Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Cell ; 77(4): 810-824.e8, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31901447

RESUMO

Lipid droplets (LDs) provide a reservoir for triacylglycerol storage and are a central hub for fatty acid trafficking and signaling in cells. Lipolysis promotes mitochondrial biogenesis and oxidative metabolism via a SIRT1/PGC-1α/PPARα-dependent pathway through an unknown mechanism. Herein, we identify that monounsaturated fatty acids (MUFAs) allosterically activate SIRT1 toward select peptide-substrates such as PGC-1α. MUFAs enhance PGC-1α/PPARα signaling and promote oxidative metabolism in cells and animal models in a SIRT1-dependent manner. Moreover, we characterize the LD protein perilipin 5 (PLIN5), which is known to enhance mitochondrial biogenesis and function, to be a fatty-acid-binding protein that preferentially binds LD-derived monounsaturated fatty acids and traffics them to the nucleus following cAMP/PKA-mediated lipolytic stimulation. Thus, these studies identify the first-known endogenous allosteric modulators of SIRT1 and characterize a LD-nuclear signaling axis that underlies the known metabolic benefits of MUFAs and PLIN5.


Assuntos
Ácidos Graxos Monoinsaturados/metabolismo , Gotículas Lipídicas/química , Perilipina-5/metabolismo , Sirtuína 1/metabolismo , Regulação Alostérica , Animais , Transporte Biológico , Linhagem Celular , Células Cultivadas , Dieta , Ácidos Graxos/metabolismo , Lipase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Azeite de Oliva , Perilipina-5/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transcrição Gênica
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901715

RESUMO

Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.


Assuntos
Aminoácidos de Cadeia Ramificada , Perilipinas , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Exercício Físico , Lipídeos , Músculo Esquelético/metabolismo , Perilipina-2/metabolismo , Perilipinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas/metabolismo
3.
J Lipid Res ; 63(3): 100172, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065923

RESUMO

Disturbances in lipid homeostasis can cause mitochondrial dysfunction and lipotoxicity. Perilipin 5 (PLIN5) decorates intracellular lipid droplets (LDs) in oxidative tissues and controls triacylglycerol (TG) turnover via its interactions with adipose triglyceride lipase and the adipose triglyceride lipase coactivator, comparative gene identification-58. Furthermore, PLIN5 anchors mitochondria to the LD membrane via the outermost part of the carboxyl terminus. However, the role of this LD-mitochondria coupling (LDMC) in cellular energy catabolism is less established. In this study, we investigated the impact of PLIN5-mediated LDMC in comparison to disrupted LDMC on cellular TG homeostasis, FA oxidation, mitochondrial respiration, and protein interaction. To do so, we established PLIN5 mutants deficient in LDMC whilst maintaining normal interactions with key lipolytic players. Radiotracer studies with cell lines stably overexpressing wild-type or truncated PLIN5 revealed that LDMC has no significant impact on FA esterification upon lipid loading or TG catabolism during stimulated lipolysis. Moreover, we demonstrated that LDMC exerts a minor if any role in mitochondrial FA oxidation. In contrast, LDMC significantly improved the mitochondrial respiratory capacity and metabolic flexibility of lipid-challenged cardiomyocytes, which was corroborated by LDMC-dependent interactions of PLIN5 with mitochondrial proteins involved in mitochondrial respiration, dynamics, and cristae organization. Taken together, this study suggests that PLIN5 preserves mitochondrial function by adjusting FA supply via the regulation of TG hydrolysis and that LDMC is a vital part of mitochondrial integrity.


Assuntos
Gotículas Lipídicas , Perilipina-5 , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipólise/genética , Mitocôndrias/metabolismo , Perilipina-1/metabolismo , Perilipina-2/metabolismo , Perilipina-5/metabolismo , Triglicerídeos/metabolismo
4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555245

RESUMO

Regulation of lipid droplets (LDs) metabolism is the core of controlling intracellular fatty acids (FAs) fluxes, and perilipin 5 (PLIN5) plays a key role in this process. Our previous studies have found that hepatic PLIN5 deficiency reduces LDs accumulation, but the trafficking of FAs produced from this pathway and the interaction between mitochondria and LDs in this process are largely unknown. Here, we found that the deficiency of PLIN5 decreases LDs accumulation by increasing FAs efflux. In addition, the decreased lipogenesis of PLIN5-deficient hepatocytes is accompanied by mitochondrial dysfunction, suggesting that PLIN5 plays an important role in mediating the interaction between LDs and mitochondria. Importantly, PLIN5 ablation negates oxidative capacity differences of peri-droplet and cytosolic mitochondria. In summary, these data indicate that PLIN5 plays a vital role in maintaining mitochondrial-mediated lipogenesis, which provides an important new perspective on the regulation of liver lipid storage and the relationship between PLIN5 and mitochondria.


Assuntos
Lipogênese , Perilipina-5 , Lipogênese/genética , Perilipina-5/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Gotículas Lipídicas/metabolismo
5.
Biochem Biophys Res Commun ; 528(1): 7-13, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448510

RESUMO

Licorice is a popular medicinal plant, and it has been used to treat various diseases, including liver diseases. Glycycoumarin (GCM) is a major coumarin compound isolated from licorice with favorable bioavailability property. Our previous studies have shown that GCM is capable of inhibiting lipoapoptosis in both cell culture and methionine-choline-defcient (MCD) diet-induced mouse model of non-alcoholic steatohepatitis (NASH) through mechanisms involving suppression of endoplasmic reticulum (ER) stress. Perilipin 5 (PLIN5), a newly identified lipid drop protein in the perilipin family, is highly expressed in oxidative tissues including the liver and is suggested to play an important role in protecting against hepatic lipotoxicity. Give the hepatoprotective role of PLIN5, we hypothesized that induction of PLIN5 might contribute to the hepatoprotective effect of GCM via mitigating ER stress and inflammatory responses. Results showed that PLIN5 and its downstream target Sirt1 were induced by GCM both in vitro and in vivo. Inhibition of either PLIN5 or Sirt1 led to significantly attenuated protective effect of GCM on palmitic acid (PA)-induced lipoapoptosis and inflammatory responses, supporting involvement of PLIN5-Sirt1 axis in the protective effect of GCM on hepatic lipotoxicity. The findings of the present study provide novel insight into the understanding of mechanisms underlying the hepatoprotective effect of GCM.


Assuntos
Cumarínicos/farmacologia , Fígado/patologia , Ácido Palmítico/toxicidade , Perilipina-5/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamação/patologia , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
6.
J Cell Biochem ; 120(11): 19107-19123, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297870

RESUMO

Excessive plasma triglyceride (TG) and cholesterol levels promote the progression of several prevalent cardiovascular risk factors, including atherosclerosis, which is a leading death cause. Perilipin 5 (Plin5), an important perilipin protein, is abundant in tissues with very active lipid catabolism and is involved in the regulation of oxidative stress. Although inflammation and oxidative stress play a critical role in atherosclerosis development, the underlying mechanisms are complex and not completely understood. In the present study, we demonstrated the role of Plin5 in high-fat-diet-induced atherosclerosis in apolipoprotein E null (ApoE-/- ) mice. Our results suggested that Plin5 expressions increased in the artery tissues of ApoE-/- mice. ApoE/Plin5 double knockout (ApoE-/- Plin5-/- ) exacerbated severer atherogenesis, accompanied with significantly disturbed plasma metabolic profiles, such as elevated TG, total cholesterol, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol contents. ApoE-/- Plin5-/- exhibited a higher number of inflammatory monocytes and neutrophils, as well as overexpression of cytokines and chemokines linked with an inflammatory response. Consistently, the IκBα/nuclear factor kappa B pathway was strongly activated in ApoE-/- Plin5-/- . Notably, apoptosis was dramatically induced by ApoE-/- Plin5-/- , as evidenced by increased cleavage of Caspase-3 and Poly (ADP-ribose) polymerase-2. In addition, ApoE-/- Plin5-/- contributed to oxidative stress generation in the aortic tissues, which was linked with the activation of phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinases pathways. In vitro, oxidized low-density lipoprotein (ox-LDL) increased Plin5 expression in RAW264.7 cells. Its knockdown enhanced inflammation, apoptosis, oxidative stress, and lipid accumulation, while promotion of Plin5 markedly reduced all the effects induced by ox-LDL in cells. These studies strongly supported that Plin5 could be a new regulator against atherosclerosis, providing new insights on therapeutic solutions.


Assuntos
Apoptose , Aterosclerose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Musculares/deficiência , Estresse Oxidativo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Caspase 3/genética , Caspase 3/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout para ApoE , Proteínas Musculares/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Células RAW 264.7
7.
J Exp Biol ; 221(Pt Suppl 1)2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514886

RESUMO

The majority of fat in the human body is stored as triacylglycerols in white adipose tissue. In the obese state, adipose tissue mass expands and excess lipids are stored in non-adipose tissues, such as skeletal muscle. Lipids are stored in skeletal muscle in the form of small lipid droplets. Although originally viewed as dull organelles that simply store lipids as a consequence of lipid overflow from adipose tissue, lipid droplets are now recognized as key components in the cell that exert a variety of relevant functions in multiple tissues (including muscle). Here, we review the effect of diet and exercise interventions on myocellular lipid droplets and their putative role in insulin sensitivity from a human perspective. We also provide an overview of lipid droplet biology and identify gaps for future research.


Assuntos
Dieta , Exercício Físico , Resistência à Insulina/fisiologia , Gotículas Lipídicas/fisiologia , Células Musculares/fisiologia , Músculos/fisiologia , Humanos
8.
J Cell Biochem ; 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215758

RESUMO

Excessive plasma triglyceride and cholesterol levels promote the progression of several prevalent cardiovascular risk factors, including atherosclerosis, which is a leading death cause. Perilipin 5 (Plin5), an important perilipin protein, is abundant in tissues with very active lipid catabolism, and is involved in the regulation of oxidative stress. Although, in?ammation and oxidative stress play a critical role in atherosclerosis development, the underlying mechanisms are complex and not completely understood. In the present study, we demonstrated the role of Plin5 in high-fat-diet-induced atherosclerosis in apolipoprotein E null (ApoE-/- ) mice. Our results suggested that Plin5 expressions increased in the artery tissues of ApoE-/- mice. ApoE/Plin5 double knockout (ApoE-/- Plin5-/- ) exacerbated severer atherogenesis, accompanied with significantly disturbed plasma metabolic profiles, such as elevated triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) levels and reduced high-density lipoprotein cholesterol (HDLC) contents. ApoE-/- Plin5-/- exhibited higher number of inflammatory monocytes and neutrophils, as well as over-expression of cytokines and chemokines linked with inflammatory response. Consistently, IκBα/nuclear factor kappa B (NF-κB) pathway was strongly activated in ApoE-/- Plin5-/- . Notably, apoptosis was dramatically induced by ApoE-/- Plin5-/- , as evidenced by increased cleavage of Caspase-3 and Poly (ADP-ribose) polymerase-2 (PARP-2). In addition, ApoE-/- Plin5-/- contributed to oxidative stress generation in the aortic tissues, which was linked with the activation of phosphatidylinositol 3-kinase /protein kinase B (PI3K/AKT) and mitogen-activated protein kinases (MAPKs) pathways. In vitro, oxidized low-density lipoprotein (oxLDL) increased Plin5 expression in RAW264.7 cells. Its knockdown enhanced inflammation, apoptosis, oxidative stress and lipid accumulation, while promotion of Plin5 markedly reduced all the effects induced by ox-LDL in cells. These studies strongly supported that Plin5 could be a new regulator against atherosclerosis, providing new insights on therapeutic solutions. This article is protected by copyright. All rights reserved.

9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt B): 1242-1249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739280

RESUMO

Skeletal muscle can store excess fat as subcellular lipid droplets (LDs). While originally viewed as uninteresting static balls of triacylglycerol, it is now clear that myocellular LDs play an active role in myocellular (patho)physiology. In this review we aim to discuss the role of LDs in muscle cell insulin sensitivity and identify parameters which appear to affect this relationship. Moreover, we discuss the application of novel tools permitting detailed examination of these parameters. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.


Assuntos
Resistência à Insulina , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Animais , Humanos
10.
J Hepatol ; 61(2): 358-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24768901

RESUMO

BACKGROUND & AIMS: Perilipin-5 (PLIN5) is a member of the perilipin family of lipid droplet (LD)-associated proteins. PLIN5 is expressed in oxidative tissues including the liver, and is critical during LD biogenesis. Studies showed that statins reduce hepatic triglyceride contents in some patients with non-alcoholic fatty liver disease and in rodent models of diet-induced hepatosteatosis. Whether statins alter triglyceride synthesis, storage, and/or utilization within the hepatocyte is unknown, though. Here we tested the hypothesis that statins alter the metabolism of LD in the hepatocyte during physiological conditions, such as fasting-induced steatosis. METHODS: Mice were gavaged with saline or atorvastatin, and the expression of LD-associated genes was determined in fed and fasted animals. The accumulation of triglycerides and LD was studied in mouse or human primary hepatocytes in response to statins, and following knock-down of SREBP2 or PLIN5. RESULTS: We show that statins decrease the levels of PLIN5, but not other LD-associated genes, in both mouse liver and mouse/human primary hepatocytes, which is paralleled by a significant reduction in both intracellular triglycerides and the number of LD. We identify an atypical negative sterol regulatory sequence in the proximal promoter of mouse/human PLIN5 that recruits the transcription factor SREBP2 and confers response to statins. Finally, we show that the statin-dependent reduction of hepatocyte triglyceride contents is mimicked by partial knock-down of PLIN5; conversely, ectopic overexpression of PLIN5 reverts the statin effect. CONCLUSIONS: PLIN5 is a physiological regulator of triglyceride metabolism in the liver, and likely contributes to the pleiotropic effects of statins.


Assuntos
Hepatócitos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Musculares/fisiologia , Triglicerídeos/metabolismo , Animais , Hepatócitos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/análise , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia
11.
Nutrients ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732501

RESUMO

Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.


Assuntos
Fatores de Crescimento de Fibroblastos , Metabolismo dos Lipídeos , Fígado , Músculo Esquelético , Obesidade , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Músculo Esquelético/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Perilipina-1/metabolismo , Gotículas Lipídicas/metabolismo
12.
J Lipid Res ; 54(7): 1949-63, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23606724

RESUMO

The surface of lipid droplets (LDs) in various cell types is coated with perilipin proteins encoded by the Plin genes. Perilipins regulate LD metabolism by selectively recruiting lipases and other proteins to LDs. We have studied the expression of perilipins in mouse muscle. The glycolytic fiber-enriched gastrocnemius muscle expresses predominantly Plin2-4. The oxidative fiber-enriched soleus muscle expresses Plin2-5. Expression of Plin2 and Plin4-5 is elevated in gastrocnemius and soleus muscles from mice fed a high-fat diet. This effect is preserved in peroxisome proliferator-activated receptor (PPAR)α-deficient mice. Mouse muscle derived C2C12 cells differentiated into glycolytic fibers increase transcription of these Plins when exposed to various long chain fatty acids (FAs). To understand how FAs regulate Plin genes, we used specific activators and antagonists against PPARs, Plin promoter reporter assays, chromatin immunoprecipitation, siRNA, and animal models. Our analyses demonstrate that FAs require PPARδ to induce transcription of Plin4 and Plin5. We further identify a functional PPAR binding site in the Plin5 gene and establish Plin5 as a novel direct PPARδ target in muscle. Our study reveals that muscle cells respond to elevated FAs by increasing transcription of several perilipin LD-coating proteins. This induction renders the muscle better equipped to sequester incoming FAs into cytosolic LDs.


Assuntos
Ácidos Graxos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , PPAR delta/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Ácidos Graxos/administração & dosagem , Inativação Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , PPAR delta/química , PPAR delta/deficiência , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Dev Cell ; 58(14): 1250-1265.e6, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37290445

RESUMO

Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.


Assuntos
Gotículas Lipídicas , Perilipina-5 , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Perilipina-5/metabolismo
14.
Bioengineered ; 13(4): 10665-10678, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35470759

RESUMO

Abnormal proliferation and migration of vascular smooth muscle cell (VSMC) is a hallmark of vascular neointima hyperplasia. Perilipin 5 (Plin5), a regulator of lipid metabolism, is also confirmed to be involved in vascular disorders, such as microvascular endothelial dysfunction and atherosclerosis. To investigate the regulation and function of plin5 in the phenotypic alteration of VSMC, -an animal model of vascular intima hyperplasia was established in C57BL/6 J and Plin5 knockdown (Plin5±) mice by wire injure. Immunohistochemical staining was used to analyze neointima hyperplasia in artery. Ki-67, dihydroethidium immunofluorescence staining and wound healing assay were used to measure proliferation, reactive oxygen species (ROS) generation and migration of VSMC, respectively. Plin5 was downregulated in artery subjected to vascular injury and in VSMC subjected to platelet-derived growth factor (PDGF)-BB. Plin5 knockdown led to accelerated neointima hyperplasia, excessive proliferation and migration of VSMC after injury. In vitro, we observed increased ROS content in VSMC isolated from Plin5± mice. Antioxidative N-acetylcysteine (NAC) inhibited VSMC proliferation and migration induced by PDGF-BB or plin5 knockdown. More importantly, plin5-peroxlsome proliferator-activated receptor-γ coactivator (PGC)-1α interaction was also attenuated in VSMC after knockdown of plin5. Overexpression of PGC-1α suppressed PDGF-BB-induced ROS generation, proliferation, and migration in VSMC isolated from Plin5± mice. These data suggest that plin5 serves as a potent regulator of VSMC proliferation, migration, and neointima hyperplasia by interacting with PGC-1α and affecting ROS generation.


Assuntos
Neointima , Fatores de Transcrição/metabolismo , Lesões do Sistema Vascular , Animais , Becaplermina , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Perilipina-5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
15.
Nanomaterials (Basel) ; 12(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35215001

RESUMO

Lipid droplets (LDs) play an important role in the regulation of cellular stress. This suggests LDs can be applied as safe and effective biomaterials to alleviate cellular stress and lipotoxicity. Here, we constructed a convenient method to generate stable and pure artificial lipid droplets (aLDs). aLDs can maintain their biological function by incubating LD-associated proteins or organelles in vitro. It was validated that perilipin-coated aLDs could be uptaken by cells, significantly reducing hydrogen peroxide-induced reactive oxidative species (ROS) and alleviating cellular lipotoxicity caused by excess fatty acid. Our work demonstrated a direct role of LDs in regulating cellular stress levels, providing methods and potential value for future research and medical applications of LDs.

16.
Front Med (Lausanne) ; 9: 803617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223903

RESUMO

PURPOSE: Gastric cancer (GC) is the fifth leading cancer around world. And prognosis of patients with GC is still undesirable. Our study aimed to explore potential prognostic biomarkers for patients with GC. METHODS: The clinical samples were collected from the Qinghai University Affiliated Hospital, which were subjected to the whole exome sequencing (WES). The other GC-related data were obtained from The Cancer Genome Atlas (TCGA) database. Cross analyses were done to determine the candidate genes. And the final mutated genes were determined by survival analyses, univariate and multivariate Cox regression analyses. CIBERSORT and GSEA were used for immune cell infiltration analysis and functional enrichment, respectively. RESULTS: After cross analyses, 160 candidate-mutated genes were identified. And mutated ELP6 and PLIN5 were significantly independently correlated with the overall survival (OS) of patients with GC. Patients with GC with ELP6 and PLIN5 mutations had worse and better prognosis, respectively. Totally 5 types of immune cells were significantly differentially infiltrated in wild-type and mutated ELP6 and PLIN5 GC samples. In mutated ELP6 and PLIN5 GC samples, totally 7 and 11 pathways were significantly enriched, respectively. CONCLUSIONS: The ELP6 and PLIN5 mutations were probably prognostic biomarkers for patients with GC.

17.
Acta Histochem ; 124(3): 151869, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35220055

RESUMO

Skeletal muscle physiology remains of paramount importance in understanding insulin resistance. Due to its high lipid turnover rates, regulation of intramyocellular lipid droplets (LDs) is a key factor. Perilipin 5 (PLIN5) is one of the most critical agents in such regulation, being often referred as a protector against lipotoxicity and consequent skeletal muscle insulin resistance. We examined area fraction, size, subcellular localization and PLIN5 association of LDs in two fiber types of type 2 diabetic (T2D), obese (OB) and healthy (HC) individuals by means of fluorescence microscopy and image analysis. We found that T2D type II fibers have a significant sub-population of large and internalized LDs, uncoated by PLIN5. Based on this novel result, additional hypotheses for the pathophysiology of skeletal muscle insulin resistance are formulated, together with future research directions.


Assuntos
Diabetes Mellitus Tipo 2 , Gotículas Lipídicas , Fibras Musculares Esqueléticas , Perilipina-5 , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Perilipina-5/metabolismo
18.
J Comp Pathol ; 189: 88-97, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34886991

RESUMO

Characterized by steatosis, inflammation and fibrosis, non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder. As a major lipid droplet-binding protein, Plin5 has been reported to have multiple effects on metabolism, but the effect of Plin5 deficiency on NAFLD is unknown. Plin5 knockout mice and wild-type mice were used to investigate the role of Plin5 in the progression of NAFLD by feeding a high-fat diet (HFD) for 20 weeks. Plin5 deficiency improved obesity induced by the HFD and altered glucose tolerance. Histological examination revealed that Plin5 deficiency alleviated hepatic steatosis and fibrosis induced by the HFD. Plin5 deficiency was also associated with a significant change in lipid metabolism-associated molecules. Further studies of these molecules indicated that Plin5 deficiency activated the expression of AMP-activated protein kinase and inhibited the core regulator of lipogenesis, sterol regulatory element binding protein 1 and its downstream lipid synthesis-related genes. These findings suggest that Plin5 deficiency ameliorates NAFLD by regulating lipid metabolism and inhibiting lipogenesis, and may provide a new strategy for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Doenças dos Roedores , Animais , Dieta Hiperlipídica/efeitos adversos , Lipogênese , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/veterinária , Perilipina-5/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-33373698

RESUMO

Plin5 is abundantly expressed in the heart where it binds to lipid droplets (LDs) and facilitates physical interaction between LDs and mitochondria. We isolated cardiomyocytes from adult Plin5+/+ and Plin5-/- mice to study the role of Plin5 for fatty acid uptake, LD accumulation, fatty acid oxidation, and tolerance to hypoxia. Cardiomyocytes isolated from Plin5-/- mice cultured with oleic acid stored less LDs than Plin5+/+, but comparable levels to Plin5+/+ cardiomyocytes when adipose triglyceride lipase activity was inhibited. The ability to oxidize fatty acids into CO2 was similar between Plin5+/+ and Plin5-/- cardiomyocytes, but Plin5-/- cardiomyocytes had a transient increase in intracellular fatty acid oxidation intermediates. After pre-incubation with oleic acids, Plin5-/- cardiomyocytes retained a higher content of glycogen and showed improved tolerance to hypoxia compared to Plin5+/+. In isolated, perfused hearts, deletion of Plin5 had no important effect on ventricular pressures or infarct size after ischemia. Old Plin5-/- mice had reduced levels of cardiac triacylglycerides, increased heart weight, and apart from modest elevated expression of mRNAs for beta myosin heavy chain Myh7 and the fatty acid transporter Cd36, other genes involved in fatty acid oxidation, glycogen metabolism and glucose utilization were essentially unchanged by removal of Plin5. Plin5 seems to facilitate cardiac LD storage primarily by repressing adipose triglyceride lipase activity without altering cardiac fatty acid oxidation capacity. Expression of Plin5 and cardiac LD content of isolated cardiomyocytes has little importance for tolerance to acute hypoxia and ischemia, which contrasts the protective role for Plin5 in mouse models during myocardial ischemia.


Assuntos
Gotículas Lipídicas/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Perilipina-5/genética , Animais , Hipóxia Celular , Células Cultivadas , Feminino , Deleção de Genes , Gotículas Lipídicas/patologia , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Perilipina-5/metabolismo
20.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571833

RESUMO

Comprehending the molecular mechanisms underlying hepatic fibrogenesis is essential to the development of treatment. The hallmark of hepatic fibrosis is the development and deposition of excess fibrous connective tissue forcing tissue remodeling. Hepatic stellate cells (HSC) play a major role in the pathogenesis of liver fibrosis. Their activation via the transforming growth factor-ß1 (TGF-ß1) as a key mediator is considered the crucial event in the pathophysiology of hepatic fibrogenesis. It has been shown that Perilipin 5 (PLIN5), known as a lipid droplet structural protein that is highly expressed in oxidative tissue, can inhibit such activation through various mechanisms associated with lipid metabolism. This study aimed to investigate the possible influence of PLIN5 on TGF-ß1 signaling. Our findings confirm the importance of PLIN5 in maintaining HSC quiescence in vivo and in vitro. PLIN5 overexpression suppresses the TGF-ß1-SMAD2/3 and SNAIL signaling pathways as well as the activation of the signal transducers and activators of transcription 3 (STAT3). These findings derived from experiments in hepatic cell lines LX-2 and Col-GFP, in which overexpression of PLIN5 was able to downregulate the signaling pathways SMAD2/3 and SNAIL activated previously by TGF-ß1 treatment. Furthermore, TGF-ß1-mediatedinduction of extracellular matrix proteins, such as collagen type I (COL1), Fibronectin, and α-smooth muscle actin (α-SMA), was suppressed by PLIN5. Moreover, STAT3, which is interrelated with TGF-ß1 was already basally activated in the cell lines and inhibited by PLIN5 overexpression, leading to a further reduction in HSC activity shown by lowered α-SMA expression. This extension of the intervening mechanisms presents PLIN5 as a potent and pleiotropic target in HSC activation.


Assuntos
Células Estreladas do Fígado/metabolismo , Perilipina-5/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Animais , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA