Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
1.
Cell ; 187(13): 3409-3426.e24, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38744281

RESUMO

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Animais , Feminino , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Matriz Extracelular/metabolismo , Histona Desacetilases/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Exaustão das Células T , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Estresse Mecânico
2.
Cell ; 184(4): 969-982.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571427

RESUMO

Iron overload causes progressive organ damage and is associated with arthritis, liver damage, and heart failure. Elevated iron levels are present in 1%-5% of individuals; however, iron overload is undermonitored and underdiagnosed. Genetic factors affecting iron homeostasis are emerging. Individuals with hereditary xerocytosis, a rare disorder with gain-of-function (GOF) mutations in mechanosensitive PIEZO1 ion channel, develop age-onset iron overload. We show that constitutive or macrophage expression of a GOF Piezo1 allele in mice disrupts levels of the iron regulator hepcidin and causes iron overload. We further show that PIEZO1 is a key regulator of macrophage phagocytic activity and subsequent erythrocyte turnover. Strikingly, we find that E756del, a mild GOF PIEZO1 allele present in one-third of individuals of African descent, is strongly associated with increased plasma iron. Our study links macrophage mechanotransduction to iron metabolism and identifies a genetic risk factor for increased iron levels in African Americans.


Assuntos
Canais Iônicos/metabolismo , Ferro/metabolismo , Negro ou Afro-Americano , Envelhecimento/metabolismo , Alelos , Animais , Estudos de Coortes , Contagem de Eritrócitos , Eritropoese , Mutação com Ganho de Função/genética , Hepatócitos/metabolismo , Hepcidinas/sangue , Hepcidinas/metabolismo , Humanos , Ferro/sangue , Sobrecarga de Ferro/metabolismo , Macrófagos/metabolismo , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Fagocitose , Fenótipo , Estresse Fisiológico
3.
Cell ; 182(3): 609-624.e21, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640190

RESUMO

Gastrointestinal enterochromaffin cells regulate bone and gut homeostasis via serotonin (5-hydroxytryptamine [5-HT]) production. A recent report suggested that gut microbes regulate 5-HT levels; however, the precise underlying molecular mechanisms are unexplored. Here, we reveal that the cation channel Piezo1 in the gut acts as a sensor of single-stranded RNA (ssRNA) governing 5-HT production. Intestinal epithelium-specific deletion of mouse Piezo1 profoundly disturbed gut peristalsis, impeded experimental colitis, and suppressed serum 5-HT levels. Because of systemic 5-HT deficiency, conditional knockout of Piezo1 increased bone formation. Notably, fecal ssRNA was identified as a natural Piezo1 ligand, and ssRNA-stimulated 5-HT synthesis from the gut was evoked in a MyD88/TRIF-independent manner. Colonic infusion of RNase A suppressed gut motility and increased bone mass. These findings suggest gut ssRNA as a master determinant of systemic 5-HT levels, indicating the ssRNA-Piezo1 axis as a potential prophylactic target for treatment of bone and gut disorders.


Assuntos
Osso e Ossos/metabolismo , Colo/metabolismo , Motilidade Gastrointestinal/genética , Canais Iônicos/metabolismo , RNA/metabolismo , Serotonina/biossíntese , Serotonina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Osso e Ossos/citologia , Cálcio/metabolismo , Colite/genética , Colite/metabolismo , Colite/prevenção & controle , Colo/fisiologia , Fezes/química , Feminino , Motilidade Gastrointestinal/fisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Canais Iônicos/genética , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Osteoclastos/metabolismo , Pirazinas/farmacologia , RNA/farmacologia , Ribonuclease Pancreático/administração & dosagem , Serotonina/sangue , Serotonina/deficiência , Tiadiazóis/farmacologia
4.
Immunity ; 57(1): 52-67.e10, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38091995

RESUMO

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.


Assuntos
Movimento Celular , Pulmão , Mecanotransdução Celular , Neutrófilos , Animais , Camundongos , Membrana Celular , Canais Iônicos/genética , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Atividade Bactericida do Sangue/genética , Mecanotransdução Celular/genética
5.
Cell ; 173(2): 443-455.e12, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576450

RESUMO

Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.


Assuntos
Anemia Hemolítica Congênita/patologia , População Negra/genética , Hidropisia Fetal/patologia , Canais Iônicos/genética , Malária/patologia , Alelos , Anemia Hemolítica Congênita/genética , Animais , Desidratação , Modelos Animais de Doenças , Eritrócitos/citologia , Eritrócitos/metabolismo , Deleção de Genes , Genótipo , Humanos , Hidropisia Fetal/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais Iônicos/química , Malária/genética , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/patogenicidade , Linfócitos T/citologia , Linfócitos T/metabolismo
6.
Annu Rev Physiol ; 86: 71-97, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863105

RESUMO

Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.


Assuntos
Endotélio Vascular , Mecanotransdução Celular , Animais , Humanos , Endotélio Vascular/fisiologia , Mecanotransdução Celular/fisiologia , Células Endoteliais/metabolismo , Estresse Mecânico , Canais Iônicos/metabolismo , Mamíferos/metabolismo
7.
Trends Biochem Sci ; 48(6): 500-502, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959017

RESUMO

Recognition of invasive pathogens by the epithelium that is constantly exposed to microbial products remains incompletely understood. In a recent study, Tadala et al. demonstrated that the entry process of intracellular bacteria is itself a mechanical signal that is detected by the stretch-activated channel Piezo1, which triggers innate immune signaling.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Canais Iônicos/metabolismo , Transdução de Sinais
8.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619396

RESUMO

Piezo1 and Piezo2 are recently reported mechanosensory ion channels that transduce mechanical stimuli from the environment into intracellular biochemical signals in various tissues and organ systems. Here, we show that Piezo1 and Piezo2 display a robust expression during jawbone development. Deletion of Piezo1 in neural crest cells causes jawbone malformations in a small but significant number of mice. We further demonstrate that disruption of Piezo1 and Piezo2 in neural crest cells causes more striking defects in jawbone development than any single knockout, suggesting essential but partially redundant roles of Piezo1 and Piezo2. In addition, we observe defects in other neural crest derivatives such as malformation of the vascular smooth muscle in double knockout mice. Moreover, TUNEL examinations reveal excessive cell death in osteogenic cells of the maxillary and mandibular arches of the double knockout mice, suggesting that Piezo1 and Piezo2 together regulate cell survival during jawbone development. We further demonstrate that Yoda1, a Piezo1 agonist, promotes mineralization in the mandibular arches. Altogether, these data firmly establish that Piezo channels play important roles in regulating jawbone formation and maintenance.


Assuntos
Canais Iônicos , Arcada Osseodentária , Crista Neural , Animais , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Canais Iônicos/metabolismo , Canais Iônicos/genética , Arcada Osseodentária/embriologia , Arcada Osseodentária/metabolismo , Mandíbula/embriologia , Mandíbula/metabolismo , Camundongos Knockout , Crista Neural/metabolismo , Osteogênese/genética , Pirazinas , Tiadiazóis
9.
Proc Natl Acad Sci U S A ; 121(41): e2415934121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39356664

RESUMO

The propeller-shaped blades of the PIEZO1 and PIEZO2 ion channels partition into the plasma membrane and respond to indentation or stretching of the lipid bilayer, thus converting mechanical forces into signals that can be interpreted by cells, in the form of calcium flux and changes in membrane potential. While PIEZO channels participate in diverse physiological processes, from sensing the shear stress of blood flow in the vasculature to detecting touch through mechanoreceptors in the skin, the molecular details that enable these mechanosensors to tune their responses over a vast dynamic range of forces remain largely uncharacterized. To survey the molecular landscape surrounding PIEZO channels at the cell surface, we employed a mass spectrometry-based proteomic approach to capture and identify extracellularly exposed proteins in the vicinity of PIEZO1. This PIEZO1-proximal interactome was enriched in surface proteins localized to cell junctions and signaling hubs within the plasma membrane. Functional screening of these interaction candidates by calcium imaging and electrophysiology in an overexpression system identified the adhesion molecule CADM1/SynCAM that slows the inactivation kinetics of PIEZO1 with little effect on PIEZO2. Conversely, we found that CADM1 knockdown accelerates inactivation of endogenous PIEZO1 in Neuro-2a cells. Systematic deletion of CADM1 domains indicates that the transmembrane region is critical for the observed effects on PIEZO1, suggesting that modulation of inactivation is mediated by interactions in or near the lipid bilayer.


Assuntos
Canais Iônicos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Humanos , Molécula 1 de Adesão Celular/metabolismo , Molécula 1 de Adesão Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Proteômica/métodos , Mecanotransdução Celular , Animais
10.
Proc Natl Acad Sci U S A ; 121(36): e2407765121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39207733

RESUMO

Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.


Assuntos
Cálcio , Citosol , Eritrócitos , Canais Iônicos , Canais Iônicos/metabolismo , Humanos , Eritrócitos/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Hemólise
11.
EMBO J ; 41(17): e111799, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844093

RESUMO

Piezo1 belongs to mechano-activatable cation channels serving as biological force sensors. However, the molecular events downstream of Piezo1 activation remain unclear. In this study, we used biosensors based on fluorescence resonance energy transfer (FRET) to investigate the dynamic modes of Piezo1-mediated signaling and revealed a bimodal pattern of Piezo1-induced intracellular calcium signaling. Laser-induced shockwaves (LIS) and its associated shear stress can mechanically activate Piezo1 to induce transient intracellular calcium (Ca[i] ) elevation, accompanied by an increase in FAK activity. Interestingly, multiple pulses of shockwave stimulation caused a more sustained calcium increase and a decrease in FAK activity. Similarly, tuning the degree of Piezo1 activation by titrating either the dosage of Piezo1 ligand Yoda1 or the expression level of Piezo1 produced a similar bimodal pattern of FAK responses. Further investigations revealed that SHP2 serves as an intermediate regulator mediating this bimodal pattern in Piezo1 sensing and signaling. These results suggest that the degrees of Piezo1 activation induced by both mechanical LIS and chemical ligand stimulation may determine downstream signaling characteristics.


Assuntos
Cálcio , Canais Iônicos , Cálcio/metabolismo , Sinalização do Cálcio , Canais Iônicos/genética , Canais Iônicos/metabolismo , Ligantes , Mecanotransdução Celular/fisiologia
12.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277157

RESUMO

S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.


Assuntos
Actomiosina , Adesões Focais , Humanos , Adesões Focais/metabolismo , Actomiosina/metabolismo , Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
13.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602491

RESUMO

Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late-stage development, there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional, whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, response to the Notch signal is age dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo1, such that premature activation of Piezo1 leads to early extrusion while blocking Piezo1 leads to MCC maintenance. Distinct mechanisms for MCC loss underlie the importance of their removal during epithelial remodeling.


Assuntos
Transdução de Sinais , Animais , Epitélio , Xenopus laevis
14.
Proc Natl Acad Sci U S A ; 120(50): e2310933120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060566

RESUMO

Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.


Assuntos
Ensaios de Triagem em Larga Escala , Canais Iônicos , Canais Iônicos/metabolismo , Descoberta de Drogas , Sítios de Ligação , Termodinâmica , Mecanotransdução Celular/fisiologia
15.
Proc Natl Acad Sci U S A ; 120(18): e2300291120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098060

RESUMO

Transcranial low-intensity ultrasound is a promising neuromodulation modality, with the advantages of noninvasiveness, deep penetration, and high spatiotemporal accuracy. However, the underlying biological mechanism of ultrasonic neuromodulation remains unclear, hindering the development of efficacious treatments. Here, the well-known Piezo1 was studied through a conditional knockout mouse model as a major mediator for ultrasound neuromodulation ex vivo and in vivo. We showed that Piezo1 knockout (P1KO) in the right motor cortex of mice significantly reduced ultrasound-induced neuronal calcium responses, limb movement, and muscle electromyogram (EMG) responses. We also detected higher Piezo1 expression in the central amygdala (CEA), which was found to be more sensitive to ultrasound stimulation than the cortex was. Knocking out the Piezo1 in CEA neurons showed a significant reduction of response under ultrasound stimulation, while knocking out astrocytic Piezo1 showed no-obvious changes in neuronal responses. Additionally, we excluded an auditory confound by monitoring auditory cortical activation and using smooth waveform ultrasound with randomized parameters to stimulate P1KO ipsilateral and contralateral regions of the same brain and recording evoked movement in the corresponding limb. Thus, we demonstrate that Piezo1 is functionally expressed in different brain regions and that it is an important mediator of ultrasound neuromodulation in the brain, laying the ground for further mechanistic studies of ultrasound.


Assuntos
Córtex Auditivo , Encéfalo , Camundongos , Animais , Encéfalo/fisiologia , Córtex Auditivo/metabolismo , Ultrassonografia , Neurônios/metabolismo , Camundongos Knockout , Canais Iônicos/genética , Canais Iônicos/metabolismo
16.
Annu Rev Physiol ; 84: 307-329, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637325

RESUMO

Many aspects of mammalian physiology are mechanically regulated. One set of molecules that can mediate mechanotransduction are the mechanically activated ion channels. These ionotropic force sensors are directly activated by mechanical inputs, resulting in ionic flux across the plasma membrane. While there has been much research focus on the role of mechanically activated ion channels in touch sensation and hearing, recent data have highlighted the broad expression pattern of these molecules in mammalian cells. Disruption of mechanically activated channels has been shown to impact (a) the development of mechanoresponsive structures, (b) acute mechanical sensing, and (c) mechanically driven homeostatic maintenance in multiple tissue types. The diversity of processes impacted by these molecules highlights the importance of mechanically activated ion channels in mammalian physiology.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Animais , Humanos , Canais Iônicos/metabolismo , Mamíferos , Mecanotransdução Celular/fisiologia , Tato/fisiologia
17.
Trends Biochem Sci ; 46(6): 472-488, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610426

RESUMO

The evolutionarily conserved Piezo channel family, including Piezo1 and Piezo2 in mammals, serves as versatile mechanotransducers in various cell types and consequently governs fundamental pathophysiological processes ranging from vascular development to the sense of gentle touch and tactile pain. Piezo1/2 possess a unique 38-transmembrane (TM) helix topology and form a homotrimeric propeller-shaped structure comprising a central ion-conducting pore and three peripheral mechanosensing blades. The unusually curved TM region of the three blades shapes a signature nano-bowl configuration with potential to generate large in-plane membrane area expansion, which might confer exquisite mechanosensitivity to Piezo channels. Here, we review the current understanding of Piezo channels with a particular focus on their unique structural designs and elegant mechanogating mechanisms.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Animais , Canais Iônicos/metabolismo , Mecanotransdução Celular , Domínios Proteicos
18.
J Biol Chem ; 300(4): 107156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479601

RESUMO

Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Mecanotransdução Celular , Pressão , Humanos , Células HEK293 , Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Cinética , Cadeias de Markov
19.
J Biol Chem ; 300(11): 107807, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307302

RESUMO

Glioblastoma (GBM) is the most aggressive intracranial malignancy with poor prognosis. Enhanced angiogenesis is an essential hallmark of GBM, which demonstrates extensive microvascular proliferation and abnormal vasculature. Here, we uncovered the key role of myosin 1b in angiogenesis and vascular abnormality in GBM. Myosin 1b is upregulated in GBM endothelial cells (ECs) compared to the paired nonmalignant brain tissue. In our study, we found that myosin 1b promotes migration, proliferation, and angiogenesis of human/mouse brain ECs. We also found that myosin 1b expression in ECs can be regulated by vascular endothelial growth factor (VEGF) signaling through myc. Moreover, myosin 1b promotes angiogenesis via Piezo1 by enhancing Ca2+ influx, in which process VEGF can be the trigger. In conclusion, our results identified myosin 1b as a key mediator in promoting angiogenesis via mechanosensitive ion channel component 1 (Piezo1) and suggested that VEGF/myc signaling pathway could be responsible for driving the changes of myosin 1b overexpression in GBM ECs.

20.
Physiology (Bethesda) ; 39(2): 73-87, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193763

RESUMO

Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.


Assuntos
Ferroptose , Humanos , Peroxidação de Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA