Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
J Biol Chem ; 300(8): 107509, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944126

RESUMO

Shy (side chain hydratase) and Sal (side chain aldolase), are involved in successive reactions in the pathway of bile acid side chain catabolism in Proteobacteria. Untagged Shy copurified with His-tagged Sal indicating that the two enzymes form a complex. Shy contains a MaoC and a DUF35 domain. When coexpressed with Sal, the DUF35 domain but not the MaoC domain of Shy was observed to copurify with Sal, indicating Sal interacts with Shy through its DUF35 domain. The MaoC domain of Shy (ShyMaoC) remained catalytically viable and could hydrate cholyl-enoyl-CoA with similar catalytic efficiency as in the Shy-Sal complex. Sal expressed with the DUF35 domain of Shy (Sal-ShyDUF35) was similarly competent for the retro-aldol cleavage of cholyl-3-OH-CoA. ShyMaoC showed a preference for C5 side chain bile acid substrates, exhibiting low activity toward C3 side chain substrates. The ShyMaoC structure was determined by X-ray crystallography, showing a hot dog fold with a short central helix surrounded by a twisted antiparallel ß-sheet. Modeling and mutagenesis studies suggest that the bile acid substrate occupies the large open cleft formed by the truncated central helix and repositioning of the active site housing. ShyMaoC therefore contains two substrate binding sites per homodimer, making it distinct from previously characterized MaoC steroid hydratases that are (pseudo) heterodimers with one substrate binding site per dimer. The characterization of Shy provides insight into how MaoC family hydratases have adapted to accommodate large polycyclic substrates that can facilitate future engineering of these enzymes to produce novel steroid pharmaceuticals.

2.
J Bacteriol ; 206(2): e0043023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38240569

RESUMO

Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.


Assuntos
Proteínas Repressoras , Transativadores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Lactonas , Percepção de Quorum/genética , Regulação Bacteriana da Expressão Gênica , Acil-Butirolactonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Plant Cell Physiol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030709

RESUMO

Anoxygenic photosynthesis is diversified into two classes: chlorophototrophy based on a bacterial type-I or type-II reaction center (RC). Whereas the type-I RC contains both bacteriochlorophyll and chlorophyll, type-II RC-based phototrophy relies only on bacteriochlorophyll. However, type-II phototrophic bacteria theoretically have the potential to produce chlorophyll a by the addition of an enzyme, chlorophyll synthase, because the direct precursor for the enzyme, chlorophyllide a, is produced as an intermediate of BChl a biosynthesis. In this study, we attempted to modify the type-II proteobacterial phototroph Rhodovulum sulfidophilum to produce chlorophyll a by introducing chlorophyll synthase, which catalyzes the esterification of a diterpenoid group to chlorophyllide a thereby producing chlorophyll a. However, the resulting strain did not accumulate chlorophyll a, perhaps due to absence of endogenous chlorophyll a-binding proteins. We further heterologously incorporated genes encoding the type-I RC complex to provide a target for chlorophyll a. Heterologous expression of type-I RC subunits, chlorophyll synthase, and galactolipid synthase successfully afforded detectable accumulation of chlorophyll a in Rdv. sulfidophilum. This suggests that the type-I RC can work to accumulate chlorophyll a and that galactolipids are likely necessary for the type-I RC assembly. The evolutionary acquisition of type-I RCs could be related to prior or concomitant acquisition of galactolipids and chlorophylls.

4.
BMC Microbiol ; 24(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172684

RESUMO

BACKGROUND: Harmonia axyridis is an effective natural enemy insect to a variety of phloem-sucking pests and Lepidopteran larvae, such as aphids, scabies, and phylloxera, while its industrial production is limited due to unmature artificial diet. Insect intestinal microbiota affect host development and reproduction. The aim of this study is to understand intestinal microbiota composition of H. axyridis and screen effective probiotics on artificial diet. Considering the role of the components and composition of the diet on the structure and composition of the intestinal microbiome, four kinds of diets were set up: (1) aphid; (2) basic diet; (3) basic diet + glucose; (4) basic diet + trehalose. The gut microbiota of H. axyridis was detected after feeding on different diets. RESULTS: Results showed that the gut microbiota between artificial diet group and aphid groups were far apart, while the basic and glucose groups were clearly clustered. Besides, the glucose group and trehalose group had one unique phylum, Cryptophyta and Candidatus Saccharibacteria, respectively. The highest abundance of Proteobacteria was found in the aphid diet. The highest abundance of Firmicutes was found in the basic diet. However, the addition of glucose or trehalose alleviated the change. In addition, the relative abundance of Enterobacter, Klebsiella, Enterobacteriaceae_unclassified, Enterobacteriales_unclassified and Serratia in the aphid group was higher than other groups. Moreover, the function of gut genes in each group also showed clear differences. CONCLUSION: These results have offered a strong link between artificial diets and gut microbes, and also have provided a theoretical basis for the screening of synergistic probiotics in artificial diet.


Assuntos
Afídeos , Besouros , Microbioma Gastrointestinal , Animais , Trealose , Insetos , Dieta , Enterobacter , Glucose
5.
Appl Microbiol Biotechnol ; 108(1): 22, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159121

RESUMO

Three new strains of dissimilatory perchlorate-reducing bacteria (DPRB), QD19-16, QD1-5, and P3-1, were isolated from an active sludge. Phylogenetic trees based on 16S rRNA genes indicated that QD19-16, QD1-5, and P3-1 belonged to Brucella, Acidovorax, and Citrobacter, respectively, expanding the distribution of DPRB in the Proteobacteria. The three strains were gram-negative and facultative anaerobes with rod-shaped cells without flagella, which were 1.0-1.6 µm long and 0.5-0.6 µm wide. The three DPRB strains utilized similar broad spectrum of electron donors and acceptors and demonstrated a similar capability to reduce perchlorate within 6 days. The enzyme activity of perchlorate reductase in QD19-16 toward chlorate was higher than that toward perchlorate. The high sequence similarity of the perchlorate reductase operon and chlorite dismutase genes in the perchlorate reduction genomic islands (PRI) of the three strains implied that they were monophyletic origin from a common ancestral PRI. Two transposase genes (tnp1 and tnp2) were found in the PRIs of strain QD19-16 and QD1-5, but were absent in the strain P3-1 PRI. The presence of fragments of IR sequences in the P3-1 PRI suggested that P3-1 PRI had previously contained these two tnp genes. Therefore, it is plausible to suggest that a common ancestral PRI transferred across the strains Brucella sp. QD19-16, Acidovorax sp. QD1-5, and Citrobacter sp. P3-1 through horizontal gene transfer, facilitated by transposases. These results provided a direct evidence of horizontal gene transfer of PRI that could jump across phylogenetically unrelated bacteria through transposase. KEY POINTS: • Three new DPRB strains can effectively remove high concentration of perchlorate. • The PRIs of three DPRB strains are acquired from a single ancestral PRI. • PRIs are incorporated into different bacteria genome through HGT by transposase.


Assuntos
Ilhas Genômicas , Percloratos , Filogenia , Oxirredução , Transferência Genética Horizontal , RNA Ribossômico 16S/genética , Bactérias/genética , Oxirredutases/genética , Ecossistema , Transposases/genética
6.
Biodegradation ; 35(5): 565-582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844743

RESUMO

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).


Assuntos
Processos Autotróficos , Reatores Biológicos , Desnitrificação , Oxirredução , Reatores Biológicos/microbiologia , Enxofre/metabolismo , Esgotos/microbiologia , Nitratos/metabolismo , Anaerobiose , Bactérias/metabolismo , Nitritos/metabolismo , Compostos de Amônio/metabolismo , Eliminação de Resíduos Líquidos/métodos
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000123

RESUMO

Gemcitabine (2',2'-difluoro-2'-deoxycytidine), a widely used anticancer drug, is considered a gold standard in treating aggressive pancreatic cancers. Gamma-proteobacteria that colonize the pancreatic tumors contribute to chemoresistance against gemcitabine by metabolizing the drug to a less active and deaminated form. The gemcitabine transporters of these bacteria are unknown to date. Furthermore, there is no complete knowledge of the gemcitabine transporters in Escherichia coli or any other related proteobacteria. In this study, we investigate the complement of gemcitabine transporters in E. coli K-12 and two common chemoresistance-related bacteria (Klebsiella pneumoniae and Citrobacter freundii). We found that E. coli K-12 has two high-affinity gemcitabine transporters with distinct specificity properties, namely, NupC and NupG, whereas the gemcitabine transporters of C. freundii and K. pneumoniae include the NupC and NupG orthologs, functionally indistinguishable from their counterparts, and, in K. pneumoniae, one additional NupC variant, designated KpNupC2. All these bacterial transporters have a higher affinity for gemcitabine than their human counterparts. The highest affinity (KM 2.5-3.0 µΜ) is exhibited by NupGs of the bacteria-specific nucleoside-H+ symporter (NHS) family followed by NupCs (KM 10-13 µΜ) of the concentrative nucleoside transporter (CNT) family, 15-100 times higher than the affinities reported for the human gemcitabine transporter hENT1/SLC29A1, which is primarily associated with gemcitabine uptake in the pancreatic adenocarcinoma cells. Our results offer a basis for further insight into the role of specific bacteria in drug availability within tumors and for understanding the structure-function differences of bacterial and human drug transporters.


Assuntos
Desoxicitidina , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/efeitos dos fármacos , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Gammaproteobacteria/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/metabolismo
8.
World J Microbiol Biotechnol ; 40(2): 56, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165520

RESUMO

Chlorophenols are persistent environmental pollutants used in synthesizing dyes, drugs, pesticides, and other industrial products. The chlorophenols released from these processes seriously threaten the environment and human health. The present study describes 4-chlorophenol (4-CP) degradation activity and metagenome structure of a bacterial consortium enriched in a 4-CP-containing medium. The consortium utilized 4-CP as a single carbon source at a wide pH range, temperature, and in the presence of heavy metals. The immobilized consortium retained its degradation capacity for an extended period. The 4-aminoantipyrine colorimetric analysis revealed complete mineralization of 4-CP up to 200 mg/L concentration and followed the zero-order kinetics. The addition of glycerol and yeast extract enhanced the degradation efficiency. The consortium showed both ortho- and meta-cleavage activity of catechol dioxygenase. Whole genome sequence (WGS) analysis revealed the microbial compositions and functional genes related to xenobiotic degradation pathways. The identified genes were mapped on the KEGG database to construct the 4-CP degradation pathway. The results exhibited the high potential of the consortium for bioremediation of 4-CP contaminated sites. To our knowledge, this is the first report on WGS analysis of a 4-CP degrading bacterial consortium.


Assuntos
Clorofenóis , Metagenoma , Humanos , Metais , Carbono
9.
Proteins ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953434

RESUMO

The canonical function of glutamyl-tRNA synthetase (GluRS) is to glutamylate tRNAGlu . Yet not all bacterial GluRSs glutamylate tRNAGlu ; many glutamylate both tRNAGlu and tRNAGln , while some glutamylate only tRNAGln and not the cognate substrate tRNAGlu . Understanding the basis of the unique specificity of tRNAGlx is important. Mutational studies have hinted at hotspot residues, both on tRNAGlx and GluRS, which play crucial roles in tRNAGlx -specificity. However, its underlying structural basis remains unexplored. The majority of biochemical studies related to tRNAGlx -specificity have been performed on GluRS from Escherichia coli and other proteobacterial species. However, since the early crystal structures of GluRS and tRNAGlu -bound GluRS were from non-proteobacterial species (Thermus thermophilus), proteobacterial biochemical data have often been interpreted in the context of non-proteobacterial GluRS structures. Marked differences between proteobacterial and non-proteobacterial GluRSs have been demonstrated; therefore, it is important to understand tRNAGlx -specificity vis-a-vis proteobacterial GluRS structures. To this end, we solved the crystal structure of a double mutant GluRS from E. coli. Using the solved structure and several other currently available proteo- and non-proteobacterial GluRS crystal structures, we probed the structural basis of the tRNAGlx -specificity of bacterial GluRSs. Specifically, our analyses suggest a unique role played by the tRNAGlx D-helix contacting loop of GluRS in the modulation of tRNAGln -specificity. While earlier studies have identified functional hotspots on tRNAGlx that control the tRNAGlx -specificity of GluRS, this is the first report of complementary signatures of tRNAGlx -specificity in GluRS.

10.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318336

RESUMO

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Assuntos
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
11.
BMC Microbiol ; 23(1): 304, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875803

RESUMO

BACKGROUND: Sahiwal cattle is an indigenous cattle breed of Pakistan and mastitis is one of the major problems faced by Sahiwal cattle which hinders its production potential. The study was designed to investigate the milk microbiota of healthy and mastitic Sahiwal cattle as part of a multistep project to develop probiotics for the mitigation and control of mastitis. Milk samples of Sahiwal cattle (healthy clinical mastitis and subclinical mastitis) reared under similar husbandry and management practices were processed for 16S rRNA gene base metagenomics analysis. RESULTS: Results revealed that Proteobacteria were dominant in the healthy group and subclinical mastitis group (56.48% and 48.77%, respectively) as compared to the clinical mastitis group (2.68%). In contrast, Firmicutes were abundant in the clinical mastitis group (64%) as compared to the healthy and subclinical mastitis groups (15.87% and 38.98%, respectively). Dominant species assigned in the healthy group were Ignavibacterium album, Novosphingobium capsulatum, Akkermansia muciniphila and Lactobacillus fermentum.The clinical mastitis group was dominated by Streptococcus dysgalactiae and Corynebacterium bovis, while subclinical mastitis group included Lactobacillus fermentum and uncultured acidobacteriales and Akkermansia muciniphila as dominant species. Alpha diversity indices showed higher microbial diversity in the healthy group compared to the clinical and sub-clinical mastitis groups. CONCLUSION: It is concluded that the milk microbiota of healthy sahiwal cattle has higher diversity and dominant taxa in the different groups may be used as signature microbes for mastitis susceptibility. Akkermansia muciniphila is one of candidate specie that was identified and may be used for development of probiotics.


Assuntos
Mastite Bovina , Microbiota , Animais , Bovinos , Feminino , Humanos , Leite/microbiologia , RNA Ribossômico 16S/genética , Mastite Bovina/microbiologia
12.
Proc Natl Acad Sci U S A ; 117(42): 26374-26381, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020286

RESUMO

Mechanistic understanding of the factors that govern host tropism remains incompletely understood for most pathogens. Brucella species, which are capable of infecting a wide range of hosts, offer a useful avenue to address this question. We hypothesized that metabolic fine-tuning to intrahost niches is likely an underappreciated axis underlying pathogens' ability to infect new hosts and tropism. In this work, we compared the central metabolism of seven Brucella species by stable isotopic labeling and genetics. We identified two functionally distinct groups, one overlapping with the classical zoonotic species of domestic livestock that exclusively use the pentose phosphate pathway (PPP) for hexose catabolism, whereas species from the second group use mostly the Entner-Doudoroff pathway (EDP). We demonstrated that the metabolic dichotomy among Brucellae emerged after the acquisition of two independent EDP-inactivating mutations in all classical zoonotic species. We then examined the pathogenicity of key metabolic mutants in mice and confirmed that this trait is tied to virulence. Altogether, our data are consistent with the hypothesis that the PPP has been incrementally selected over the EDP in parallel to Brucella adaptation to domestic livestock.


Assuntos
Brucella/genética , Brucella/metabolismo , Via de Pentose Fosfato/genética , Adaptação Biológica/genética , Animais , Zoonoses Bacterianas/genética , Evolução Biológica , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Via de Pentose Fosfato/fisiologia , Fenótipo , Virulência
13.
Fish Physiol Biochem ; 49(1): 169-189, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680627

RESUMO

The aim of the present work was to investigate the influence of fasting and refeeding on body condition, gut physiology and microbiota in reared O. mykiss. Ninety-six fish were randomly allotted among three groups subjected to different feeding plan: C (control, fed for 5 weeks); R (restricted ration over 3 weeks followed by 2 weeks feeding); F (fasted over 3 weeks followed by 2 weeks feeding) in a well's fresh water flow-through rearing plan. Sampling occurred at 0, 1, 2, 4, 7, 14 days during the refeeding period. At day 0 and throughout the feeding period until day 14, the weight of the fish was significantly affected by the feeding restriction. Feed deprivation reduced significantly the viscerosomatic and hepatosomatic indexes. Brush border membrane enzymes' specific activity was modulated by feeding regimes until day 7, to level in all experimental groups at day 14. At the end of the restricted/fasted period, the microbiota of the C group was made up of 70% of Actinobacteria, 24% of Proteobacteria, 4.2% of Firmicutes and < 1% of Bacteroides, while the restricted and fasted group were characterized by a strong reduction of Actinobacteria, and a significant increase in Bacteroidetes and Firmicutes. The feed deprivation determined a dysbiosis, allowing the development of different commensal or pathogenic bacteria. In conclusion, the effects of 2 weeks of feed deprivation, excluding those related to body weight, are gradually mitigated by refeeding, which allows the restoration of digestive functions and a healthy intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Oncorhynchus mykiss , Animais , Jejum , Ração Animal/análise
14.
World J Microbiol Biotechnol ; 40(2): 52, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146029

RESUMO

Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.


Assuntos
Betaproteobacteria , Gammaproteobacteria , Microbiota , Humanos , Gammaproteobacteria/genética , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Estações do Ano , Bactérias/metabolismo , Microbiota/genética , Compostos Orgânicos/metabolismo
15.
Trop Anim Health Prod ; 55(1): 32, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602697

RESUMO

Our hypothesis was that different whole oilseeds included in the diet for steers confined could alter the diversity of rumen bacteria compared to a diet without oilseeds or an exclusively forage diet. It was aimed to evaluate the effects of oilseeds inclusion in the diet on bacterial diversity in the solid fraction of the ruminal content of steers, by gene sequences of the conserved 16S rDNA region. Six crossbred steers castrated males, fitted with ruminal cannula were used in a 6 × 6 Latin square design, using 21-day period. At the start of the experiment, the live weight of the animals averaged 416 ± 9.7 kg (mean ± SD). A total of 2,180,562 16S rDNA sequences were generated for the Bacteria domain by MiSeq sequencing. The bacterial diversity was composed of 24 bacterial phyla, with the most abundant being Firmicutes, Bacteroidetes, and Proteobacteria. Other phyla with less diversity were also identified including Eurychaeota, Tenericutes, SR1 Absconditalbacteria, Synergistetes, Actinobacteria, Saccharibacteria, Elusimicrobia, Cyanobacteria, Verrucomicrobia, Fusobacteria, Lentisphaerae. The similarity in the bacterial community averaged 50% for all the experimental diets. Steers-fed corn silage exhibited a great diversity of bacteria of the Firmicutes phylum. The steers-fed oilseeds in the diet had a great diversity of bacteria from the phylum Bacteroidetes and Proteobacteria. The inclusion of whole oilseeds in the steer diets can alter the rumen bacteria population by up to 50% of total diversity.


Assuntos
Bactérias , Rúmen , Masculino , Animais , Rúmen/microbiologia , Dieta/veterinária , Silagem , DNA Ribossômico/farmacologia , Ração Animal
16.
Indian J Microbiol ; 63(1): 100-105, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37188235

RESUMO

The aim of this study was to examine the possible seasonal variations in the nutrients (dissolved inorganic nitrogen-DIN and phosphorus) and benthic bacterial communities in marine aquaculture surrounding sediments. The study areas were Geoje, Tongyeong, and Changwon bays in Korea, which are famous for oysters (Magallana gigas), Halocynthia roretzi, and warty sea squirt (Styela clava) farming, respectively. The study sites included semi-enclosed coastal areas with a low seawater exchange rate. Subtidal sediment samples were collected seasonally from the area surrounding the aquacultures between April and December 2020. Seasonal variations in nutrients were observed, with the highest concentration of DIN in August. For phosphorus, site-specific variations were also observed. To investigate the variations in benthic bacterial communities, the advanced technique of 16S rRNA gene amplicon sequencing was applied, and the results indicated a seasonal variation pattern and predominance of Proteobacteria (59.39-69.73%), followed by Bacteroidetes (6.55-12.85%) and Chloroflexi (2.04-4.50%). This study provides a reference for future studies on natural variations in the benthic environment and bacterial communities in the areas surrounding aquacultures. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01067-8.

17.
J Bacteriol ; 204(8): e0016322, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880876

RESUMO

A fundamental requirement for life is the replication of an organism's DNA. Studies in Escherichia coli and Bacillus subtilis have set the paradigm for DNA replication in bacteria. During replication initiation in E. coli and B. subtilis, the replicative helicase is loaded onto the DNA at the origin of replication by an ATPase helicase loader. However, most bacteria do not encode homologs to the helicase loaders in E. coli and B. subtilis. Recent work has identified the DciA protein as a predicted helicase operator that may perform a function analogous to the helicase loaders in E. coli and B. subtilis. DciA proteins, which are defined by the presence of a DUF721 domain (termed the DciA domain herein), are conserved in most bacteria but have only been studied in mycobacteria and gammaproteobacteria (Pseudomonas aeruginosa and Vibrio cholerae). Sequences outside the DciA domain in Mycobacterium tuberculosis DciA are essential for protein function but are not conserved in the P. aeruginosa and V. cholerae homologs, raising questions regarding the conservation and evolution of DciA proteins across bacterial phyla. To comprehensively define the DciA protein family, we took a computational evolutionary approach and analyzed the domain architectures and sequence properties of DciA domain-containing proteins across the tree of life. These analyses identified lineage-specific domain architectures among DciA homologs, as well as broadly conserved sequence-structural motifs. The diversity of DciA proteins represents the evolution of helicase operation in bacterial DNA replication and highlights the need for phylum-specific analyses of this fundamental biological process. IMPORTANCE Despite the fundamental importance of DNA replication for life, this process remains understudied in bacteria outside Escherichia coli and Bacillus subtilis. In particular, most bacteria do not encode the helicase-loading proteins that are essential in E. coli and B. subtilis for DNA replication. Instead, most bacteria encode a DciA homolog that likely constitutes the predominant mechanism of helicase operation in bacteria. However, it is still unknown how DciA structure and function compare across diverse phyla that encode DciA proteins. In this study, we performed computational evolutionary analyses to uncover tremendous diversity among DciA homologs. These studies provide a significant advance in our understanding of an essential component of the bacterial DNA replication machinery.


Assuntos
Proteínas de Bactérias , Escherichia coli , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo
18.
Mol Microbiol ; 116(6): 1449-1463, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662460

RESUMO

Cyclic-di-GMP plays crucial role in the cell cycle regulation of the α-Proteobacterium Caulobacter crescentus. Here we investigated its role in the α-Proteobacterium Brucella abortus, a zoonotic intracellular pathogen. Surprisingly, deletion of all predicted cyclic-di-GMP synthesizing or degrading enzymes did not drastically impair the growth of B. abortus, nor its ability to grow inside cell lines. As other Rhizobiales, B. abortus displays unipolar growth from the new cell pole generated by cell division. We found that the phosphodiesterase PdeA, the ortholog of the essential polar growth factor RgsP of the Rhizobiale Sinorhizobium meliloti, is required for rod shape integrity but is not essential for B. abortus growth. Indeed, the radius of the pole is increased by 31 ± 1.7% in a ΔpdeA mutant, generating a coccoid morphology. A mutation in the cyclic-di-GMP phosphodiesterase catalytic site of PdeA does not generate the coccoid morphology and the ΔpdeA mutant kept the ability to recruit markers of new and old poles. However, the presence of PdeA is required in an intra-nasal mouse model of infection. In conclusion, we propose that PdeA contributes to bacterial morphology and virulence in B. abortus, but it is not crucial for polarity and asymmetric growth.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Brucella abortus/crescimento & desenvolvimento , Brucelose/microbiologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/genética
19.
Photosynth Res ; 153(3): 163-175, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35648248

RESUMO

The molecular evolution concerns coding sequences (CDSs) of genes and may affect the structure and function of proteins. Non-uniform use of synonymous codons during translation, known as codon usage bias (CUB), depends on the balance between mutations bias and natural selection. We estimated different CUB indices, i.e. the effective number of codons (ENC), G + C content in the 3rd codon positions (GC3), and codon adaptation index for CDSs of intrinsic proteins of photosystem II (PSII), such as psbA (D1), psbD (D2), psbB (CP47), psbC (CP43), and CDSs of the extrinsic protein psbO (PsbO). These genes occur in all organisms that perform oxygenic photosynthesis (OP) on Earth: cyanobacteria, algae and plants. Comparatively, a similar analysis of codon bias for CDSs of L and M subunits that constitute the core proteins of the type II reaction centre (RCII) in anoxygenic bacteria was performed. Analysis of CUB indices and determination of the number of synonymous (dS) and nonsynonymous substitutions (dN) in all analysed CDSs indicated that the crucial PSII and RCII proteins were under strong purifying (negative) selection in course of evolution. Purifying selection was also estimated for CDSs of atpA, the α subunit of ATP synthase, an enzyme that was most likely already present in the last universal common ancestor (LUCA). The data obtained point to an ancient origin of OP, even in the earliest stages of the evolution of life on Earth.


Assuntos
Oxigênio , Complexo de Proteína do Fotossistema II , Trifosfato de Adenosina/metabolismo , Códon/genética , Evolução Molecular , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismo , Proteínas/metabolismo
20.
FASEB J ; 35(6): e21682, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042210

RESUMO

Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Encéfalo/fisiologia , Microbioma Gastrointestinal , Leite/microbiologia , Proteobactérias/fisiologia , Animais , Encéfalo/microbiologia , Dieta , Fezes/microbiologia , Feminino , Macaca mulatta , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA