Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
EMBO J ; 43(12): 2368-2396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750259

RESUMO

Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.


Assuntos
Glicólise , Fosfoglicerato Mutase , Hormônios Tireóideos , Humanos , Fosfoglicerato Mutase/metabolismo , Fosfoglicerato Mutase/genética , Fosforilação , Animais , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Camundongos , Proteínas de Ligação a Hormônio da Tireoide , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética
2.
Phytother Res ; 36(8): 3181-3201, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35794729

RESUMO

Glycolysis is the primary source of energy for cancer growth and metastasis. The shift in metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis is called the Warburg effect. Cancer progression due to aerobic glycolysis is often associated with the activation of oncogenes or the loss of tumor suppressors. Therefore, inhibition of glycolysis is one of the effective strategies in cancer control. Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme overexpressed in breast, prostate, lung, colorectal, and liver cancers. Here, we discuss published studies regarding PKM2 inhibitors from natural products that are promising drug candidates for cancer therapy. We have highlighted the potential of natural PKM2 inhibitors for various cancer types. Moreover, we encourage researchers to evaluate the combinational effects between natural and synthetic PKM2 inhibitors. Also, further high-quality studies are needed to firmly establish the clinical efficacy of natural products.


Assuntos
Produtos Biológicos , Neoplasias , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Piruvato Quinase/metabolismo
3.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144527

RESUMO

Globally, cancer is the second leading cause of mortality and morbidity. The growth and development of cancer are extremely complex. It is caused by a variety of pathways and involves various types of enzymes. Pyruvate kinase M2 (PKM2) is an isoform of pyruvate kinase, that catalyses the last steps of glycolysis to produce energy. PKM2 is relatively more expressed in tumour cells where it tends to exist in a dimer form. Various medicinal plants are available that contain a variety of micronutrients to combat against different cancers. The phytocompounds of the olive tree (Olea europaea) leaves play an important role in inhibiting the proliferation of several cancers. In this study, the phytocompounds of olive leaf extract (OLE) were studied using various in silico tools, such as pkCSM software to predict ADMET properties and PASS Online software to predict anticancer activity. However, the molecular docking study provided the binding energies and inhibition constant and confirmed the interaction between PKM2 and the ligands. The dynamic behaviour, conformational changes, and stability between PKM2 and the top three hit compounds (Verbascoside (Ver), Rutin (Rut), and Luteolin_7_O_glucoside (Lut)) are studied by MD simulations.


Assuntos
Antineoplásicos , Neoplasias , Olea , Antineoplásicos/farmacologia , Glucosídeos/farmacologia , Humanos , Luteolina , Micronutrientes , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Olea/química , Extratos Vegetais , Piruvato Quinase/metabolismo , Ácido Pirúvico , Rutina
4.
Exp Eye Res ; 213: 108823, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34752817

RESUMO

Choroidal neovascularization (CNV), a feature of neovasular age-related macular degeneration (AMD), acts as a leading cause of vision loss in the elderly. Shikonin (SHI), a natural bioactive compound extracted from Chinese herb radix arnebiae, exerts anti-inflammatory and anti-angiogenic roles and also acts as a potential pyruvate kinase M2 (PKM2) inhibitor in macrophages. The major immune cells macrophages infiltrate the CNV lesions, where the production of pro-angiognic cytokines from macrophage facilitates the development of CNV. PKM2 contributes to the neovascular diseases. In this study, we found that SHI oral gavage alleviated the leakage, area and volume of mouse laser-induced CNV lesion and inhibited macrophage infiltration without ocular cytotoxicity. Moreover, SHI inhibited the secretion of pro-angiogenic cytokine, including basic fibroblast growth factor (FGF2), insulin-like growth factor-1 (IGF1), chemokine (C-C motif) ligand 2 (CCL2), placental growth factor and vascular endothelial growth factor (VEGF), from primary human macrophages by down-regulating PKM2/STAT3/CD163 pathway, indicating a novel potential therapy strategy for CNV.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Naftoquinonas/uso terapêutico , Piruvato Quinase/antagonistas & inibidores , Indutores da Angiogênese/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Western Blotting , Células Cultivadas , Neovascularização de Coroide/enzimologia , Cromatografia Líquida de Alta Pressão , Corantes/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Angiofluoresceinografia , Humanos , Marcação In Situ das Extremidades Cortadas , Verde de Indocianina/administração & dosagem , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Piruvato Quinase/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo
5.
Cell Biol Toxicol ; 37(5): 653-678, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864549

RESUMO

Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.


Assuntos
Neoplasias , Piruvato Quinase , Receptores ErbB , Humanos , Inflamação , Piruvato Quinase/metabolismo , Transdução de Sinais
6.
Pharmacol Res ; 111: 757-766, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423937

RESUMO

G protein-coupled receptor 55 (GPR55) possesses pro-oncogenic activity and its function can be competitively inhibited with (R,R')-4'-methoxy-1-naphthylfenoterol (MNF) through poorly defined signaling pathways. Here, the anti-tumorigenic effect of MNF was investigated in the human pancreatic cancer cell line, PANC-1, by focusing on the expression of known cancer biomarkers and the expression and function of multidrug resistance (MDR) exporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP). Incubation of PANC1 cells with MNF (1µM) for 24h significantly decreased EGF receptor, pyruvate kinase M2 (PKM2), and ß-catenin protein levels and was accompanied by significant reduction in nuclear accumulation of HIF-1α and the phospho-active forms of PKM2 and ß-catenin. Inhibition of GPR55 with either MNF or the GPR55 antagonist CID 16020046 lowered the amount of MDR proteins in total cellular extracts while diminishing the nuclear expression of Pgp and BCRP. There was significant nuclear accumulation of doxorubicin in PANC-1 cells treated with MNF and the pre-incubation with MNF increased the cytotoxicity of doxorubicin and gemcitabine in these cells. Potentiation of doxorubicin cytotoxicity by MNF was also observed in MDA-MB-231 breast cancer cells and U87MG glioblastoma cells, which express high levels of GPR55. The data suggest that inhibition of GPR55 activity produces antitumor effects via attenuation of the MEK/ERK and PI3K-AKT pathways leading to a reduction in the expression and function of MDR proteins.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fenoterol/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Doxorrubicina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fenoterol/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Proteínas de Membrana/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Canabinoides , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , beta Catenina/metabolismo , Gencitabina , Proteínas de Ligação a Hormônio da Tireoide
7.
Life Sci ; 349: 122719, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759866

RESUMO

In the vast landscape of human health, head and neck cancer (HNC) poses a significant health burden globally, necessitating the exploration of novel diagnostics and therapeutics. Metabolic alterations occurring within tumor microenvironment are crucial to understand the foundational cause of HNC. Post-translational modifications (PTMs) have recently emerged as a silent foe exerting a significantly heightened influence on various aspects of the biological processes associated with the onset and advancement of cancer, particularly in the context of HNC. There are numerous targets involved in HNC but recently, the enzyme pyruvate kinase M2 (PKM2) has come out as a hot target due to its involvement in glycolysis resulting in metabolic reprogramming of cancer cells. Various PTMs have been reported to affect the structure and function of PKM2 by modulating its activity. This review aims to investigate the impact of PTMs on the interaction between PKM2 and several signaling pathways and transcription factors in the context of HNC. These interactions possess significant ramification for cellular proliferation, apoptosis, angiogenesis and metastasis. This review primarily explores the role of PTMs influencing PKM2 and its involvement in tumor development. While acknowledging the significance of PKM2 interactions with other tumor regulators, the emphasis lies on dissecting PTM-related mechanisms rather than solely scrutinizing individual regulators. It lays the framework for the development of more sophisticated diagnostic tools and uncovers exciting possibilities for precision medicine essential for effectively addressing the complexity of this malignancy in a precise and focused manner.


Assuntos
Proteínas de Transporte , Neoplasias de Cabeça e Pescoço , Proteínas de Membrana , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Humanos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Hormônios Tireóideos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Microambiente Tumoral , Animais , Transdução de Sinais
8.
J Nutr Biochem ; 121: 109430, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597817

RESUMO

Apigenin, a flavonoid that widely existed in vegetables and fruits, possesses anticarcinogenic, low toxicity, and no mutagenic properties, suggesting that apigenin is a potential therapeutic agent for tumors. However, the underlying anti-cancer molecular target of apigenin is still unclear. Therefore, to reveal the direct target and amino acid site of apigenin against colorectal cancer is the focus of this study. In the present study, the results proved that the anti-CRC activity of apigenin was positively correlated with pyruvate kinase M2 (PKM2) expression, characterized by the inhibition of cell proliferation and increase of apoptotic effects induced by apigenin in LS-174T cells of knock down PKM2. Next, pull-down and MALDI-TOF/TOF analysis determined that apigenin might interact directly with PKM2 in HCT-8 cells. Further, the study confirmed that lysine residue 433 (K433) was a key amino acid site for PKM2 binding to apigenin. Apigenin restricted the glycolysis of LS-174T and HCT-8 cells by targeting the K433 site of PKM2, thereby playing an anti-CRC role in vivo and in vitro. Meanwhile, apigenin markedly attenuated tumor growth without any adverse effects. Taken together, these findings reveal that apigenin is worthy of consideration as a promising PKM2 inhibitor for the prevention of CRC.


Assuntos
Neoplasias Colorretais , Humanos , Aminoácidos/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Glicólise , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
9.
J Gastrointest Oncol ; 14(2): 585-598, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37201055

RESUMO

Background: This study sought to identify the downstream target genes of enolase 1 (ENO1), clarify the role of ENO1 in gastric cancer (GC), and provide novel insights into the regulatory mechanisms of ENO1 in the occurrence and development of GC. Methods: We performed RNA-immunoprecipitation sequencing in MKN-45 cells to study the types and abundance of pre-messenger RNA (mRNA)/mRNA bound by ENO1, the binding sites and motifs, the relationship between ENO1 binding and its regulation of transcription level, and alternative splicing level by combining with RNA-sequencing (RNA-seq) data to further clarify the role of ENO1 in GC. Results: We found that ENO1 stabilized the expression of SRY-box transcription factor 9 (SOX9), vascular endothelial growth factor A (VEGFA), G protein-coupled receptor class C group 5 member A (GPRC5A), and myeloid cell leukemia-1 (MCL1) by binding to their mRNA, which increased the growth of GC. In addition, ENO1 interacted with some other long non-coding RNAs (lncRNAs) or small-molecule kinases, such as NEAT1, LINC00511, CD44, and pyruvate kinase M2 (PKM2), to regulate their expression to affect cell proliferation, migration, and apoptosis. Conclusions: ENO1 may play a role in GC by binding to and regulating GC-related genes. Our findings extend understandings of its mechanism as a clinical therapeutic target.

10.
J Exp Clin Cancer Res ; 42(1): 117, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161591

RESUMO

BACKGROUND: There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. METHODS: A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. RESULTS: SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFß signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased. CONCLUSION: The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Ácido Láctico , Linfócitos T CD8-Positivos , Transição Epitelial-Mesenquimal , Ácido Hialurônico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
11.
J Ethnopharmacol ; 288: 114993, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35032583

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Clematidis Radix et Rhizoma, a kind of traditional Chinese medicine, is derived from Clematis chinensis Osbeck, Clematis hexapetala Pall. and Clematis manshurica Rupr. This herb shows great effects on expelling wind and dispelling dampness in ancient and it has anti-inflammatory and analgesic activity in modern clinical application. AIM OF THE STUDY: This experiment aimed to research anti-rheumatoid arthritis effect of crude and wine processed RC based on glycolysis metabolism to provide new ideas treating RA. MATERIALS AND METHODS: Network pharmacology was applied to preliminarily forecast the potential pathways of common targets of RC and RA. RAW264.7 macrophages were induced by LPS, NO production, glucose uptake, lactate production, ROS and MMP were detected as instructions in vitro. ELISA was used to measure the content of HK2, PKM2 and LDHA involving in glycolysis process. Gut microbiota was analyzed by 16S rRNA gene amplicon sequencing in CIA rats. RESULTS: Crude and wine processed RC had good anti-inflammatory effect by reducing NO in RAW264.7 macrophages and ameliorating inflammatory infiltration and cartilage surface erosion in CIA rats. Whether in LPS-induced macrophages or CIA rats, crude and wine processed RC could inhibit glycolysis by down-regulating the expression of PKM2, causing less glucose uptake and lactic acid, which lead to less ROS and higher MMP to normal. PI3K-AKT and HIF-1α pathways were deduced to possibly play a crucial part in controlling glycolysis metabolism by network pharmacology analysis. Besides, it was displayed that Firmicutes and Bacteroidetes were prominent gut microbiota in CIA rats feces. CC-H and PZ-H groups could both increase the relative abundance of Firmicutes and decrease Bacteroidetes. These microbiota also played a role in RA pathological process via involving in energy metabolism, carbohydrate metabolism and immune system. CONCLUSION: Crude and wine processed RC have a good influence in ameliorating rheumatoid arthritis by inhibiting glycolysis and modulating gut microbiota together.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Clematis/química , Medicamentos de Ervas Chinesas/farmacologia , Animais , Antirreumáticos/isolamento & purificação , Antirreumáticos/farmacologia , Colágeno Tipo II , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Farmacologia em Rede , Raízes de Plantas , Células RAW 264.7 , Ratos , Ratos Wistar , Rizoma , Vinho
12.
Neoplasia ; 23(1): 58-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221711

RESUMO

Despite the anti-proliferative and survival benefits from tumor treating fields (TTFields) in human glioblastoma (hGBM), little is known about the effects of this form of alternating electric fields therapy on the aberrant glycolysis of hGBM. [18F]FDG is the most common radiotracer in cancer metabolic imaging, but its utility in hGBM is impaired due to high glucose uptake in normal brain tissue. With TTFields, radiochemistry, Western blot, and immunofluorescence microscopy, we identified pyruvate kinase M2 (PKM2) as a biomarker of hGBM response to therapeutic TTFields. We used [18F]DASA-23, a novel radiotracer that measures PKM2 expression and which has been shown to be safe in humans, to detect a shift away from hGBM aberrant glycolysis in response to TTFields. Compared to unexposed hGBM, [18F]DASA-23 uptake was reduced in hGBM exposed to TTFields (53%, P< 0.05) or temozolomide chemotherapy (33%, P > 0.05) for 3 d. A 6-d TTFields exposure resulted in a 31% reduction (P = 0.043) in 60-min uptake of [18F]DASA-23. [18F]DASA-23 was retained after a 10 but not 30-min wash-out period. Compared to [18F]FDG, [18F]DASA-23 demonstrated a 4- to 9-fold greater uptake, implying an improved tumor-to-background ratio. Furthermore, compared to no-TTFields exposure, a 6-d TTFields exposure caused a 35% reduction in [18F]DASA-23 30-min uptake compared to only an 8% reduction in [18F]FDG 30-min uptake. Quantitative Western blot analysis and qualitative immunofluorescence for PKM2 confirmed the TTFields-induced reduction in PKM2 expression. This is the first study to demonstrate that TTFields impairs hGBM aberrant glycolytic metabolism through reduced PKM2 expression, which can be non-invasively detected by the [18F]DASA-23 radiotracer.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Transporte/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas de Membrana/genética , Hormônios Tireóideos/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Compostos de Diazônio , Imunofluorescência , Fluordesoxiglucose F18 , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/terapia , Glicólise , Humanos , Proteínas de Membrana/metabolismo , Compostos Radiofarmacêuticos , Ácidos Sulfanílicos , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
13.
Mol Immunol ; 140: 250-266, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798593

RESUMO

Pyruvate kinase M2 (PKM2), a glycolytic rate-limiting enzyme, reportedly plays an important role in tumorigenesis and the inflammatory response by regulating the metabolic reprogramming. However, its contribution to microglial activation during neuroinflammation is still unknown. In this study, we observed an enhanced glycolysis level in the lipopolysaccharide (LPS)-activated microglia. Utilizing the glycolysis inhibitor 2-DG, we proved that LPS requires glycolysis to induce microglial pyroptosis. Moreover, the protein expression, dimer/monomer formation, phosphorylation and nuclear translocation of PKM2 were all increased by LPS. Silencing PKM2 or preventing its nuclear translocation by TEPP-46 significantly alleviated the LPS-induced inflammatory response and pyroptosis in microglia. Employing biological mass spectrometry combined with immunoprecipitation technology, we identified for the first time that PKM2 interacts with activating transcription factor 2 (ATF2) in microglia. Inhibition of glycolysis or preventing PKM2 nuclear aggregation significantly reduced the phosphorylation and activation of ATF2. Furthermore, knocking down ATF2 reduced the LPS-induced pyroptosis of microglia. In vivo, we showed the LPS-induced pyroptosis in the cerebral cortex tissues of mice, and first found that an increased PKM2 expression was co-localized with ATF2 in the inflamed mice brain. Collectively, our data suggested for the first time that PKM2, a key rate-limiting enzyme of the Warburg effect, directly interacts with the pro-inflammatory transcription factor ATF2 to bridge glycolysis and pyroptosis in microglia, which might be a pivotal crosstalk between metabolic reprogramming and neuroinflammation in the CNS.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Glicólise , Microglia/metabolismo , Piroptose , Piruvato Quinase/metabolismo , Aerobiose , Animais , Encéfalo/patologia , Linhagem Celular , Núcleo Celular/metabolismo , Inativação Gênica , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Microglia/patologia , Fosforilação , Ligação Proteica , Transporte Proteico , Regulação para Cima
14.
PeerJ ; 8: e8625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117639

RESUMO

BACKGROUND: Pyruvate kinase M2 (PKM2) is critical regulator contributing to Warburg effect. However, the expression pattern and prognostic value of PKM2 remain unknown in lung adenocarcinoma (LUAD). The aim of this study is to clarify the prognostic value of PKM2 via intergrated bioinformatics analysis. METHODS: Firstly, mRNA expression levels of PKM2 in LUAD were systematically analyzed using the ONCOMINE and TCGA databases. Then, the association between PKM2 expression and clinical parameters was investigated by UALCAN. The Kaplan-Meier Plotter was used to assess the prognostic significance of PKM2. Finally, the relationship between PKM2 expression and its genetic and epigenetic changes was evaluated with MEXPRESS and MethHC database. RESULTS: Pooled analysis showed that PKM2 is frequently upregulated expression in LUAD. Subsequently, PKM2 expression was identified to be positively associated with tumor stage and lymph node metastasis and also strongly correlated with worse OS (P = 2.80e-14), PPS (P = 0.022), FP (P = 1.30e-6) and RFS (P = 3.41e-8). Importantly, our results demonstrated that over-expressed PKM2 is associated with PKM2 hypomethylation and copy number variations (CNVs). CONCLUSION: This study confirms that over-expressed PKM2 in LUAD is associated with poor prognosis, suggesting that PKM2 might act as a promising prognostic biomarker and novel therapeutic target for LUAD.

15.
Int Immunopharmacol ; 79: 106048, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863924

RESUMO

Growing evidence suggests that activated immune cells undergo metabolic reprogramming in the regulation of the innate inflammatory response. Remarkably, macrophages activated by lipopolysaccharide (LPS) induce a switch from oxidative phosphorylation to aerobic glycolysis, and consequently results in release of proinflammatory cytokines. Pyruvate Kinase M2 (PKM2) plays a vital role in the process of macrophage activation, promoting the inflammatory response in sepsis and septic shock. Deoxyelephantopin (DET), a naturally occurring sesquiterpene lactone from Elephantopus scaber, has been shown to counteracts inflammation during fulminant hepatitis progression, but the underlying mechanism remains unclear. Here, we studied the function of the DET on macrophage activation and investigated the anti-inflammatory effects of DET associated with interfering with glycolysis in macrophage. Our results first demonstrated that DET attenuates LPS-induced interleukin-1ß (IL-1ß) and high-mobility group box 1 (HMGB1) release in vitro and in vivo and protected mice against lethal endotoxemia. Furthermore, DET decreased the expression of pyruvate dehydrogenase kinase 1 (PDK1), glucose transporter 1(GLUT1), lactate dehydrogenase A (LDHA), and reduced lactate production dose-dependently in macrophages. Moreover, we further revealed that DET attenuates aerobic glycolysis in macrophages associated with regulating the nuclear localization of PKM2. Our results provided a novel mechanism for DET suppression of macrophages activation implicated in anti-inflammatory therapy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lactonas/uso terapêutico , Macrófagos/imunologia , Piruvato Quinase/metabolismo , Sepse/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Aerobiose , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Glicólise/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Sepse/imunologia , Transdução de Sinais
16.
Ann Transl Med ; 8(21): 1456, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33313201

RESUMO

BACKGROUND: Astrocytes are highly glycolytic cells that play a crucial role in chronic pain. Recently it has been found that inflammation and metabolism are related to the inflammatory stimuli closely that cause cellular metabolic changes. Pyruvate kinase M2 (PKM2) is a critical metabolic kinase in aerobic glycolysis or the Warburg effect. Besides, it also plays a crucial role in cell proliferation and signal transduction, but its role in astrocytes is still unclear. METHODS: The chronic inflammatory pain model was set up by intraplantar injection of complete Freund's adjuvant (CFA) in Sprague Dawley (SD) rats as well as the cell model was constructed by lipopolysaccharide-treated primary astrocytes. Von Frey filament stimulation was used to continuously observe the changes of pain behavior in rats after modeling. Then, immunofluorescence staining and Western blot tests were used to observe the expression levels of glial fibrillary acidic protein (GFAP), pyruvate kinase (PKM2), signal transducers and activators of transcription 3 (STAT3) and high mobility group box-1 protein (HMGB1). After that, specific kits measured lactate contents. Finally, we observed the platelet-rich plasma's (PRP) effect on mechanical hyperalgesia in rats with inflammatory pain induced by CFA and its effect on related signal molecules. RESULTS: We found that in the CFA-induced inflammatory pain model, astrocytes were significantly activated, GFAP was increased, PKM2 was significantly up-regulated, and the glycolytic product lactate was increased. Also, intrathecal injection of PRP increased the pain threshold, inhibited the activation of astrocytes, and decreased the expression of PKM2 and aerobic glycolysis; in LPS-activated primary astrocytes as an in vitro model, we found PKM2 translocation activationSTAT3 signaling resulted in sustained activation of astrocyte marker GFAP, and the expression level and localization of p-STAT3 were correlated with PKM2. PRP could inhibit the activation of astrocytes, reduce the expression of PKM2 and the expression levels of glycolysis and GFAP, GLUT1, and p-STAT3 in astrocytes. CONCLUSIONS: Our findings suggest PKM2 not only plays a glycolytic role in astrocytes, but also plays a crucial role in astrocyte-activated signaling pathways, and PRP attenuates CFA induced inflammatory pain by inhibiting aerobic glycolysis in astrocytes, providing a new therapeutic target for the treatment of inflammatory pain.

17.
Transl Cancer Res ; 9(5): 3293-3302, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-35117696

RESUMO

BACKGROUND: To explore the pyruvate kinase M2 (PKM2) expression profile as a prognostic marker of lung adenocarcinoma (LUAD) as well as lung squamous cell carcinoma (LUSC). METHODS: Retrospective bioinformatics analysis of data from the Cancer Genome Atlas-Lung Cancer dataset and the Human Protein Atlas was performed. PKM2 mRNA expression was monitored using the Kaplan-Meier Plotter online database. GraphPad Prism 6.0 and the SPSS 19.0 software package were used for statistical analysis. RESULTS: PKM2 expression was found to be significantly higher in both LUAD and LUSC than in normal controls. Although increased PKM2 expression in LUAD was correlated with poor overall survival (OS) [hazard ratio (HR): 2.128; 95% CI: 1.754-3.653; P<0.001], recurrence-free survival (RFS) (HR: 1.524; 95% CI: 1.069-2.499; P=0.0237), and progression-free survival (PFS) (HR: 2.18; 95% CI: 1.58-3; P<0.001), no such associations were found in LUSC. CONCLUSIONS: PKM2 is a potential prognostic biomarker for LUAD but not for LUSC.

18.
J Thorac Dis ; 11(9): 3941-3950, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31656668

RESUMO

BACKGROUND: Previous studies have suggested that the functions of prolyl hydroxylase 3 (PHD3) in tumor growth, apoptosis and angiogenesis are essentially dependent on hypoxia-inducible factor (HIF)-1α signaling. Nevertheless, whether PHD3 represents a promising tumor suppressor target remains to be clarified. To provide insight into the therapeutic potential of PHD3 in lung cancer, this study examined the effects of PHD3 expression on HIF-1α and pyruvate kinase M2 (PKM2), as well as on lung cancer cell proliferation, migration, and invasion. METHODS: The model of hypoxia was established in A549 and SK-MES-1 cells with 200 µM CoCl2 treatment, and verified by western blot and immunocytochemical staining. The expression levels of PKM2 and HIF-1α were determined by western blot after overexpression or depletion of PHD3 in A549 and SK-MES-1 cells. In addition, cell viability, migration and invasion were measured, respectively. RESULTS: Establishment of hypoxia in A549 and SK-MES-1 cells resulted in significant decreases in PHD3 expression and remarkable increase in PKM2 expression in 24 hrs. Overexpression of PHD3 in A549 and SK-MES-1 cells decreased HIF-1α and PKM2 expression. In contrast, PHD3 knockdown increased HIF-1α and PKM2 (P<0.05). In addition, the viability, migration and invasion of A549 and SK-MES-1 cells were significantly decreased with PHD3 overexpression, but dramatically increased with PHD3 depletion (P<0.05). CONCLUSIONS: PHD3 is involved in lung cancer progression, and might be a promising therapeutic target for cancers.

19.
J Agric Food Chem ; 65(37): 8136-8144, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28829588

RESUMO

Apigenin (AP), as an anticancer agent, has been widely explored. However, the molecular targets of apigenin on tumor metabolism are unclear. Herein, we found that AP could block cellular glycolysis through restraining the tumor-specific pyruvate kinase M2 (PKM2) activity and expression and further significantly induce anti-colon cancer effects. The IC50 values of AP against HCT116, HT29, and DLD1 cells were 27.9 ± 2.45, 48.2 ± 3.01 and 89.5 ± 4.89 µM, respectively. Fluorescence spectra and solid-phase AP extraction assays proved that AP could directly bind to PKM2 and markedly inhibit PKM2 activity in vitro and in HCT116 cells. Interestingly, in the presence of d-fructose-1,6-diphosphate (FBP), the inhibitory effect of AP on PKM2 was not reversed, which suggests that AP is a new allosteric inhibitor of PKM2. RT-PCR and Western blot assays showed that AP could ensure a low PKM2/PKM1 ratio in HCT116 cells via blocking the ß-catenin/c-Myc/PTBP1 signal pathway. Hence, PKM2 represents a novel potential target of AP against colon cancer.


Assuntos
Antineoplásicos/farmacologia , Apigenina/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/fisiopatologia , Piruvato Quinase/antagonistas & inibidores , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Glicólise/efeitos dos fármacos , Humanos , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
J Photochem Photobiol B ; 134: 1-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24792468

RESUMO

2-Demethoxy-2,3-ethylenediamino hypocrellin B (EDAHB) is an efficient photosensitizer that mediates cancer cell apoptosis. In order to better understand the molecular mechanisms involved in its antitumour activity, we used proteomics technology to identify candidate targets in A549 cells using EDAHB-mediated photodynamic therapy (EDAHB-PDT). The protein profile changes between untreated and PDT-treated A549 cells were analysed using two-dimensional polyacrylamide gel electrophoresis (2-DE). Differentially expressed protein spots were identified using matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometry; and 15 differentially expressed proteins (over 2-fold, p<0.05) were identified in PDT-treated A549 cells compared with untreated cells. Among them, the expression of pyruvate kinase M2 (PKM2), a key enzyme involved in glycolysis, was found to be significantly decreased in A549 cells following EDAHB-PDT. Transient ectopic over-expression of PKM2 attenuated death of EDAHB-PDT-treated A549 cells, whereas knockdown of PKM2 expression by RNA interference increased the photocytotoxicity of EDAHB. Moreover, a decrease in lactate production was detected in PDT-treated A549 cells. These observations suggest that PKM2 plays an important role in the antitumour action of EDAHB-PDT; thus, it may be a potential molecular target to increase the efficacy of PDT in cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Glicólise/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/toxicidade , Quinoxalinas/toxicidade , Hormônios Tireóideos/metabolismo , Apoptose/efeitos da radiação , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Humanos , Luz , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Perileno/toxicidade , Proteoma/análise , Proteoma/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA