Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mutat ; 40(10): 1731-1748, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31045291

RESUMO

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.


Assuntos
Cardiomiopatia Hipertrófica/genética , Genes Mitocondriais , Predisposição Genética para Doença , Mutação , Proteínas de Neoplasias/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Alelos , Substituição de Aminoácidos , Biomarcadores , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/terapia , Estudos de Coortes , Ativação Enzimática , Feminino , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Cinética , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenótipo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato
2.
RNA Biol ; 13(12): 1182-1188, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27661287

RESUMO

The removal of transcriptional 5' and 3' extensions is an essential step in tRNA biogenesis. In some bacteria, tRNA 5'- and 3'-end maturation require no further steps, because all their genes encode the full tRNA sequence. Often however, the ends are incomplete, and additional maturation, repair or editing steps are needed. In all Eukarya, but also many Archaea and Bacteria, e.g., the universal 3'-terminal CCA is not encoded and has to be added by the CCA-adding enzyme. Apart from such widespread "repair/maturation" processes, tRNA genes in some cases apparently cannot give rise to intact, functional tRNA molecules without further, more specific end repair or editing. Interestingly, the responsible enzymes as far as identified appear to be polymerases usually involved in regular tRNA repair after damage. Alternatively, enzymes are recruited from other non-tRNA pathways; e.g., in animal mitochondria, poly(A) polymerase plays a crucial role in the 3'-end repair/editing of tRNAs. While these repair/editing pathways apparently allowed peculiar tRNA-gene overlaps or mismatching mutations in the acceptor stem to become genetically fixed in some present-day organisms, they may have also driven some global changes in tRNA maturation on a greater evolutionary scale.


Assuntos
Archaea/genética , Bactérias/genética , RNA de Transferência/metabolismo , Animais , Archaea/metabolismo , Bactérias/metabolismo , Evolução Molecular , Edição de RNA , Processamento Pós-Transcricional do RNA , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química , RNA de Transferência/genética
3.
Dev Biol ; 381(2): 324-40, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23867108

RESUMO

Drosophila RNase Z(L) (dRNaseZ) belongs to a family of endoribonucleases with a major role in tRNA 3'-end processing. The biochemical function of RNase Z(L) is conserved from yeast to human. Here we present a study of its biological function during Drosophila development. In flies, dRNaseZ provides a non-redundant function, as the RNZ(ED24) knockout (KO) mutation causes early larval lethality. Mosaic and conditional rescue techniques were employed to determine dRNaseZ requirements at later stages. We found that dRNaseZ activity is essential for all phases of fly development that involve cell division, including growth of adult tissue progenitors during larval and metamorphic stages, and gametogenesis in adults. At the cellular level, two major phenotypes were identified-cell growth deficiency in endoreplicating tissues and cell cycle arrest in mitotic tissues. While cell growth and proliferation are both dependant on protein synthesis, the two phenotypes displayed reliance on different dRNaseZ functions. We found that dRNaseZ KO completely blocks tRNA maturation without diminishing the abundance of mature tRNA molecules. Our data indicate that growth arrest of endoreplicating cells is primarily attributed to the relocation of the pool of mature tRNAs into the nuclei causing a decrease in translation efficiency. Mitotically dividing cells appear to be less dependent on translation machinery as they maintain their normal size when deprived of dRNaseZ activity, but rather display a cell cycle arrest at the G2-M transition.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Endorribonucleases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transporte de RNA , RNA de Transferência/metabolismo , Animais , Núcleo Celular/enzimologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Endorreduplicação , Endorribonucleases/genética , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Masculino , Mitose , Biossíntese de Proteínas , RNA de Transferência/genética
4.
FEBS J ; 289(13): 3630-3641, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33929081

RESUMO

Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribonuclease P/genética , Ribonuclease P/metabolismo , Transcrição Gênica
5.
Dis Model Mech ; 14(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338278

RESUMO

A severe form of infantile cardiomyopathy (CM) has been linked to mutations in ELAC2, a highly conserved human gene. It encodes Zinc phosphodiesterase ELAC protein 2 (ELAC2), which plays an essential role in the production of mature tRNAs. To establish a causal connection between ELAC2 variants and CM, here we used the Drosophila melanogaster model organism, which carries the ELAC2 homolog RNaseZ. Even though RNaseZ and ELAC2 have diverged in some of their biological functions, our study demonstrates the use of the fly model to study the mechanism of ELAC2-related pathology. We established transgenic lines harboring RNaseZ with CM-linked mutations in the background of endogenous RNaseZ knockout. Importantly, we found that the phenotype of these flies is consistent with the pathological features in human patients. Specifically, expression of CM-linked variants in flies caused heart hypertrophy and led to reduction in cardiac contractility associated with a rare form of CM. This study provides first experimental evidence for the pathogenicity of CM-causing mutations in the ELAC2 protein, and the foundation to improve our understanding and diagnosis of this rare infantile disease. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Cardiomegalia/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Mutação/genética , Proteínas de Neoplasias , Fenótipo , RNA de Transferência/genética
6.
Microbiol Spectr ; 9(2): e0116721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704809

RESUMO

When encountering oxidative stress, organisms selectively upregulate antioxidant genes and simultaneously suppress the translation of most other proteins. Eukaryotes employ multiple strategies to adjust translation at both the initiation and elongation stages; however, how prokaryotes modulate translation under oxidative stress remains unclear. Here, we report that upon hydrogen peroxide (H2O2) challenge, Streptococcus oligofermentans reduced translation via RNase Z (So-RNaseZ) oxidative degradation, thus hindering tRNA maturation. S. oligofermentans encodes all CCA-less tRNAs that require So-RNaseZ for 3' end maturation. A combination of nonreducing SDS-PAGE and liquid chromatography/tandem mass spectrometry (LC/MS-MS) assays demonstrated that H2O2 oxidation induced Cys38-Cys149 disulfide linkages in recombinant So-RNaseZ protein, and serine substitution of Cys38 or Cys149 abolished these disulfide linkages. Consistently, redox Western blotting also determined intramolecular disulfide-linked So-RNaseZ in H2O2-treated S. oligofermentans cells. The disulfide-linked So-RNaseZ and monomer were both subject to proteolysis, whereas C149S mutation alleviated oxidative degradation of So-RNaseZ, suggesting that H2O2-mediated disulfide linkages substantially contributed to So-RNaseZ degradation. Accordingly, Northern blotting determined that tRNA precursor accumulation and mature tRNA species decrease in H2O2-treated S. oligofermentans. Moreover, reduced overall protein synthesis, as indicated by puromycin incorporation, and retarded growth of S. oligofermentans occurred in an H2O2 concentration-dependent manner. Overexpression of So-RNaseZ not only elevated tRNA precursor processing and protein synthesis but also partly rescued H2O2-suppressed S. oligofermentans growth. Moreover, So-RNaseZ oxidative degradation-mediated translation repression elevated S. oligofermentans survival under high H2O2 stress. Therefore, this work found that So-RNaseZ oxidative degradation-impeded tRNA maturation contributes to streptococcal translation repression and provides the oxidative stress adaptability for S. oligofermentans. IMPORTANCE Translation regulation is a common strategy used by organisms to reduce oxidative damage. Catalase-negative streptococci produce as well as tolerate high levels of H2O2. This work reports a novel translation regulation mechanism employed by Streptococcus oligofermentans in response to H2O2 challenge, in which the key tRNA endonuclease So-RNaseZ is oxidized to form Cys38-Cys149 disulfide linkages and both the disulfide-linked So-RNaseZ and monomers are subject to proteolysis; thus, tRNA maturation, protein translation, and growth are all suppressed. Notably, So-RNaseZ oxidative degradation-mediated translation repression offers oxidative adaptability to S. oligofermentans and enhances its survival against high H2O2 challenge. So-RNaseZ orthologs and H2O2-sensitive cysteines (Cys38 and Cys149) are widely distributed in Streptococcus and Lactococcus species genomes, which also encode all CCA-less tRNAs and lack catalase. Therefore, RNase Z oxidative degradation-based translation regulation could be widely employed by these lactic acid bacteria, including pathogenic streptococci, to cope with H2O2.


Assuntos
Endorribonucleases/metabolismo , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/genética , Biossíntese de Proteínas/genética , RNA de Transferência/biossíntese , Streptococcus/metabolismo , Antioxidantes/metabolismo , Dissulfetos/química , Regulação Bacteriana da Expressão Gênica/genética , RNA de Transferência/genética , Streptococcus/genética , Streptococcus/crescimento & desenvolvimento
7.
Plant Physiol Biochem ; 158: 83-90, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302124

RESUMO

TMS5 encodes an RNase ZS1 protein that can process ubiquitin-60S ribosomal protein L40 family (UbL40) mRNAs to regulate thermo-sensitive genic male sterility in rice. Despite the importance of this protein, the structural characteristics and substrate recognition properties of RNase ZS1 remain unclear. Here, we found that the variations in several conservative amino acids alter the activation of RNase ZS1, and its recognition of RNA substrates depends on the structure of RNA. RNase ZS1 acts as a homodimer. The conserved amino acids in or adjacent to enzyme center play a critical role in the enzyme activity of RNase ZS1 and the conserved amino acids that far from active center have little impact on its enzyme activity. The cleavage efficiency of RNase ZS1 for pre-tRNA-MetCAU35 and UbL401 mRNA with cloverleaf-like structure was higher than that of pre-tRNA-AspAUC9 and UbL404 mRNA with imperfect cloverleaf-like structure. This difference implies that the enzyme activity of RNase ZS1 depends on the cloverleaf-like structure of the RNA. Furthermore, the RNase ZS1 activity was not inhibited by the 5' leader sequence and 3' CCA motif of pre-tRNA. These findings provide new insights for studying the cleavage characteristics and substrate recognition properties of RNase ZS.


Assuntos
Endorribonucleases/química , Oryza/enzimologia , Precursores de RNA/química , Conformação de Ácido Nucleico , Especificidade por Substrato
8.
Methods Mol Biol ; 1567: 379-390, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28276031

RESUMO

Transcription of the mitochondrial genome yields three large polycistronic transcripts that undergo multiple endonucleolytic processing steps, before resulting in functional mRNAs, tRNAs, and rRNAs. Cleavage of the large precursor transcripts is mainly performed by the RNase P complex and RNase Z that cleave mitochondrial pre-tRNAs at their 5' and 3' ends respectively. Most likely there are additional enzymes involved that still await identification and characterization. Defects in mitochondrial RNA processing have been associated with human disease. There are published cases of patients carrying mutations in either HSD17B10/MRPP2 (encoding a subunit of RNase P complex) or ELAC2 (coding for RNase Z). In addition, several mtDNA mutations within tRNA genes have been shown to affect RNA processing. Here, we describe detailed protocols for analyzing RNA processing of mitochondrial tRNAs, in particular their 3'-ends that are processed by RNase Z. These protocols should serve as a guide to extract RNA for quantitative real-time PCR and RNAseq analysis.


Assuntos
Processamento Pós-Transcricional do RNA , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Ordem dos Genes , Genoma Mitocondrial , Humanos , Especificidade de Órgãos , RNA/metabolismo , RNA Mitocondrial , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de RNA/métodos , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA