Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000549

RESUMO

Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE A-domain and RIBEYE B-domain are essential for the assembly of the synaptic ribbon, as shown by previous analyses of RIBEYE knockout and knockin mice and related investigations. How exactly the synaptic ribbon is assembled from RIBEYE subunits is not yet clear. To achieve further insights into the architecture of the synaptic ribbon, we performed analytical post-embedding immunogold-electron microscopy with direct gold-labelled primary antibodies against RIBEYE A-domain and RIBEYE B-domain for improved ultrastructural resolution. With direct gold-labelled monoclonal antibodies against RIBEYE A-domain and RIBEYE B-domain, we found that both domains show a very similar localization within the synaptic ribbon of mouse photoreceptor synapses, with no obvious differential gradient between the centre and surface of the synaptic ribbon. These data favour a model of the architecture of the synaptic ribbon in which the RIBEYE A-domain and RIBEYE B-domain are located similar distances from the midline of the synaptic ribbon.


Assuntos
Anticorpos Monoclonais , Sinapses , Animais , Camundongos , Sinapses/ultraestrutura , Sinapses/metabolismo , Anticorpos Monoclonais/imunologia , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Proteínas Correpressoras/metabolismo , Imuno-Histoquímica/métodos , Domínios Proteicos , Microscopia Imunoeletrônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/imunologia
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339191

RESUMO

We generated a novel Cre mouse strain for cell-specific deletion of floxed genes in ribbon synapse-forming retinal neurons. Previous studies have shown that the RIBEYE promotor targets the expression of recombinant proteins such as fluorescently tagged RIBEYE to photoreceptors and retinal bipolar cells and generates fluorescent synaptic ribbons in situ in these neurons. Here, we used the same promotor to generate a novel transgenic mouse strain in which the RIBEYE promotor controls the expression of a Cre-ER(T2) recombinase (RIBEYE-Cre). To visualize Cre expression, the RIBEYE-Cre animals were crossed with ROSA26 tau-GFP (R26-τGFP) reporter mice. In the resulting RIBEYE-Cre/R26 τGFP animals, Cre-mediated removal of a transcriptional STOP cassette results in the expression of green fluorescent tau protein (tau-GFP) that binds to cellular microtubules. We detected robust tau-GFP expression in retinal bipolar cells. Surprisingly, we did not find fluorescent tau-GFP expression in mouse photoreceptors. The lack of tau-GFP reporter protein in these cells could be based on the previously reported absence of tau protein in mouse photoreceptors which could lead to the degradation of the recombinant tau protein. Consistent with this, we detected Cre and tau-GFP mRNA in mouse photoreceptor slices by RT-PCR. The transgenic RIBEYE-Cre mouse strain provides a new tool to study the deletion of floxed genes in ribbon synapse-forming neurons of the retina and will also allow for analyzing gene deletions that are lethal if globally deleted in neurons.


Assuntos
Neurônios Retinianos , Proteínas tau , Camundongos , Animais , Proteínas tau/metabolismo , Camundongos Transgênicos , Neurônios Retinianos/metabolismo , Sinapses/metabolismo , Integrases/genética , Integrases/metabolismo , Proteínas de Fluorescência Verde/metabolismo
3.
BMC Genomics ; 24(1): 666, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932697

RESUMO

BACKGROUND: The concept of the functional nutritional value of health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) is becoming a phenomenon among red meat consumers globally. This study examined the expressions of three lipogenic genes (fatty acid binding protein 4, FABP4, fatty acid synthase, FASN; and stearoyl-CoA desaturase, SCD) in the ribeye (Longissimus thoracis et lumborum) muscle of Tattykeel Australian White (TAW) lambs fed fortified omega-3 diets and correlations with fatty acids. To answer the research question, "are there differences in the expression of lipogenic genes between control, MSM whole grain and omega-3 supplemented lambs?", we tested the hypothesis that fortification of lamb diets with omega-3 will lead to a down-regulation of lipogenic genes. Seventy-five six-month old TAW lambs were randomly allocated to the (1) omega-3 oil-fortified grain pellets, (2) unfortified grain pellets (control) or (3) unfortified MSM whole grain pellets diet supplements to generate three treatments of 25 lambs each. The feeding trial lasted 47 days. RESULTS: From the Kruskal-Wallis test, the results showed a striking disparity in lipogenic gene expression between the three dietary treatments in which the FABP4 gene was significantly up-regulated by 3-folds in the muscles of lambs fed MSM Milling (MSM) whole grain diet compared to the omega-3 and control diets. A negative correlation was observed between FASN gene expression and intramuscular fat (IMF), eicosapentaenoic acid (EPA), total polyunsaturated fatty acids (PUFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) and monounsaturated fatty acids (MUFA). The FABP4 gene expression was positively correlated (P < 0.05) with EPA and docosahexaenoic acid (DHA). CONCLUSION: Taken together, this study's results suggest that FABP4 and FASN genes perform an important role in the biosynthesis of fatty acids in the ribeye muscle of TAW lambs, and supplementary diet composition is an important factor influencing their expressions.


Assuntos
Ácidos Graxos Ômega-3 , Estearoil-CoA Dessaturase , Ovinos , Animais , Austrália , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Ácidos Graxos/metabolismo , Carneiro Doméstico , Dieta/veterinária , Ácido Eicosapentaenoico , Fatores de Transcrição/genética , Músculos/metabolismo
4.
Trop Anim Health Prod ; 55(6): 427, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041713

RESUMO

Our objective was to use measures of intake and productive performance to adjust prediction models for the carcass traits of non-castrated Nellore cattle finished in a feedlot. Individual data from 168 non-castrated male Nellore steers finished in feedlot between the years 2016-2021 were used. Descriptive statistical analyzes and Pearson correlation coefficients were performed. The outliers were tested by evaluating the studentized residuals in relation to the values predicted by the equations. Residues that were outside the range of -2.5 to 2.5 were removed. The goodness of fit of the developed equations was evaluated by the coefficients of determination (R2) and root mean square error (RMSE). Models for carcass yield, subcutaneous fat thickness, ribeye area, and shear force were adjusted. Means of 53.5% carcass yield, 4.8 mm subcutaneous fat thickness, 73 cm2 loin eye area, and 8.1 kg shear force were observed. The observed average intakes were 9.9 kg/day of dry matter, 3.3 kg/day of neutral detergent fiber content, 1.5 kg/day of crude protein, and 7.1 kg/day of total digestible nutrients. The average confinement time was 113 days, the average total weight gain was 152.2 kg and the average daily gain was 1.35 kg/day. Intake measures significantly correlated with shear force and subcutaneous fat thickness and ribeye area. Carcass yield was significantly correlated with total weight gain, feedlot time, and hot carcass weight. Measures of nutrient intake, performance, and confinement time can be used as predictors of carcass yield, ribeye area, fat thickness, and shear force of non-castrated Nellore cattle finished in a feedlot. The prediction equations for ribeye area, carcass yield, subcutaneous fat thickness, and shear force showed sufficient precision and accuracy for non-castrated Nellore cattle finished in confinement systems under tropical conditions. All equations can be used with caution to estimate carcass traits of cattle finished in a feedlot using measures of intake and productive performance.


Assuntos
Ingestão de Alimentos , Clima Tropical , Bovinos , Masculino , Animais , Ingestão de Energia , Fenótipo , Aumento de Peso , Composição Corporal
5.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077087

RESUMO

Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.


Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Hiperglicemia/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
J Neurosci ; 39(14): 2606-2619, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30696732

RESUMO

Active zones at chemical synapses are highly specialized sites for the regulated release of neurotransmitters. Despite a high degree of active zone protein conservation in vertebrates, every type of chemical synapse expresses a given set of protein isoforms and splice variants adapted to the demands on neurotransmitter release. So far, we know little about how specific active zone proteins contribute to the structural and functional diversity of active zones. In this study, we explored the nanodomain organization of ribbon-type active zones by addressing the significance of Piccolino, the ribbon synapse-specific splice variant of Piccolo, for shaping the ribbon structure. We followed up on previous results, which indicated that rod photoreceptor synaptic ribbons lose their structural integrity in a knockdown of Piccolino. Here, we demonstrate an interaction between Piccolino and the major ribbon component RIBEYE that supports plate-shaped synaptic ribbons in retinal neurons. In a detailed ultrastructural analysis of three different types of retinal ribbon synapses in Piccolo/Piccolino-deficient male and female rats, we show that the absence of Piccolino destabilizes the superstructure of plate-shaped synaptic ribbons, although with variable manifestation in the cell types examined. Our analysis illustrates how the expression of a specific active zone protein splice variant (e.g., Piccolino) contributes to structural diversity of vertebrate active zones.SIGNIFICANCE STATEMENT Retinal ribbon synapses are a specialized type of chemical synapse adapted for the regulated fast and tonic release of neurotransmitter. The hallmark of retinal ribbon synapses is the plate-shaped synaptic ribbon, which extends from the release site into the terminals' cytoplasm and tethers hundreds of synaptic vesicles. Here, we show that Piccolino, the synaptic ribbon specific splice variant of Piccolo, interacts with RIBEYE, the main component of synaptic ribbons. This interaction occurs via several PxDLS-like motifs located at the C terminus of Piccolino, which can connect multiple RIBEYE molecules. Loss of Piccolino disrupts the characteristic plate-shaped structure of synaptic ribbons, indicating a role of Piccolino in synaptic ribbon assembly.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neuropeptídeos/metabolismo , Neurônios Retinianos/metabolismo , Sinapses/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Animais , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Neuropeptídeos/química , Neuropeptídeos/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Neurônios Retinianos/ultraestrutura , Sinapses/genética , Sinapses/ultraestrutura
7.
EMBO J ; 35(10): 1098-114, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-26929012

RESUMO

Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon-specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca(2+)-buffer EGTA, suggesting that synaptic ribbons mediate nano-domain coupling of Ca(2+) channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano-domains that position release-ready synaptic vesicles adjacent to Ca(2+) channels.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fosfoproteínas/fisiologia , Retina/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Oxirredutases do Álcool , Animais , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Proteínas Correpressoras , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Camundongos Transgênicos , Neurotransmissores , Fosfoproteínas/genética
8.
BMC Genomics ; 20(1): 32, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630417

RESUMO

BACKGROUND: Positively correlated with carcass weight and animal growth, the ribeye area (REA) and the backfat thickness (BFT) are economic important carcass traits, which impact directly on producer's payment. The selection of these traits has not been satisfactory since they are expressed later in the animal's life and multigene regulated. So, next-generation technologies have been applied in this area to improve animal's selection and better understand the molecular mechanisms involved in the development of these traits. Correlation network analysis, performed by tools like WGCNA (Weighted Correlation Network Analysis), has been used to explore gene-gene interactions and gene-phenotype correlations. Thus, this study aimed to identify putative candidate genes and metabolic pathways that regulate REA and BFT by constructing a gene co-expression network using WGCNA and RNA sequencing data, to better understand genetic and molecular variations behind these complex traits in Nelore cattle. RESULTS: The gene co-expression network analysis, using WGCNA, were built using RNA-sequencing data normalized by transcript per million (TPM) from 43 Nelore steers. Forty-six gene clusters were constructed, between them, three were positively correlated (p-value< 0.1) to the BFT (Green Yellow, Ivory, and Light Yellow modules) and, one cluster was negatively correlated (p-value< 0.1) with REA (Salmon module). The enrichment analysis performed by DAVID and WebGestalt (FDR 5%) identified eight Gene Ontology (GO) terms and three KEGG pathways in the Green Yellow module, mostly associated with immune response and inflammatory mechanisms. The enrichment of the Salmon module demonstrated 19 GO terms and 21 KEGG pathways, related to muscle energy metabolism, lipid metabolism, muscle degradation, and oxidative stress diseases. The Ivory and Light yellow modules have not shown significant results in the enrichment analysis. CONCLUSION: With this study, we verified that inflammation and immune response pathways modulate the BFT trait. Energy and lipid metabolism pathways, highlighting fatty acid metabolism, were the central pathways associated with REA. Some genes, as RSAD2, EIF2AK2, ACAT1, and ACSL1 were considered as putative candidate related to these traits. Altogether these results allow us to a better comprehension of the molecular mechanisms that lead to muscle and fat deposition in bovine.


Assuntos
Adiposidade/genética , Bovinos/crescimento & desenvolvimento , Bovinos/genética , Desenvolvimento Muscular/genética , Animais , Bovinos/metabolismo , Metabolismo Energético/genética , Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Metabolismo dos Lipídeos/genética , Redes e Vias Metabólicas/genética , Análise de Sequência de RNA
9.
Biochem J ; 474(7): 1205-1220, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28202712

RESUMO

Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.


Assuntos
Proteínas do Olho/metabolismo , NAD/metabolismo , Fosfolipídeos/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Bovinos , Clorofórmio , Colesterol/química , Colesterol/metabolismo , Proteínas do Olho/química , Proteínas do Olho/genética , Expressão Gênica , Lipossomos/química , Lipossomos/metabolismo , Metanol , NAD/química , Oxirredução , Fosfolipídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retina/química , Solventes , Sinapses/química , Vesículas Sinápticas/química
10.
J Neurosci ; 36(8): 2473-93, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911694

RESUMO

Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1.


Assuntos
Endocitose/fisiologia , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Proteínas do Olho/análise , Proteínas do Olho/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , Células Fotorreceptoras/química , Retina/química , Retina/metabolismo , Sinapses/química , Sinapses/genética
11.
BMC Genomics ; 18(1): 506, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673252

RESUMO

BACKGROUND: Commercial cuts yield is an important trait for beef production, which affects the final value of the products, but its direct determination is a challenging procedure to be implemented in practice. The measurement of ribeye area (REA) and backfat thickness (BFT) can be used as indirect measures of meat yield. REA and BFT are important traits studied in beef cattle due to their strong implication in technological (carcass yield) and nutritional characteristics of meat products, like the degree of muscularity and total body fat. Thus, the aim of this work was to study the Longissimus dorsi muscle transcriptome of Nellore cattle, associated with REA and BFT, to find differentially expressed (DE) genes, metabolic pathways, and biological processes that may regulate these traits. RESULTS: By comparing the gene expression level between groups with extreme genomic estimated breeding values (GEBV), 101 DE genes for REA and 18 for BFT (false discovery rate, FDR 10%) were identified. Functional enrichment analysis for REA identified two KEGG pathways, MAPK (Mitogen-Activated Protein Kinase) signaling pathway and endocytosis pathway, and three biological processes, response to endoplasmic reticulum stress, cellular protein modification process, and macromolecule modification. The MAPK pathway is responsible for fundamental cellular processes, such as growth, differentiation, and hypertrophy. For BFT, 18 biological processes were found to be altered and grouped into 8 clusters of semantically similar terms. The DE genes identified in the biological processes for BFT were ACHE, SRD5A1, RSAD2 and RSPO3. RSAD2 has been previously shown to be associated with lipid droplet content and lipid biosynthesis. CONCLUSION: In this study, we identified genes, metabolic pathways, and biological processes, involved in differentiation, proliferation, protein turnover, hypertrophy, as well as adipogenesis and lipid biosynthesis related to REA and BFT. These results enlighten some of the molecular processes involved in muscle and fat deposition, which are economically important carcass traits for beef production.


Assuntos
Redes e Vias Metabólicas , Músculos Paraespinais/metabolismo , Fenótipo , Transdução de Sinais , Transcriptoma , Criação de Animais Domésticos , Animais , Cruzamento , Bovinos/genética , Bovinos/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Músculos Paraespinais/fisiologia , Análise de Sequência de RNA
12.
J Neurophysiol ; 117(6): 2163-2178, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28228581

RESUMO

Exposure to the microgravity conditions of spaceflight alleviates the load normally imposed by the Earth's gravitational field on the inner ear utricular epithelia. Previous ultrastructural investigations have shown that spaceflight induces an increase in synapse density within hair cells of the rat utricle. However, the utricle exhibits broad physiological heterogeneity across different epithelial regions, and it is unknown whether capabilities for synaptic plasticity generalize to hair cells across its topography. To achieve systematic and broader sampling of the epithelium than was previously conducted, we used immunohistochemistry and volumetric image analyses to quantify synapse distributions across representative utricular regions in specimens from mice exposed to spaceflight (a 15-day mission of the space shuttle Discovery). These measures were compared with similarly sampled Earth-bound controls. Following paraformaldehyde fixation and microdissection, immunohistochemistry was performed on intact specimens to label presynaptic ribbons (anti-CtBP2) and postsynaptic receptor complexes (anti-Shank1A). Synapses were identified as closely apposed pre- and postsynaptic puncta. Epithelia from horizontal semicircular canal cristae served as "within-specimen" controls, whereas utricles and cristae from Earth-bound cohorts served as experimental controls. We found that synapse densities decreased in the medial extrastriolae of microgravity specimens compared with experimental controls, whereas they were unchanged in the striolae and horizontal cristae from the two conditions. These data demonstrate that structural plasticity was topographically localized to the utricular region that encodes very low frequency and static changes in linear acceleration, and illuminates the remarkable capabilities of utricular hair cells for synaptic plasticity in adapting to novel gravitational environments.NEW & NOTEWORTHY Spaceflight imposes a radically different sensory environment from that in which the inner ear utricle normally operates. We investigated synaptic modifications in utricles from mice flown aboard a space shuttle mission. Structural synaptic plasticity was detected in the medial extrastriola, a region associated with encoding static head position, as decreased synapse density. These results are remarkably congruent with a recent report of decreased utricular function in astronauts immediately after returning from the International Space Station.


Assuntos
Células Ciliadas Vestibulares/citologia , Células Ciliadas Vestibulares/fisiologia , Plasticidade Neuronal/fisiologia , Voo Espacial , Sinapses/fisiologia , Oxirredutases do Álcool , Animais , Tamanho Celular , Proteínas Correpressoras , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Feminino , Fixadores , Formaldeído , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Microdissecção , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Polímeros , Preservação de Tecido , Ausência de Peso
13.
J Neurosci ; 34(15): 5245-60, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719103

RESUMO

Ribbon synapses are tonically active synapses in the retina and inner ear with intense vesicle traffic. How this traffic is organized and regulated is still unknown. Synaptic ribbons, large presynaptic structures associated with numerous synaptic vesicles, appear to be essential for this process. The base of the synaptic ribbon is anchored at the active zone and is a hotspot of exocytosis. The synaptic ribbon complex is also important for vesicle replenishment. RIBEYE is a unique and major component of synaptic ribbons. It consists of a unique A-domain and an NAD(H)-binding, C-terminal B-domain. In the present study, we show that the Arf-GTPase activating protein-3 (ArfGAP3), a well characterized regulator of vesicle formation at the Golgi apparatus, is also a component of the synaptic ribbon complex in photoreceptor synapses of the mouse retina and interacts with RIBEYE as shown by multiple, independent approaches. ArfGAP3 binds to RIBEYE(B)-domain in an NAD(H)-dependent manner. The interaction is redox sensitive because NADH is more efficient than the oxidized NAD(+) in promoting ArfGAP3-RIBEYE interaction. RIBEYE competes with the GTP-binding protein Arf1 for binding to ArfGAP3. Thus, binding of RIBEYE(B) to ArfGAP3 could prevent inactivation of Arf1 by ArfGAP3 and provides the synaptic ribbon with the possibility to control Arf1 function. The interaction is relevant for endocytic vesicle trafficking because overexpression of ArfGAP3 in photoreceptors strongly inhibited endocytotic uptake of FM1-43.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endocitose , Proteínas Ativadoras de GTPase/metabolismo , NAD/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Oxirredutases do Álcool , Animais , Células COS , Bovinos , Chlorocebus aethiops , Proteínas Correpressoras , Proteínas de Ligação a DNA/genética , Proteínas Ativadoras de GTPase/genética , Camundongos , Oxirredução , Fosfoproteínas/genética , Células Fotorreceptoras/fisiologia , Ligação Proteica , Sinapses/fisiologia
14.
Synapse ; 69(5): 242-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682928

RESUMO

Synapses are diverse in form and function; however, the mechanisms underlying this diversity are poorly understood. To illuminate structure/function relationships, robust analysis of molecular composition and morphology is needed. The molecular-anatomical components of synapses-vesicles, clusters of voltage-gated ion channels in presynaptic densities, arrays of transmitter receptors in postsynaptic densities-are only tens to hundreds of nanometers in size. Measuring the topographies of synaptic proteins requires nanoscale resolution of their molecularly specific labels. Super-resolution light microscopy has emerged to meet this need. Achieving 50 nm resolution in thick tissue, we employed stimulated emission depletion (STED) microscopy to image the functionally and molecularly unique ribbon-type synapses in the inner ear that connect mechano-sensory inner hair cells to cochlear nerve fibers. Synaptic ribbons, bassoon protein, voltage-gated Ca(2+) channels, and glutamate receptors are inhomogeneous in their spatial distributions within synapses; the protein clusters assume variations of shapes typical for each protein specifically at cochlear afferent synapses. Heterogeneity of substructure among these synapses may contribute to functional differences among auditory nerve fibers. The morphology of synaptic voltage-gated Ca(2+) channels matures over development in a way that depends upon bassoon protein, which aggregates in similar form. Functional properties of synaptic transmission appear to depend on voltage-gated Ca(2+) channel cluster morphology and position relative to synaptic vesicles. Super-resolution light microscopy is a group of techniques that complement electron microscopy and conventional light microscopy. Although technical hurdles remain, we are beginning to resolve the details of molecular nanoanatomy that relate mechanistically to synaptic function.


Assuntos
Células Ciliadas Auditivas Internas/ultraestrutura , Microscopia de Varredura por Sonda/métodos , Sinapses/ultraestrutura , Animais , Canais de Cálcio/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Humanos , Microscopia Confocal/métodos , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
15.
J Imaging ; 10(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921607

RESUMO

Meat characterized by a high marbling value is typically anticipated to display enhanced sensory attributes. This study aimed to predict the marbling scores of rib-eye, steaks sourced from the Longissimus dorsi muscle of different cattle types, namely Boran, Senga, and Sheko, by employing digital image processing and machine-learning algorithms. Marbling was analyzed using digital image processing coupled with an extreme gradient boosting (GBoost) machine learning algorithm. Meat texture was assessed using a universal texture analyzer. Sensory characteristics of beef were evaluated through quantitative descriptive analysis with a trained panel of twenty. Using selected image features from digital image processing, the marbling score was predicted with R2 (prediction) = 0.83. Boran cattle had the highest fat content in sirloin and chuck cuts (12.68% and 12.40%, respectively), followed by Senga (11.59% and 11.56%) and Sheko (11.40% and 11.17%). Tenderness scores for sirloin and chuck cuts differed among the three breeds: Boran (7.06 ± 2.75 and 3.81 ± 2.24, respectively), Senga (5.54 ± 1.90 and 5.25 ± 2.47), and Sheko (5.43 ± 2.76 and 6.33 ± 2.28 Nmm). Sheko and Senga had similar sensory attributes. Marbling scores were higher in Boran (4.28 ± 1.43 and 3.68 ± 1.21) and Senga (2.88 ± 0.69 and 2.83 ± 0.98) compared to Sheko (2.73 ± 1.28 and 2.90 ± 1.52). The study achieved a remarkable milestone in developing a digital tool for predicting marbling scores of Ethiopian beef breeds. Furthermore, the relationship between quality attributes and beef marbling score has been verified. After further validation, the output of this research can be utilized in the meat industry and quality control authorities.

16.
Front Vet Sci ; 10: 1057658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035826

RESUMO

Healthy food must have an adequate balance of macroelements, such as calcium or phosphorus and, microelements, such as iron, copper. This study aimed to evaluate the influence of three extensive systems, during the dry and rainy seasons, and an intensive (feedlot) system in the Eastern Amazon, on the muscle mineral profile of water buffaloes. In total, 12 male buffaloes, aged between 24 and 36 months, slaughtered in commercial slaughterhouses, were used in each of the systems considered: Marajó island, Santarém, Nova Timboteua, and a feedlot. Approximately 5 g of muscle was collected, stored, and frozen, until freeze-dried. The samples were analyzed for the mineral profile using inductively coupled plasma-optical emission spectrometry (ICP-OES). There were significant differences (P < 0.05) for concentrations of sodium (Na), magnesium (Mg), phosphorus (P), sulfur (S), copper (Cu), zinc (Zn), and iron (Fe). Extensive and intensive systems showed significant differences (P < 0.05) for Na, Ca, S, Cu, and Fe concentrations. The season also influenced (P < 0.05) K, Ca, P, S, Zn, and Fe concentrations. The location and season of the year had a significant interaction (P < 0.05) for K, Mg, P, Zn, and Fe concentrations. The study showed that the different Amazonian production systems and the year season influenced the levels of minerals present in buffalo muscle. The values obtained were, in general, higher in extensive production systems, and Marajó Island stood out with higher mineral values in the dry season. Therefore, the meat from animals reared in these systems is a good mineral source for daily human needs.

17.
Foods ; 12(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372601

RESUMO

Meat is an important part of the food pyramid in Mexico, to such an extent that it is included in the basic food basket. In recent years, there has been great interest in the application of so-called emerging technologies, such as high-intensity ultrasound (HIU), to modify the characteristics of meat and meat products. The advantages of the HIU in meat such as pH, increased water-holding capacity, and antimicrobial activity are well documented and conclusive. However, in terms of meat tenderization, the results are confusing and contradictory, mainly when they focus on three HIU parameters: acoustic intensity, frequency, and application time. This study explores via a texturometer the effect of HIU-generated acoustic cavitation and ultrasonoporation in beef (m. Longissimus dorsi). Loin-steak was ultrasonicated with the following parameters: time tHIU = 30 min/each side; frequency fHIU = 37 kHz; acoustic intensity IHIU = ~6, 7, 16, 28, and 90 W/cm2. The results showed that acoustic cavitation has a chaotic effect on the loin-steak surface and thickness of the rib-eye due to Bjerknes force, generating shear stress waves, and acoustic radiation transmittance via the internal structure of the meat and the modification of the myofibrils, in addition to the collateral effect in which the collagen and pH generated ultrasonoporation. This means that HIU can be beneficial for the tenderization of meat.

18.
Animals (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35953974

RESUMO

Hempseed meal (HSM) is the byproduct of hemp seeds and is rich in crude protein and fiber, making it an ideal candidate as a feedstuff for ruminants. The objective of the present study is to evaluate the effects of feeding different levels of HSM on the carcass traits of crossbred Boer goats. Forty castrated goat kids (approximately six months, 25.63 ± 0.33 kg) were assigned to one of four treatments (n = 10) in a completely randomized design. Goats were fed pelleted diets (50% forage and 50% concentrate) with additional supplementation of HSM: control with 0%, 10%, 20%, and 30% of the total diets. Goats were harvested and processed after a 60-day feeding trial. There were no significant differences (p > 0.05) in the mean values of dressing percentages, carcass weights, body wall thickness, and ribeye area among treatments. Marbling scores and percentages of moisture, fats, proteins, and collagen in the muscles showed no significant differences (p > 0.05) among the treatments. Results suggest that including up to 30% of HSM in the diet of growing meat goats does not affect their carcass traits.

19.
Front Mol Neurosci ; 15: 838311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153673

RESUMO

Synaptic ribbons are presynaptic specializations that define eponymous ribbon synapses. Synaptic ribbons are largely composed of RIBEYE, a protein containing an N-terminal A-domain and a carboxyterminal B-domain that is identical with CtBP2, a NAD(H)-binding transcriptional co-repressor. Previously we showed that synaptic ribbons are completely absent in RIBEYE knockout mice in which the RIBEYE A-domain-encoding exon had been deleted, but CtBP2 is still made, demonstrating that the A-domain is required for synaptic ribbon assembly. In the present study, we asked whether the RIBEYE B-domain also has an essential role in the assembly of synaptic ribbons. For this purpose, we made use of RIBEYE knockin mice in which the RIBEYE B-domain was replaced by a fluorescent protein domain, whereas the RIBEYE A-domain was retained unchanged. We found that replacing the RIBEYE B-domain with a fluorescent protein module destabilizes the resulting hybrid protein and causes a complete loss of synaptic ribbons. Our results thus demonstrate an essential role of the RIBEYE B-domain in enabling RIBEYE assembly into synaptic ribbons, reinforcing the notion that RIBEYE is the central organizer of synaptic ribbons.

20.
Front Mol Neurosci ; 14: 773356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095414

RESUMO

Complex transcriptional gene regulation allows for multifaceted isoform production during retinogenesis, and novel isoforms transcribed from a single locus can have unlimited potential to code for diverse proteins with different functions. In this study, we explored the CTBP2/RIBEYE gene locus and its unique repertoire of transcripts that are conserved among vertebrates. We studied the transcriptional coregulator (CTBP2) and ribbon synapse-specific structural protein (RIBEYE) in the chicken retina by performing comprehensive histochemical and sequencing analyses to pinpoint cell and developmental stage-specific expression of CTBP2/RIBEYE in the developing chicken retina. We demonstrated that CTBP2 is widely expressed in retinal progenitors beginning in early retinogenesis but becomes limited to GABAergic amacrine cells in the mature retina. Inversely, RIBEYE is initially epigenetically silenced in progenitors and later expressed in photoreceptor and bipolar cells where they localize to ribbon synapses. Finally, we compared CTBP2/RIBEYE regulation in the developing human retina using a pluripotent stem cell derived retinal organoid culture system. These analyses demonstrate that similar regulation of the CTBP2/RIBEYE locus during chick and human retinal development is regulated by different members of the K50 homeodomain transcription factor family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA