were prioritized for enzymatic evaluation against PTP1B, and ten of them were recognized as potent PTP1B inhibitors with IC50 values at the micromolar level. Notably, nine compounds demonstrated evident selectivity to PTP1B over four other PTPs, including the most homologous T-cell protein tyrosine phosphatase (TCPTP). The results implicated that the structural uniqueness of the natural products might be a potential solution to the selectivity issue associated with the target PTP1B.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Molecules ; 24(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394858

RESUMO

Dipeptidyl peptidase-IV (DPP-IV) rapidly breaks down the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). Thus, the use of DPP-IV inhibitors to retard the degradation of endogenous GLP-1 is a possible mode of therapy correcting the defect in incretin-related physiology. The aim of this study is to find a new small molecule and explore the inhibition activity to the DPP-IV enzyme using a computer aided simulation. In this study, the predicted compounds were suggested as potent anti-diabetic candidates. Chosen structures were applied following computational strategies: The generation of the three-dimensional quantitative structure-activity relationship (3D QSAR) pharmacophore models, virtual screening, molecular docking, and de novo Evolution. The method also validated by performing re-docking and cross-docking studies of seven protein systems for which crystal structures were available for all bound ligands. The molecular docking experiments of predicted compounds within the binding pocket of DPP-IV were conducted. By using 25 training set inhibitors, ten pharmacophore models were generated, among which hypo1 was the best pharmacophore model with the best predictive power on account of the highest cost difference (352.03), the lowest root mean squared deviation (RMSD) (2.234), and the best correlation coefficient (0.925). Hypo1 pharmacophore model was used for virtual screening. A total of 161 compounds including 120 from the databases, 25 from the training set, 16 from the test set were selected for molecular docking. Analyzing the amino acid residues of the ligand-receptor interaction, it can be concluded that Arg125, Glu205, Glu206, Tyr547, Tyr662, and Tyr666 are the main amino acid residues. The last step in this study was de novo Evolution that generated 11 novel compounds. The derivative dpp4_45_Evo_1 by all scores CDOCKER_ENERGY (CDOCKER, -41.79), LigScore1 (LScore1, 5.86), LigScore2 (LScore2, 7.07), PLP1 (-112.01), PLP2 (-105.77), PMF (-162.5)-have exceeded the control compound. Thus the most active compound among 11 derivative compounds is dpp4_45_Evo_1. Additionally, for derivatives dpp4_42_Evo_1, dpp4_43_Evo2, dpp4_46_Evo_4, and dpp4_47_Evo_2, significant upward shifts were recorded. The consensus score for the derivatives of dpp4_45_Evo_1 from 1 to 6, dpp4_43_Evo2 from 4 to 6, dpp4_46_Evo_4 from 1 to 6, and dpp4_47_Evo_2 from 0 to 6 were increased. Generally, predicted candidates can act as potent occurring DPP-IV inhibitors given their ability to bind directly to the active sites of DPP-IV. Our result described that the 6 re-docked and 27 cross-docked protein-ligand complexes showed RMSD values of less than 2 Å. Further investigation will result in the development of novel and potential antidiabetic drugs.


Assuntos
Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Animais , Sítios de Ligação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
6.
Bioorg Med Chem ; 26(8): 1573-1578, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29459146

RESUMO

In this study, a series of 2-arylthio-5-iodo pyrimidine derivatives, as non-nucleoside hepatitis B virus inhibitors, were evaluated and firstly reported as potential anti-HBV agents. To probe the mechanism of active agents, DHBV polymerase was isolated and a non-radioisotopic assay was established for measuring HBV polymerase. The biological results demonstrated that 2-arylthio-5-iodo pyrimidine derivatives targeted HBV polymerase. In addition, pharmacophore models were constructed for future optimization of lead compounds. Further study will be performed for the development of non-nucleoside anti-HBV agents.


Assuntos
Antivirais/farmacologia , Produtos do Gene pol/antagonistas & inibidores , Vírus da Hepatite B/efeitos dos fármacos , Pirimidinas/farmacologia , Compostos de Sulfidrila/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Patos , Produtos do Gene pol/metabolismo , Células Hep G2 , Humanos , Fígado/virologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Inibidores da Transcriptase Reversa , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
7.
Bioorg Chem ; 76: 400-414, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29258018

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder. Substrate-specific Acetylcholinesterase (AChE) plays a vital role in the AD treatment. Flavonoids with AChE inhibitory activities and low toxicity are used to developing new anti-AD agents. In this study, the best 3D QSAR pharmacophore model Hypo1 was generated by HypoGen program in Discovery Studio2016 based on the training set of flavonoids. We performed a virtual screening from Traditional Chinese Medicine (TCM), Druglike and MiniMaybridge databases using Hypo1. From docking analyses, we got the top 10 AChE inhibitors which were further evaluated by 8 different scoring functions. De Novo Evolution designed the top 10 derivatives, and three potential AChE inhibitor candidates were obtained eventually.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Bases de Dados como Assunto , Desenho de Fármacos , Medicina Tradicional Chinesa , Algoritmos , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
8.
Biochem Biophys Res Commun ; 491(4): 1105-1111, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28789944

RESUMO

Enormous efforts have been endeavored to develop inhibitors against the potential therapeutic target, mycobacterium tuberculosis 3-dehydroquinate dehydratase (MtbDHQase) to combat resistance. Over a dozen of small molecules have been crystallized to characterize the structural basis of the inhibition. However, the studies accomplished so far, have not incorporated all the essential interactions of these complexes simultaneously, to identify the novel inhibitors. Therefore, an attempt was made to construct the pharmacophore models and identify the essential features that can be employed to prioritize the molecules against this target. Based on validation and expertise, we have identified such complimentary features from the natural compounds that can be used as initial hits. Subsequently, these hits were tested for their inhibitory roles in reducing the mycobacterium tuberculosis (Mtb) culture growth. Moreover, the docking simulations were performed to seek the possible interactions accountable for the activity of these candidates against MtbDHQase.


Assuntos
Antituberculosos/farmacologia , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Hidroliases/antagonistas & inibidores , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Produtos Biológicos/química , Inibidores Enzimáticos/química , Hidroliases/metabolismo , Testes de Sensibilidade Microbiana , Conformação Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Relação Estrutura-Atividade
9.
Handb Exp Pharmacol ; 244: 51-79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620761

RESUMO

In the first part of this chapter, we summarize the various pharmacophore models for σ1 receptor ligands. Common to all of them is a basic amine flanked by two hydrophobic regions, representing the pharmacophoric elements. The development of computer-based models like the 3D homology model is described as well as the first crystal structure of the σ1 receptor. The second part focuses on the synthesis and biological properties of different σ1 receptor ligands, identified as 1-9. Monocyclic piperazines 1 and bicyclic piperazines 2 and 3 were developed as cytotoxic compounds, thus the IC50 values of cell growth and survival inhibition studies are given for all derivatives. The mechanism of cell survival inhibition, induction of time-dependent apoptosis, of compound ent-2a is discussed. Experimentally determined σ1 affinity shows good correlation with the results from molecular dynamics simulations based on a 3D homology model. Spirocyclic compounds 4 and 5 represent well-established σ1 receptor ligands. The homologous fluoroalkyl derivatives 4 have favorable pharmacological properties for use as fluorinated PET tracers. The (S)-configured fluoroethyl substituted compound (S)-4b is under investigation as PET tracer for imaging of σ1 receptors in the brain of patients affected by major depression. 1,3-Dioxanes 6c and 6d display a very potent σ1 antagonist profile and the racemic 1,3-dioxane 6c has high anti-allodynic activity at low doses. The arylpropenylamines 7 are very potent σ1 receptor ligands with high σ1/σ2 selectivity. The top compound 7g acts as an agonist as defined by its ability to potentiate neurite outgrowth at low concentrations. Among the morpholinoethoxypyrazoles 8, 8c (known as S1RA) reveals the most promising pharmacokinetic and physicochemical properties. Due to its good safety profile, 8c is currently being investigated in a phase II clinical trial for the treatment of neuropathic pain. The most potent ligand 9e of 3,4-dihydro-2(1H)-quinolones 9 shows promising anti-nociceptive activity in the formalin test.


Assuntos
Analgésicos/farmacologia , Antidepressivos/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Receptores sigma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Analgésicos/síntese química , Analgésicos/metabolismo , Analgésicos/farmacocinética , Animais , Antidepressivos/síntese química , Antidepressivos/metabolismo , Antidepressivos/farmacocinética , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores sigma/química , Receptores sigma/metabolismo , Relação Estrutura-Atividade , Receptor Sigma-1
10.
Lett Drug Des Discov ; 11(4): 428-436, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506297

RESUMO

The antiproliferative activities of new substituted tetrahydroisoquinolines (THIQs) are described. Their cytotoxicities against Ishikawa human endometrial cell line were determined after 72 h drug expose employing Celtiter-Glo assay at concentrations ranging from 0.01 to 100,000 nM. The antiproliferative activities of the compounds understudy were compared to tamoxifen (TAM). In-vitro results indicated that most of the compounds showed better activity than TAM. The most active compounds obtained in this study were 1, 2, 3 and 22 whose IC50 values are 1.41, 0.91, 0.74 and 0.36 µM respectively. This study helped us to evaluate the risk of developing endometrial cancer in the design of non-steroid estrogen receptor modulators with no agonistic effects on uterus. In-silico pharmacophore hypotheses were generated using GALAHAD and PHASE and the best models with a probable bioactive conformation(s) for these compounds were proposed. These conformations and the alignments of the molecular structures give us an insight in designing compounds with better biological activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA