Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Invest New Drugs ; 39(3): 636-643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33230623

RESUMO

In order to suppress 5' cap-mediated translation a highly available inhibitor of the interaction between the 5' mRNA cap and the eIF4E complex has been developed. 4Ei-10 is a member of the class of ProTide compounds and has elevated membrane permeability and is a strong active chemical antagonist for eIF4E. Once taken up by cells it is converted by anchimeric activation of the lipophilic 2-(methylthio) ethyl protecting group and after that Hint1 P-N bond cleavage to N7-(p-chlorophenoxyethyl) guanosine 5'-monophosphate (7-Cl-Ph-Ethyl-GMP). Using this powerful interaction, it has been demonstrated that 4Ei-10 inhibits non-small cell lung cancer (NSCLC) cell growth. In addition, treatment of NSCLC cells with 4Ei-10 results in suppression of translation and diminished expression of a cohort of cellular proteins important to maintaining the malignant phenotype and resisting apoptosis such as Bcl-2, survivin, and ornithine decarboxylase (ODC). Finally, as a result of targeting the translation of anti-apoptotic proteins, NSCLC cells are synergized to be more sensitive to the existing anti-neoplastic treatment gemcitabine currently used in NSCLC therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Fator de Iniciação 4E em Eucariotos , Neoplasias Pulmonares , Nucleotídeos , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Interações Medicamentosas , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Pró-Fármacos/farmacologia , Nucleotídeos/farmacologia , Nucleotídeos/uso terapêutico , Gencitabina
2.
J Inherit Metab Dis ; 44(2): 492-501, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368311

RESUMO

Loss-of-function mutations in the deoxyguanosine kinase (DGUOK) gene result in a mitochondrial DNA (mtDNA) depletion syndrome. DGUOK plays an important role in converting deoxyribonucleosides to deoxyribonucleoside monophosphates via the salvage pathway for mtDNA synthesis. DGUOK deficiency manifests predominantly in the liver; the most common cause of death is liver failure within the first year of life and no therapeutic options are currently available. in vitro supplementation with deoxyguanosine or deoxyguanosine monophosphate (dGMP) were reported to rescue mtDNA depletion in DGUOK-deficient, patient-derived fibroblasts and myoblasts. CERC-913, a novel ProTide prodrug of dGMP, was designed to bypass defective DGUOK while improving permeability and stability relative to nucleoside monophosphates. To evaluate CERC-913 for its ability to rescue mtDNA depletion, we developed a primary hepatocyte culture model using liver tissue from DGUOK-deficient rats. DGUOK knockout rat hepatocyte cultures exhibit severely reduced mtDNA copy number (~10%) relative to wild type by qPCR and mtDNA content remains stable for up to 8 days in culture. CERC-913 increased mtDNA content in DGUOK-deficient hepatocytes up to 2.4-fold after 4 days of treatment in a dose-dependent fashion, which was significantly more effective than dGMP at similar concentrations. These early results suggest primary hepatocyte culture is a useful model for the study of mtDNA depletion syndromes and that CERC-913 treatment can improve mtDNA content in this model.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Nucleotídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Animais , Células CACO-2 , Variações do Número de Cópias de DNA , DNA Mitocondrial/efeitos dos fármacos , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Mutação , Nucleotídeos/metabolismo , Pró-Fármacos/farmacologia , Ratos , Ratos Transgênicos
3.
Bioorg Med Chem Lett ; 52: 128405, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624489

RESUMO

Vidarabine (ARA) was one of the earliest marine-related compounds to be used clinically for antiviral therapy, however, its fast metabolism is the main defect of this drug. To overcome this, we designed and synthesized a group of phosphamide-modified ARA compounds using ProTide technology. With a phosphamide modification, these compounds could become the substrate of specific phospholipase enzymes expressed in the liver. Among all 16 synthesized compounds, most showed stronger activity against herpes simplex virus type 1 (HSV-1) than ARA (EC50 of approximately 10 µM). The top three compounds were compound 2 (EC50 = 0.52 ± 0.04 µM), compound 6 (EC50 = 1.05 ± 0.09 µM) and compound 15 (EC50 = 1.18 ± 0.08 µM) (about 2 times higher than Sp type compound 2). This study provides evidence for use of the phosphamide modification, which could give ARA higher activity and liver cell targeting.


Assuntos
Antivirais/farmacologia , Dimetoato/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Vidarabina/farmacologia , Antivirais/síntese química , Antivirais/química , Dimetoato/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Vidarabina/síntese química , Vidarabina/química
4.
Bioorg Med Chem Lett ; 30(4): 126897, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31882298

RESUMO

The nucleoside/nucleotide derived antiviral agents have been the most important components of antiviral therapy used in clinics. Recently, the focus of the medicinal chemists within this exciting research field has been affected mainly by the lack of effective therapies for the Hepatitis C virus (HCV) infection and several other "neglected" diseases caused by viruses such as Zika or Dengue. 2'-Methyl modified nucleosides and their monophosphate prodrugs (ProTides) have revolutionized the therapies for HCV in the last few years and, according to the latest research efforts, have also brought a promise for treatment of diseases caused by other members of Flaviviridae family. Here, we report on the design and synthesis of 5'-N and S modified ProTides derived from 2'-methyladenosine. We studied potential applicability of these derivatives as prodrugs of this archetypal antiviral compound.


Assuntos
Antivirais/química , Nucleotídeos/química , Pró-Fármacos/química , Adenosina/análogos & derivados , Adenosina/química , Antivirais/síntese química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Enxofre/química , Zika virus/efeitos dos fármacos
5.
Bioorg Med Chem Lett ; 29(24): 126721, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31679972

RESUMO

Human Immunodeficiency Virus (HIV) damages the immune system and leads to the life-threatening acquired immunodeficiency syndrome (AIDS). Despite the advances in the field of antiretroviral treatment, HIV remains a major public health challenge. Nucleosides represent a prominent chemotherapeutic class for treating viruses, however their cellular uptake, kinase-mediated activation and catabolism are limiting factors. Herein, we report the synthesis and in vitro evaluation of stavudine (d4T) ProTides containing polyfluorinated aryl groups against two strains; HIV-1 (IIIB) and HIV-2 (ROD). ProTide 5d containing a meta-substituted pentafluorosulfanyl (3-SF5) aryl group showed superior antiviral activity over the parent d4T and the nonfluorinated analogue 5a. ProTide 5d has low nanomolar antiviral activity; (IC50 = 30 nM, HIV-1) and (IC50 = 36 nM, HIV-2) which is over tenfold more potent than d4T. Interestingly, ProTide 5d showed a significantly high selectivity indices with SI = 1753 (HIV-1) and 1461 (HIV-2) which is more than twice that of the d4T. All ProTides were screened in wild type as well as thymidine kinase deficient (TK-) cells. Enzymatic activation of ProTide 5d using carboxypeptidase Y enzyme and monitored using both 31P and 19F NMR is presented.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-2/efeitos dos fármacos , Estavudina/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Estavudina/síntese química , Estavudina/química , Relação Estrutura-Atividade , Timidina Quinase/deficiência , Timidina Quinase/metabolismo
6.
Bioorg Med Chem ; 26(3): 551-565, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277307

RESUMO

A new family of thirteen phosphoramidate prodrugs (ProTides) of different 6-substituted-5-fluorouridine nucleoside analogues were synthesized and evaluated as potential anticancer agents. In addition, antiviral activity against Chikungunya (CHIKV) virus was evaluated using a cytopathic effect inhibition assay. Although a carboxypeptidase Y assay supported a putative mechanism of activation of ProTides built on 5-fluorouridine with such C6-modifications, the Hint docking studies revealed a compromised substrate-activity for the Hint phosphoramidase-type enzyme that is likely responsible for phosphoramidate bioactivation through P-N bond cleavage and free nucleoside 5'-monophosphate delivery. Our observations may support and explain to some extent the poor in vitro biological activity generally demonstrated by the series of 6-substituted-5-fluorouridine phosphoramidates (ProTides) and will be of guidance for the design of novel phosphoramidate prodrugs.


Assuntos
Fosforamidas/síntese química , Pró-Fármacos/síntese química , Uridina/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fosforamidas/química , Fosforamidas/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Uridina/síntese química , Uridina/química , Uridina/farmacologia , Internalização do Vírus/efeitos dos fármacos
7.
Mol Pharm ; 14(11): 3987-3997, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28968488

RESUMO

Nucleotide analogues that incorporate a metabolically labile nucleoside phosphoramidate (a ProTide) have found utility as prodrugs. In humans, ProTides can be cleaved by human histidine triad nucleotide binding protein 1 (hHint1) to expose the nucleotide monophosphate. Activation by this route circumvents highly selective nucleoside kinases that limit the use of nucleosides as prodrugs. To better understand the diversity of potential substrates of hHint1, we created and studied a series of phosphoramidate nucleosides. Using a combination of enzyme kinetics, X-ray crystallography, and isothermal titration calorimetry with both wild-type and inactive mutant enzymes, we have been able to explore the energetics of substrate binding and establish a structural basis for catalytic efficiency. Diverse nucleobases are well tolerated, but portions of the ribose are needed to position substrates for catalysis. Beneficial characteristics of the amine leaving group are also revealed. Structural principles revealed by these results may be exploited to tune the rate of substrate hydrolysis to strategically alter the intracellular release of the product nucleoside monophosphate from the ProTide.


Assuntos
Proteínas do Tecido Nervoso/química , Nucleotídeos/química , Amidas/química , Cristalografia por Raios X , Humanos , Ácidos Fosfóricos/química , Especificidade por Substrato
8.
Bioorg Med Chem Lett ; 27(6): 1371-1378, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28236593

RESUMO

Previously published S1P receptor modulator benzyl ether derivatives have shown potential as being viable therapeutics for the treatment of neurodegenerative diseases, however, two of the most S1P1-selective compounds are reported as being poorly phosphorylated by kinases in vivo. Phosphoramidates of BED compounds (2a, 2b) were synthesised with the aim of producing kinase-independent S1P receptor modulators. Carboxypeptidase, human serum and cell lysate processing experiments were conducted. ProTide BED analogues were found to have an acceptable level of stability in acidic and basic conditions and in vitro metabolic processing experiments showed that they are processed to the desired pharmacologically active monophosphate. The research describes the development of an entirely novel family of therapeutic agents.


Assuntos
Amidas/farmacologia , Ácidos Fosfóricos/farmacologia , Fosfotransferases/metabolismo , Receptores de Lisoesfingolipídeo/agonistas , Animais , Humanos
9.
Molecules ; 22(10)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035325

RESUMO

Background: Poor pharmacokinetic profiles and resistance are the main two drawbacks from which currently used antiviral agents suffer, thus make them excellent targets for research, especially in the presence of viral pandemics such as HIV and hepatitis C. Methods: The strategies employed in the studies covered in this review were sorted by the type of drug synthesized into ester prodrugs, targeted delivery prodrugs, macromolecular prodrugs, other nucleoside conjugates, and non-nucleoside drugs. Results: Utilizing the ester prodrug approach a novel isopropyl ester prodrug was found to be potent HIV integrase inhibitor. Further, employing the targeted delivery prodrug zanamivir and valine ester prodrug was made and shown a sole delivery of zanamivir. Additionally, VivaGel, a dendrimer macromolecular prodrug, was found to be very efficient and is now undergoing clinical trials. Conclusions: Of all the strategies employed (ester, targeted delivery, macromolecular, protides and nucleoside analogues, and non-nucleoside analogues prodrugs), the most promising are nucleoside analogues and macromolecular prodrugs. The macromolecular prodrug VivaGel works by two mechanisms: envelope mediated and receptor mediated disruption. Nucleotide analogues have witnessed productive era in the recent past few years. The era of non-interferon based treatment of hepatitis (through direct inhibitors of NS5A) has dawned.


Assuntos
Antivirais/química , Antivirais/farmacologia , Nucleosídeos/química , Nucleosídeos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Nucleotídeos/química , Nucleotídeos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia
10.
Bioorg Med Chem Lett ; 26(23): 5618-5623, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818111

RESUMO

Nucleosides represent a major chemotherapeutic class for treating cancer, however their limitations in terms of cellular uptake, nucleoside kinase-mediated activation and catabolism are well-documented. The monophosphate pro-nucleotides known as ProTides represents a powerful strategy for bypassing the dependence on active transport and nucleoside kinase-mediated activation. Herein, we report the structural tuning of BVdU ProTides. Forty six phosphoramidates were prepared and biologically evaluated against three different cancer cell lines; murine leukemia (L1210), human CD4+ T-lymphocyte (CEM) and human cervical carcinoma (HeLa). Twenty-fold potency enhancement compared to BVdU was achieved against L1210 cells. Interestingly, a number of ProTides showed low micromolar activity against CEM and HeLa cells compared to the inactive parent BVdU. The ProTides showed poor, if any measurable toxicity to non-tumourigenic human lung fibroblast cell cultures. Separation of four pairs of the diastereoisomeric mixtures and comparison of their spectral properties, biological activities and enzymatic activation rate is reported.


Assuntos
Amidas/química , Amidas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Bromodesoxiuridina/análogos & derivados , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacologia , Amidas/metabolismo , Amidas/farmacocinética , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacocinética , Antivirais/farmacologia , Bromodesoxiuridina/química , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacocinética , Bromodesoxiuridina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Ácidos Fosfóricos/metabolismo , Ácidos Fosfóricos/farmacocinética
11.
Adv Gerontol ; 29(4): 670-675, 2016.
Artigo em Russo | MEDLINE | ID: mdl-28539029

RESUMO

In this science work there were conducted such researches as organometric, histological, immunomorphologic and morphometric of cerebellar cortex of 219 corpses of people (108 man and 111 woman) of young and old age. A comparative analysis of the parameters of bulb-shaped neurons in these ages revealed decrease of their height and width. It is found that distance between interval nerve cell bodies of ganglionic layer increases with age that obviously associated with progressing disorganization and death of bulb-shaped neurons. It is marked an increment in the number of immunopositive for glial fibrillary acidic protein, protide S-100 and vimentin astrocytes in granular layer and molecular layer of cerebellar cortex, and decline in the number of immunopositive for neuron-specific enolase and immunonegative for protide S-100 and vimentin bulb-shaped neurons that can be regarded as manifestation of neurodegeneration. Using immunohistochemical methods in research allows approaching more differentially to the issues of morphological assessment cerebellar cortex of elderly people and gives an opportunity to receive more objective and full information of postnatal morphogenesis.


Assuntos
Envelhecimento , Córtex Cerebelar , Neurônios/metabolismo , Células de Purkinje , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Envelhecimento/fisiologia , Autopsia , Córtex Cerebelar/metabolismo , Córtex Cerebelar/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Gravidez , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Proteínas S100/metabolismo , Vimentina/metabolismo
12.
Front Cell Dev Biol ; 11: 1173432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143892

RESUMO

Gastrointestinal malignancies are common digestive system tumor worldwide. Nucleoside analogues have been widely used as anticancer drugs for the treatment of a variety of conditions, including gastrointestinal malignancies. However, low permeability, enzymatic deamination, inefficiently phosphorylation, the emergence of chemoresistance and some other issues have limited its efficacy. The prodrug strategies have been widely applied in drug design to improve pharmacokinetic properties and address safety and drug-resistance issues. This review will provide an overview of the recent developments of prodrug strategies in nucleoside analogues for the treatment of gastrointestinal malignancies.

13.
ChemMedChem ; 18(4): e202200490, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36658701

RESUMO

Aryloxy triester phosphoramidate methodology, commonly known as ProTide technology, is one of the most widely used prodrug approaches applied to therapeutic nucleosides. This approach has been used extensively by the pharmaceutical industry and researchers in medicinal chemistry. Herein we report our adaptation of this effective method for the synthesis of bioactive 5'-mRNA cap analogues as inhibitors for targeting cap-dependent translation. The synthesis was performed in two main stages: preparation of N2-modified guanosine analogues and their subsequent transformation into prodrugs using phenylethoxy-l-alaninyl phosphorochloridate. The prepared pro-nucleotide cap analogues were tested for their capacity in enzymatic activation, inhibitory properties in a rabbit reticulocyte lysate system, and passive membrane translocation properties.


Assuntos
Antivirais , Pró-Fármacos , Animais , Coelhos , Antivirais/farmacologia , RNA Mensageiro/genética , Tecnologia , Aminas , Pró-Fármacos/química
14.
Eur J Med Chem ; 260: 115763, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659196

RESUMO

ProTide prodrug technology has emerged as a promising way for the development of anti-viral and anti-tumor drugs, whereas, there are fewer applications for the treatment of liver cancer. Herein, a series of distinct 3'-ester ProTide prodrugs of 5-fluoro-2'-deoxyuridine (FdUR) were synthesized and evaluated for their anti-liver cancer activity. The most efficient prodrug 11b reached a sub-micromolar activity (IC50 = 0.42 ± 0.13 µM) against HepG2 and over 100-fold and 200-fold improvements compared to 5-FU, respectively. 11b also demonstrated favorable selectivity towards normal liver cells L-02 (IC50 > 100 µM). In vitro metabolic stability studies revealed that 11b is stable in the plasma and could be activated rapidly in the liver, which supported that 11b is liver-targeted. Importantly, to more accurately evaluate the anti-HCC activity of 11b, the liver orthotopic model was built and 11b significantly suppressed tumor growth (TGI = 75.5%) at a dose of 60 mg/kg/2d in vivo without obvious toxicity. Overall, these promising results indicated that 11b could serve as a safe and effective prodrug of 5-FU nucleoside for liver cancer therapy.


Assuntos
Neoplasias Hepáticas , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Desoxiuridina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
15.
Curr Top Med Chem ; 21(32): 2909-2927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34323189

RESUMO

Synthetic nucleoside or nucleotide analogues played a key role to the development of antiviral agents in past decades. However, low membrane permeability and insufficient cellular phosphorylation impaired the biological activity of polar nucleoside drugs because they have to penetrate the cell membrane and be phosphorylated to active metabolite stepwise by intracellular enzymes. To overcome these limitations, diverse lipophilic prodrug modifications based on nucleoside mono-, di-, and triphosphate were designed and put into practice to efficiently deliver nucleoside into the target site, and bypass the rate-limited phosphorylation step. As the most successful prodrug strategy, ProTide technology has led to the discovery of three FDA-approved antiviral agents, including sofosbuvir, tenofovir alafenadmide, and remdesivir, which has been authorized for emergency use in patients of COVID-19 in the US. In recent years, nucleoside di- and triphosphate prodrugs have also made the significant progress. This review will focus on the summary of design approach and metabolic activation path of different nucleotide prodrug strategies. The potential application of nucleotide prodrugs for the treatment of COVID-19 was also described due to the pandemic of SARS-CoV-2.


Assuntos
Antivirais , Desenho de Fármacos , Nucleosídeos , Nucleotídeos , Pró-Fármacos , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Nucleotídeos/farmacologia , Nucleotídeos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
16.
Expert Opin Drug Discov ; 16(10): 1149-1161, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985395

RESUMO

Introduction: The ProTide technology is a phosphate (or phosphonate) prodrug method devised to deliver nucleoside monophosphate (or monophosphonate) intracellularly bypassing the key challenges of antiviral and anticancer nucleoside analogs. Three new antiviral drugs, exploiting this technology, have been approved by the FDA while others are in clinical studies as anticancer agents.Areas covered: The authors describe the origin and development of this technology and its incredible success in transforming the drug discovery of antiviral and anticancer nucleoside analogues. As evidence, discussion on the antiviral ProTides on the market, and those currently in clinical development are included. The authors focus on how the proven capacity of this technology to generate new drug candidates has stimulated its application to non-nucleoside-based molecules.Expert opinion: The ProTide approach has been extremely successful in delivering blockbuster antiviral medicines and it seems highly promising in oncology. Its application to non-nucleoside-based small molecules is recently emerging and proving effective in other therapeutic areas. However, investigations to explain the lack of activity of certain ProTide series and comprehensive structure activity relationship studies to identify the appropriate phosphoramidate motifs depending on the parent molecule are in our opinion mandatory for the future development of these compounds.


Assuntos
Nucleosídeos , Pró-Fármacos , Antivirais/uso terapêutico , Descoberta de Drogas , Humanos , Nucleosídeos/química , Nucleosídeos/uso terapêutico , Nucleotídeos/química , Nucleotídeos/uso terapêutico , Pró-Fármacos/farmacologia , Tecnologia
17.
Pharmaceutics ; 12(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137942

RESUMO

Prodrugs are bioreversible, inactive drug derivatives, which have the ability to convert into a parent drug in the body. In the past, prodrugs were used as a last option; however, nowadays, prodrugs are considered already in the early stages of drug development. Optimal prodrug needs to have effective absorption, distribution, metabolism, and elimination (ADME) features to be chemically stable, to be selective towards the particular site in the body, and to have appropriate safety. Traditional prodrug approach aims to improve physicochemical/biopharmaceutical drug properties; modern prodrugs also include cellular and molecular parameters to accomplish desired drug effect and site-specificity. Here, we present recently investigated prodrugs, their pharmaceutical and clinical advantages, and challenges facing the overall prodrug development. Given examples illustrate that prodrugs can accomplish appropriate solubility, increase permeability, provide site-specific targeting (i.e., to organs, tissues, enzymes, or transporters), overcome rapid drug metabolism, decrease toxicity, or provide better patient compliance, all with the aim to provide optimal drug therapy and outcome. Overall, the prodrug approach is a powerful tool to decrease the time/costs of developing new drug entities and improve overall drug therapy.

18.
FEBS Lett ; 594(10): 1497-1505, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990367

RESUMO

Human histidine triad nucleotide-binding protein 2 (hHINT2) is an important player in human mitochondrial bioenergetics, but little is known about its catalytic capabilities or its nucleotide phosphoramidate prodrug (proTide)-activating activity akin to the cytosolic isozyme hHINT1. Here, a similar substrate specificity profile (kcat /Km ) for model phosphoramidate substrates was found for hHINT2 but with higher kcat and Km values when compared with hHINT1. A broader pH range for maximum catalytic activity was determined for hHINT2 (pK1  = 6.76 ± 0.16, pK2  = 8.41 ± 0.07). In addition, the known hHINT1-microphthalmia-inducing transcription factor-regulating molecule Ap4 A was found to have no detectable binding to HINT1 nor HINT2 by isothermal titration calorimetry. These results demonstrate that despite differences in their sequence and localization, HINT1 and HINT2 have similar nucleotide substrate specificities, which should be considered in future proTide design and in studies of their natural function.


Assuntos
Fosfatos de Dinucleosídeos , Histidina/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Biocatálise , Calorimetria , Humanos , Concentração de Íons de Hidrogênio , Proteínas Mitocondriais/química , Proteínas do Tecido Nervoso/química , Especificidade por Substrato
19.
Cancer Chemother Pharmacol ; 85(2): 425-432, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31974652

RESUMO

Activated cap-dependent translation promotes cancer by stimulating translation of mRNAs encoding malignancy-promoting proteins. The nucleoside monophosphate Protide, 4Ei-10, undergoes intracellular uptake and conversion by Hint1 to form 7-Cl-Ph-Ethyl-GMP. 7-Cl-Ph-Ethyl-GMP is an analog of cap and inhibits protein translation by binding and sequestering eIF4E thus blocking eIF4E from binding to the mRNA cap. The effects of inhibiting translation initiation by disruption of the eIF4F complex with 4Ei-10 were examined in malignant mesothelioma (MM). In a cell-free assay system, formation of the eIF4F complex was disabled in response to exposure to 4Ei-10. Treatment of MM with 4Ei-10 resulted in decreased cell proliferation, increased sensitivity to pemetrexed and altered expression of malignancy-related proteins. In light of these findings, suppression of translation initiation by small molecule inhibitors like 4Ei-10 alone or in combination with pemetrexed represents an encouraging strategy meriting further evaluation in the treatment of MM.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Iniciação 4F em Eucariotos/genética , Humanos , Mesotelioma Maligno , Pemetrexede/farmacologia , RNA Mensageiro/genética , Bibliotecas de Moléculas Pequenas/farmacologia
20.
Biomaterials ; 223: 119476, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525692

RESUMO

A long acting (LA) hydrophobic and lipophilic lamivudine (3TC) was created as a phosphoramidate pronucleotide (designated M23TC). M23TC improved intracellular delivery of active triphosphate metabolites and enhanced antiretroviral and pharmacokinetic (PK) profiles over the native drug. A single treatment of human monocyte derived macrophages (MDM) with nanoformulated M23TC (NM23TC) improved drug uptake, retention, intracellular 3TC triphosphates and antiretroviral activities in MDM and CD4+ T cells. PK tests of NM23TC administered to Sprague Dawley rats demonstrated sustained prodrug and drug triphosphate levels in blood and tissues for 30 days. The development of NM23TC remains a substantive step forward in producing LA slow effective release antiretrovirals for future clinical translation.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Infecções por HIV/tratamento farmacológico , Lamivudina/administração & dosagem , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , HIV-1 , Humanos , Linfonodos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Nanomedicina/métodos , Nanopartículas/química , Pró-Fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA