Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835015

RESUMO

Chemical composition and physical parameters of the implant surface, such as roughness, regulate the cellular response leading to implant bone osseointegration. Possible implant surface modifications include anodization or the plasma electrolytic oxidation (PEO) treatment process that produces a thick and dense oxide coating superior to normal anodic oxidation. Experimental modifications with Plasma Electrolytic Oxidation (PEO) titanium and titanium alloy Ti6Al4V plates and PEO additionally treated with low-pressure oxygen plasma (PEO-S) were used in this study to evaluate their physical and chemical properties. Cytotoxicity of experimental titanium samples as well as cell adhesion to their surface were assessed using normal human dermal fibroblasts (NHDF) or L929 cell line. Moreover, the surface roughness, fractal dimension analysis, and texture analysis were calculated. Samples after surface treatment have substantially improved properties compared to the reference SLA (sandblasted and acid-etched) surface. The surface roughness (Sa) was 0.59-2.38 µm, and none of the tested surfaces had cytotoxic effect on NHDF and L929 cell lines. A greater cell growth of NHDF was observed on the tested PEO and PEO-S samples compared to reference SLA sample titanium.


Assuntos
Implantes Dentários , Humanos , Propriedades de Superfície , Titânio/química , Teste de Materiais , Osseointegração/fisiologia
2.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677526

RESUMO

This paper presents the results of an investigation of the changes in the corrosion, wear resistance, and wettability of composite coatings formed on the AMg3 alloy through plasma electrolytic oxidation (PEO) and subsequent spraying with an organofluorine polymer. The evaluation of the electrochemical properties of the composite layers revealed a decrease in the corrosion current density compared with the PEO coating (from 3.8 × 10-8 to 3.1 × 10-11 A/cm2). The analysis of the wear resistance of composite coatings established that the application of this type of coating reduced the wear of the samples by two orders of magnitude when compared with the PEO layer. Using the contact-angle measurement, it was found that with an increase in the number of polymer spray applications, the wettability of coatings decreased, so the contact angle for the composite coating with triple fluoropolymer application increased by 134.3° compared to the base PEO coating.

3.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985514

RESUMO

The increase of corrosion resistance of magnesium and its alloys by forming the smart self-healing hybrid coatings was achieved in this work in two steps. In the first step, using the plasma electrolytic oxidation (PEO) treatment, a ceramic-like bioactive coating was synthesized on the surface of biodegradable MA8 magnesium alloy. During the second step, the formed porous PEO layer was impregnated with a corrosion inhibitor 8-hydroxyquinoline (8-HQ) and bioresorbable polymer polycaprolactone (PCL) in different variations to enhance the protective properties of the coating. The composition, anticorrosion, and antifriction properties of the formed coatings were studied. 8-HQ allows controlling the rate of material degradation due to the self-healing effect of the smart coating. PCL treatment of the inhibitor-containing layer significantly improves the corrosion and wear resistance and retains an inhibitor in the pores of the PEO layer. It was revealed that the corrosion inhibitor incorporation method (including the number of steps, impregnation, and the type of solvent) significantly matters to the self-healing mechanism. The hybrid coatings obtained by a 1-step treatment in a dichloromethane solution containing 6 wt.% polycaprolactone and 15 g/L of 8-HQ are characterized by the best corrosion resistance. This coating demonstrates the lowest value of corrosion current density (3.02 × 10-7 A cm-2). The formation of the hybrid coating results in the corrosion rate decrease by 18 times (0.007 mm year-1) as compared to the blank PEO layer (0.128 mm year-1). An inhibitor efficiency was established to be 83.9%. The mechanism of corrosion protection of Mg alloy via smart hybrid coating was revealed.

4.
Ceram Int ; 48(5): 7071-7081, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35177876

RESUMO

Plasma electrolytic oxidation (PEO) was used to produce titanium oxide (TiO2) coatings on Ti surface in potassium - phosphate electrolyte. The morphology, wettability, phase, and chemical compositions were studied as a function of processing parameters. The bioactivity of the coating was assessed by the ability to form biomimetic apatite in-vitro using cell culture medium. In-vitro studies using human mesenchymal stem cells were also conducted to evaluate cells' proliferation and viability of the treated Ti. The results revealed that the produced TiO2 coatings comprised pore features with the pore size increasing with applied current density and treatment duration due to high energy discharge channels at higher potential. The PEO treated Ti exhibited superhydrophilic characteristics with a contact angle <1°. The findings indicated that the large actual surface area produced by the PEO treatment and the presence of negatively charge P O 4 3 - are the key factors for the superhydrophilic behavior. The in-vitro studies revealed that the PEO treated groups had higher amount of biomimetic apatite formation compared to the as-polished Ti. The PEO treatment significantly enhanced the cells' adhesion and growth after 24 and 72 hrs compared to the untreated Ti. A significant difference in the bioactivity was not observed between anatase and rutile.

5.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613748

RESUMO

In this work, the properties of the coatings formed on the Mg-Mn-Ce alloy by plasma electrolytic oxidation (PEO) in electrolytes containing halloysite nanotubes (HNTs) were investigated. The incorporation of halloysite nanotubes into the PEO coatings improved their mechanical characteristics, increased thickness, and corrosion resistance. The studied layers reduced corrosion current density by more than two times in comparison with the base PEO layer without HNTs (from 1.1 × 10-7 A/cm2 to 4.9 × 10-8 A/cm2). The presence of halloysite nanotubes and products of their dihydroxylation that were formed under the PEO conditions had a positive impact on the microhardness of the obtained layers (this parameter increased from 4.5 ± 0.4 GPa to 7.3 ± 0.5 GPa). In comparison with the base PEO layer, coatings containing halloysite nanotubes exhibited sustained release and higher adsorption capacity regarding caffeine.


Assuntos
Eletrólitos , Nanotubos , Argila , Oxirredução
6.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012467

RESUMO

Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces. However, the formation of 'nano-knife' structures (particles embedded perpendicularly to the implant surfaces) was also found around the pores of the PEO layers. Enhanced in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus was observed for the rGO+Ag-containing surfaces compared to the PEO surfaces prepared only with AgNPs. This was caused by a significant improvement in the generation of reactive oxygen species, higher levels of Ag+ release, and the presence of rGO 'nano-knife' structures. In addition, the implants developed in this study stimulated the metabolic activity and osteogenic differentiation of MC3T3-E1 preosteoblast cells compared to the PEO surfaces without nanoparticles. Therefore, the PEO titanium surfaces incorporating controlled levels of rGO+Ag nanoparticles have high clinical potential as multifunctional surfaces for 3D-printed orthopaedic implants.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Grafite , Humanos , Nanopartículas Metálicas/química , Osteogênese , Porosidade , Impressão Tridimensional , Prata/química , Prata/farmacologia , Titânio/química , Titânio/farmacologia
7.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917432

RESUMO

Here, we show that the presence of adsorbed water improves the oxygen-sensing properties of Pt/TiO2 at moderate temperatures. The studied interface is based on porous plasma electrolytic oxidized titanium (PEO-TiO2) covered with platinum clusters. The electrical resistance across Pt/PEO-TiO2 is explained by an electronic depletion layer. Oxygen adsorbates further increase the depletion by inducing extrinsic interface states, which are occupied by TiO2 conduction band electrons. The high oxygen partial pressure in ambient air substantially limits the electron transport across the interface. Our DC measurements at defined levels of humidity at 30 ∘C show that adsorbed water counteracts this shortcoming, allowing oxygen sensing at room conditions. In addition, response and recovery times from temporal oxygen exposure decrease with humidity. We attribute the effects to competing adsorption processes and reactions of water with adsorbed oxygen species and/or lattice oxygen, which involve electron re-injection to the TiO2 conduction band. Elevated temperatures up to 170 ∘C attenuate the effects, presumably due to the lower binding strength to the surface of molecular water compared with oxygen adsorbates.

8.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478090

RESUMO

Magnesium (Mg)-based biomaterials hold considerable promise for applications in regenerative medicine. However, the degradation of Mg needs to be reduced to control toxicity caused by its rapid natural corrosion. In the process of developing new Mg alloys with various surface modifications, an efficient assessment of the relevant properties is essential. In the present study, a WE43 Mg alloy with a plasma electrolytic oxidation (PEO)-generated surface was investigated. Surface microstructure, hydrogen gas evolution in immersion tests and cytocompatibility were assessed. In addition, a novel in vitro immunological test using primary human lymphocytes was introduced. On PEO-treated WE43, a larger number of pores and microcracks, as well as increased roughness, were observed compared to untreated WE43. Hydrogen gas evolution after two weeks was reduced by 40.7% through PEO treatment, indicating a significantly reduced corrosion rate. In contrast to untreated WE43, PEO-treated WE43 exhibited excellent cytocompatibility. After incubation for three days, untreated WE43 killed over 90% of lymphocytes while more than 80% of the cells were still vital after incubation with the PEO-treated WE43. PEO-treated WE43 slightly stimulated the activation, proliferation and toxin (perforin and granzyme B) expression of CD8+ T cells. This study demonstrates that the combined assessment of corrosion, cytocompatibility and immunological effects on primary human lymphocytes provide a comprehensive and effective procedure for characterizing Mg variants with tailorable degradation and other features. PEO-treated WE43 is a promising candidate for further development as a degradable biomaterial.


Assuntos
Materiais Revestidos Biocompatíveis , Magnésio/química , Teste de Materiais , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Equipamentos e Provisões , Humanos , Sistema Imunitário/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Magnésio/farmacocinética , Magnésio/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacocinética , Compostos de Magnésio/farmacologia , Teste de Materiais/métodos , Camundongos , Oxirredução
9.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917615

RESUMO

Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.


Assuntos
Cobre/química , Próteses e Implantes , Prata/química , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/metabolismo , Titânio/química , Zinco/química , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Oxirredução , Porosidade , Infecções Estafilocócicas/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia
10.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917454

RESUMO

The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.


Assuntos
Eletrólise , Magnésio/farmacologia , Gases em Plasma/química , Silicatos/química , Antibacterianos/farmacologia , Líquidos Corporais/química , Cálcio/análise , Linhagem Celular Tumoral , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/farmacologia , Eletrodos , Humanos , Luminescência , Testes de Sensibilidade Microbiana , Oxirredução , Fósforo/análise , Soluções , Espectrometria por Raios X , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
11.
Artif Organs ; 44(4): 419-427, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31660616

RESUMO

Passively levitated ventricular assist devices (VADs) are vulnerable to impeller-housing contact and could benefit from surface coatings that improve wear resistance. Such coatings can be manufactured by plasma electrolytic oxidation (PEO), but their suitability for blood-contact applications needs further investigation. We therefore compared blood-surface interactions of polished titanium grade 5 (Ti Gr 5), as a general VAD reference material, uncoated ground titanium grade 4 (Ti Gr 4) and two commercially available PEO coatings on Ti Gr 4. In n = 4 static platelet adhesion tests, material samples were incubated with platelet-rich plasma (PRP) and consecutively analyzed for adhesive platelets by immunofluorescence microscopy. Additionally, PRP supernatant of incubated material samples was analyzed for changes in antithrombin III and fibrinogen concentrations by turbodimetry and enzyme-linked immunosorbent assay, respectively. We could not find any significant differences between the materials in the analyzed hemocompatibility markers (P > .05). Thus, we conclude that PEO coatings might offer a similar hemocompatibility to that of polished Ti Gr 5 and uncoated Ti Gr 4. Nevertheless, future studies should investigate blood-surface interactions of PEO coatings under realistic VAD-related flow conditions to better evaluate their potential for VAD applications.


Assuntos
Coagulação Sanguínea , Cerâmica , Coração Auxiliar , Adesividade Plaquetária , Titânio , Técnicas Eletroquímicas , Estudos de Viabilidade , Humanos , Teste de Materiais
12.
Molecules ; 25(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935900

RESUMO

Currently, significant attention is attracted to the problem of the development of the specific architecture and composition of the surface layer in order to control the biocompatibility of implants made of titanium and its alloys. The titanium surface properties can be tuned both by creating an inorganic sublayer with the desired morphology and by organic top coating contributing to bioactivity. In this work, we developed a composite biologically active coatings based on hybrid molecules obtained by chemical cross-linking of amino acid bisphosphonates with a linear tripeptide RGD, in combination with inorganic porous sublayer created on titanium by plasma electrolytic oxidation (PEO). After the addition of organic molecules, the PEO coated surface gets nobler, but corrosion currents increase. In vitro studies on proliferation and viability of fibroblasts, mesenchymal stem cells and osteoblast-like cells showed the significant dependence of the molecule bioactivity on the structure of bisphosphonate anchor and the linker. Several RGD-modified bisphosphonates of ß-alanine, γ-aminobutyric and ε-aminocaproic acids with BMPS or SMCC linkers can be recommended as promising candidates for further in vivo research.


Assuntos
Materiais Revestidos Biocompatíveis , Oligopeptídeos , Ácidos Fosforosos , Próteses e Implantes , Titânio , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Eletroquímica , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Osteoblastos/metabolismo , Ácidos Fosforosos/química , Análise Espectral , Propriedades de Superfície , Titânio/química
13.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574947

RESUMO

The degradation rate of magnesium (Mg) alloys is a key parameter to develop Mg-based biomaterials and ensure in vivo-mechanical stability as well as to minimize hydrogen gas production, which otherwise can lead to adverse effects in clinical applications. However, in vitro and in vivo results of the same material often differ largely. In the present study, a dynamic test bench with several single bioreactor cells was constructed to measure the volume of hydrogen gas which evolves during magnesium degradation to indicate the degradation rate in vivo. Degradation medium comparable with human blood plasma was used to simulate body fluids. The media was pumped through the different bioreactor cells under a constant flow rate and 37 °C to simulate physiological conditions. A total of three different Mg groups were successively tested: Mg WE43, and two different WE43 plasma electrolytically oxidized (PEO) variants. The results were compared with other methods to detect magnesium degradation (pH, potentiodynamic polarization (PDP), cytocompatibility, SEM (scanning electron microscopy)). The non-ceramized specimens showed the highest degradation rates and vast standard deviations. In contrast, the two PEO samples demonstrated reduced degradation rates with diminished standard deviation. The pH values showed above-average constant levels between 7.4-7.7, likely due to the constant exchange of the fluids. SEM revealed severe cracks on the surface of WE43 after degradation, whereas the ceramized surfaces showed significantly decreased signs of corrosion. PDP results confirmed the improved corrosion resistance of both PEO samples. While WE43 showed slight toxicity in vitro, satisfactory cytocompatibility was achieved for the PEO test samples. In summary, the dynamic test bench constructed in this study enables reliable and simple measurement of Mg degradation to simulate the in vivo environment. Furthermore, PEO treatment of magnesium is a promising method to adjust magnesium degradation.


Assuntos
Materiais Biocompatíveis/química , Hidrodinâmica , Magnésio/química , Reatores Biológicos , Materiais Revestidos Biocompatíveis , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura
14.
Artigo em Inglês | MEDLINE | ID: mdl-28603382

RESUMO

We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na2SiO3, KF and NaH2PO4·2H2O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

15.
Heliyon ; 10(4): e24348, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434039

RESUMO

Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.

16.
Colloids Surf B Biointerfaces ; 245: 114237, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39293292

RESUMO

Titanium (Ti) is an ideal material for dental implants due to its excellent properties. However, corrosion and mechanical wear lead to Ti ions and particles release, triggering inflammatory responses and bone resorption. To overcome these challenges, surface modification techniques are used, including micro-arc oxidation (MAO). MAO creates adherent, porous coatings on Ti implants with diverse chemical compositions. In this context, zirconia element stands out in its wear and corrosion properties associated with low friction and chemical stability. Therefore, we investigated the impact of adding zirconium oxide (ZrO2) to Ti surfaces through MAO, aiming for improved electrochemical and mechanical properties. Additionally, the antimicrobial and modulatory potentials, cytocompatibility, and proteomic profile of surfaces were investigated. Ti discs were divided into four groups: machined - control (cpTi), treated by MAO with 0.04 M KOH - control (KOH), and two experimental groups incorporating ZrO2 at concentrations of 0.04 M and 0.08 M, composing the KOH@Zr4 and KOH@Zr8 groups. KOH@Zr8 showed higher surface porosity and roughness, even distribution of zirconia, formation of crystalline phases like ZrTiO4, and hydrophilicity. ZrO2 groups showed better mechanical performance including higher hardness values, lower wear area and mass loss, and higher friction coefficient under tribological conditions. The formation of a more compact oxide layer was observed, which favors the electrochemical stability of ZrO2 surfaces. Besides not inducing greater biofilm formation, ZrO2 surfaces reduced the load of pathogenic bacteria evidenced by the DNA-DNA checkerboard analysis. ZrO2 surfaces were cytocompatible with pre-osteoblastic cells. The saliva proteomic profile, evaluated by liquid chromatography coupled with tandem mass spectrometry, was slightly changed by zirconia, with more proteins adsorbed. KOH@Zr8 group notably absorbed proteins crucial for implant biological responses, like albumin and fibronectin. Incorporating ZrO2 improved the mechanical and electrochemical behavior of Ti surfaces, as well as modulated biofilm composition and provided suitable biological responses.

17.
Acta Biomater ; 185: 98-110, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002920

RESUMO

Magnesium as a biodegradable material offers promising results in recent studies of different maxillo-facial fracture models. To overcome adverse effects caused by the fast corrosion of pure magnesium in fluid surroundings, various alloys, and surface modifications are tested in animal models. In specified cases, magnesium screws already appeared for clinical use in maxillofacial surgery. The present study aims to compare the bone healing outcome in a non-load-bearing fracture scenario of the forehead in sheep when fixed with standard-sized WE43 magnesium fixation plates and screws with plasma electrolytic oxidation (PEO) surface modification in contrast to titanium osteosynthesis. Surgery was performed on 24 merino mix sheep. The plates and screws were explanted en-bloc with the surrounding tissue after four and twelve weeks. The outcome of bone healing was investigated with micro-computed tomography, histological, immunohistological, and fluorescence analysis. There was no significant difference between groups concerning the bone volume, bone volume/ total volume, and newly formed bone in volumetric and histological analysis at both times of investigation. The fluorescence analysis revealed a significantly lower signal in the magnesium group after one week, although there was no difference in the number of osteoclasts per mm2. The magnesium group had significantly fewer vessels per mm2 in the healing tissue. In conclusion, the non-inferiority of WE43-based magnesium implants with PEO surface modification was verified concerning fracture healing under non-load-bearing conditions in a defect model. STATEMENT OF SIGNIFICANCE: Titanium implants, the current gold standard of fracture fixation, can lead to adverse effects linked to the implant material and often require surgical removal. Therefore, degradable metals like the magnesium alloy WE43 with plasma electrolytic oxidation (PEO) surface modification gained interest. Yet, miniplates of this alloy with PEO surface modification have not been examined in a fracture defect model of the facial skeleton in a large animal model. This study shows, for the first time, the non-inferiority of magnesium miniplates compared to titanium miniplates. In radiological and histological analysis, bone healing was undisturbed. Magnesium miniplates can reduce the number of interventions for implant removal, thus reducing the risk for the patient and minimizing the costs.


Assuntos
Placas Ósseas , Consolidação da Fratura , Magnésio , Titânio , Animais , Magnésio/farmacologia , Magnésio/química , Titânio/química , Titânio/farmacologia , Ovinos , Oxirredução , Propriedades de Superfície , Parafusos Ósseos , Gases em Plasma/farmacologia , Gases em Plasma/química , Modelos Animais de Doenças , Feminino , Eletrólise
18.
ACS Appl Bio Mater ; 7(9): 5965-5976, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39194162

RESUMO

In this study, we enhanced the corrosion and microbial resistance of aluminum 7075 alloys by applying a thin layer of alumina through plasma electrolytic oxidation (PEO) in an alkali-silicate electrolyte. In addition, the influence of film sealing on coated aluminum alloy 7075 was studied in detail, specifically in oil and water at 100 °C after treatment. The surface and cross-sectional morphology, element composition, and phase composition of the PEO coatings were characterized by using scanning electron microscopy (SEM) assisted with energy-dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coating on AA7075 PEO was evaluated before and after post-treatment using hot water and hump oil at 100 °C. This assessment was conducted by using various electrochemical techniques, including open-circuit potential (OCP), linear polarization resistance (LPR), potentiodynamic polarization scan (PD), electrochemical impedance spectroscopy (EIS), and cyclic potentiodynamic scan (CPS). The results showed that the corrosion resistance of the AA7075 alloy was significantly improved after the PEO coating. The AA7075 + SF, among all of the examined alloys, exhibited superior corrosion properties, due to its fat sealing. This is probably due to the formation of a mixed fatty acid layer from oil on the surface of the AA7075 PEO, which synthesizes a hydrophobic layer. Interestingly, the samples treated with PEO showed a great resistance to microbial growth.


Assuntos
Ligas , Teste de Materiais , Oxirredução , Propriedades de Superfície , Ligas/química , Tamanho da Partícula , Corrosão , Eletrólise
19.
Sci Rep ; 14(1): 7380, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548907

RESUMO

Plasma electrolytic oxidation (PEO), applied to light metals such as titanium, aluminum, and magnesium, creates a two-layer coating and has become increasingly important in metal coatings. However, due to the high voltage and temperature of the process, no online instrument could monitor the underlying mechanism. This paper presents a new image proving that the surface of PEO-coated Mg3ZnCa boiled during the process and argues that three hypotheses are involved in the PEO mechanism based on boiling caused by tolerating high voltage during the PEO process, which could explain the current‒voltage diagram of the process. Finally, nanoindentation was used to measure the elastic module and hardness of the PEO layers. The nanoindentation test results revealed the similarity of the elastic module of the outer porous layer and the primary alloy, with values of 40.25 GPa and 41.47 GPa, respectively, confirming that the outer porous layer corresponds to the cold plasma-gas phase formed during the PEO process.

20.
Ultrasonics ; 138: 107213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056322

RESUMO

The initial discharge process of pulsed plasma electrolytic oxidation (PEO) on the 60% SiCp/2009 aluminum metal matrix composite (Al MMC) in silicate solution was monitored by acoustic emission (AE) technique. Parameters and correlations of AE signals on the Al MMC sample and under water were analyzed, and their generation mechanism was discussed. It was found that the peak amplitudes of AE signals and AE hits during the pulse time quickly increased with the increase of micro-discharge intensity, and the absolute energy of AE signals improved several orders of magnitude. Moreover, different from the peak amplitude, duration and rise time, the duration and count had a strong correlation. Elastic stress waves resulted from the microjet of plasma bubble collapse, the inner-surface friction inside discharge channel, the expansion-shrinkage process of plasma bubbles and micro-crack propagation during rapid solidification of melt are sources of AE signals on the Al MMC sample during the pulse time. However, the expansion-shrinkage process of plasma bubbles plays a key role in the generation of underwater AE signals. In the pause time of one pulse period, the bursting and moving of vapor bubbles result in weak AE signals. It is demonstrated that the AE technique can effectively characterize the features of micro-discharges within a pulse period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA