Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Plant J ; 119(1): 404-412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38646817

RESUMO

The main bottleneck in the application of biotechnological breeding methods to woody species is due to the in vitro regeneration recalcitrance shown by several genotypes. On the other side, woody species, especially grapevine (Vitis vinifera L.), use most of the pesticides and other expensive inputs in agriculture, making the development of efficient approaches of genetic improvement absolutely urgent. Genome editing is an extremely promising technique particularly for wine grape genotypes, as it allows to modify the desired gene in a single step, preserving all the quality traits selected and appreciated in elite varieties. A genome editing and regeneration protocol for the production of transgene-free grapevine plants, exploiting the lipofectamine-mediated direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to target the phytoene desaturase gene, is reported. We focused on Nebbiolo (V. vinifera), an extremely in vitro recalcitrant wine genotype used to produce outstanding wines, such as Barolo and Barbaresco. The use of the PEG-mediated editing method available in literature and employed for highly embryogenic grapevine genotypes did not allow the proper embryo development in the recalcitrant Nebbiolo. Lipofectamines, on the contrary, did not have a negative impact on protoplast viability and plant regeneration, leading to the obtainment of fully developed edited plants after about 5 months from the transfection. Our work represents one of the first examples of lipofectamine use for delivering editing reagents in plant protoplasts. The important result achieved for the wine grape genotype breeding could be extended to other important wine grape varieties and recalcitrant woody species.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genótipo , Lipídeos , Protoplastos , Vitis , Vitis/genética , Edição de Genes/métodos , Protoplastos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Vinho , Genoma de Planta/genética , Oxirredutases/genética , Oxirredutases/metabolismo
2.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35686643

RESUMO

In contrast to desiccation-tolerant orthodox seeds, recalcitrant seeds are desiccation sensitive and are unable to survive for a prolonged time. Here, our analyses of Oryza species with contrasting seed desiccation tolerance reveals that PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT), an enzyme that repairs abnormal isoaspartyl (isoAsp) residues in proteins, acts as a key player that governs seed desiccation tolerance to orthodox seeds but is ineffective in recalcitrant seeds. We observe that, unlike the orthodox seed of Oryza sativa, desiccation intolerance of the recalcitrant seeds of Oryza coarctata are linked to reduced PIMT activity and increased isoAsp accumulation due to the lack of coordinated action of ABA and ABI transcription factors to upregulate PIMT during maturation. We show that suppression of PIMT reduces, and its overexpression increases, seed desiccation tolerance and seed longevity in O. sativa. Our analyses further reveal that the ABI transcription factors undergo isoAsp formation that affect their functional competence; however, PIMT interacts with and repairs isoAsp residues and facilitates their functions. Our results thus illustrate a new insight into the mechanisms of acquisition of seed desiccation tolerance and longevity by ABI transcription factors and the PIMT module.


Assuntos
Oryza , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Sequência de Aminoácidos , Dessecação , Oryza/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Trends Genet ; 37(11): 955-957, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34412923

RESUMO

Transformation of the chloroplast genome offers key advantages over traditional methods for generating transgenic plants, but this approach is limited to a few plant species. Nakazato et al. have developed a novel technique that will help to extend the technology to other plant species that are recalcitrant to current tissue culture-based chloroplast transformation protocols.


Assuntos
Cloroplastos , Genomas de Plastídeos , Plantas Geneticamente Modificadas , Cloroplastos/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Plantas Geneticamente Modificadas/genética
4.
Plant Cell Physiol ; 65(5): 729-736, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288629

RESUMO

Genome-editing tools such as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system have become essential tools for increasing the efficiency and accuracy of plant breeding. Using such genome-editing tools on maize, one of the most important cereal crops of the world, will greatly benefit the agriculture and the mankind. Conventional genome-editing methods typically used for maize involve insertion of a Cas9-guide RNA expression cassette and a selectable marker in the genome DNA; however, using such methods, it is essential to eliminate the inserted DNA cassettes to avoid legislative concerns on gene-modified organisms. Another major hurdle for establishing an efficient and broadly applicable DNA-free genome-editing system for maize is presented by recalcitrant genotypes/cultivars, since cell/tissue culture and its subsequent regeneration into plantlets are crucial for producing transgenic and/or genome-edited maize. In this study, to establish a DNA-free genome-editing system for recalcitrant maize genotypes/cultivars, Cas9-gRNA ribonucleoproteins were directly delivered into zygotes isolated from the pollinated flowers of the maize-B73 cultivar. The zygotes successfully developed and were regenerated into genome-edited plantlets by co-culture with phytosulfokine, a peptide phytohormone. The method developed herein made it possible to obtain DNA- and selectable-marker-free genome-edited recalcitrant maize genotypes/cultivars with high efficiency. This method can advance the molecular breeding of maize and other important cereals, regardless of their recalcitrant characteristics.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma de Planta , Zea mays , Zea mays/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas , Zigoto/metabolismo , Melhoramento Vegetal/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , DNA de Plantas/genética
5.
BMC Plant Biol ; 24(1): 277, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605351

RESUMO

BACKGROUND: The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS: Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS: Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.


Assuntos
Genomas de Plastídeos , Saxifragales , Humanos , Filogenia , Saxifragales/genética , Fósseis , Teorema de Bayes , Plastídeos/genética
6.
Genet Med ; 26(2): 101028, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37978863

RESUMO

PURPOSE: Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS: We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS: The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION: PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.


Assuntos
Epidermodisplasia Verruciforme , Infecções por Papillomavirus , Verrugas , Humanos , Pré-Escolar , Criança , Adolescente , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Verrugas/genética , Verrugas/complicações , Epidermodisplasia Verruciforme/genética , Epidermodisplasia Verruciforme/complicações , Pele , Síndrome , Proteínas de Membrana/genética , Fatores de Troca do Nucleotídeo Guanina
7.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436125

RESUMO

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Assuntos
Oryza , Solo , Carbono , China , Geografia
8.
Anal Biochem ; 684: 115372, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940013

RESUMO

Because of the heterogeneity among seedlings of outbreeding species, the use of seedling tissues as a source of DNA is unsuitable for the genomic characterization of elite germplasms. High-quality DNA, free of RNA, proteins, polysaccharides, secondary metabolites, and shearing, is mandatory for downstream molecular biology applications, especially for next-generation genome sequencing and pangenome analysis aiming to capture the complete genetic diversity within a species. The study aimed to accomplish an efficient protocol for the extraction of high-quality DNA suitable for diverse plant species/tissues. We describe a reliable, and consistent protocol suitable for the extraction of DNA from 42 difficult-to-extract plant species belonging to 33 angiosperm (monocot and dicot) families, including tissues such as seeds, roots, endosperm, and flower/fruit tissues. The protocol was first optimized for the outbreeding recalcitrant trees viz., Prosopis cineraria, Conocarpus erectus, and Phoenix dactylifera, which are rich in proteins, polysaccharides, and secondary metabolites, and the quality of the extracted DNA was confirmed by downstream applications. Nine procedures were attempted to extract high-quality, impurities-free DNA from these three plant species. Extraction of the ethanol-precipitated DNA from cetyltrimethylammonium bromide (CTAB) protocol using sodium dodecyl sulfate (SDS) buffer, i.e., the extraction using a cationic (CTAB) detergent followed by an anionic (SDS) detergent was the key for high yield and high purity (1.75-1.85 against A260/280 and an A260/230 ratio of >2) DNA. A vice versa extraction procedure, i.e., SDS buffer followed by CTAB buffer, and also CTAB buffer followed by CTAB, did not yield good-quality DNA. PCR (using different primers) and restriction endonuclease digestion of the DNA extracted from these three plants validated the protocol. The accomplishment of the genome of P. cineraria using the DNA extracted using the modified protocol confirmed its applicability to genomic studies. The optimized protocol successful in extracting high-quality DNA from diverse plant species/tissues extends its applicability and is useful for accomplishing genome sequences of elite germplasm of recalcitrant plant species with quality reads.


Assuntos
DNA , Detergentes , Humanos , Cetrimônio , Plantas/genética , Genômica , Polissacarídeos , DNA de Plantas/genética
9.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356137

RESUMO

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Biodegradação Ambiental
10.
J Am Acad Dermatol ; 91(2): 315-323, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38574764

RESUMO

Trichophyton indotineae has emerged as a novel dermatophyte species resulting in treatment recalcitrant skin infections. While the earliest reports came from India, T. indotineae has now spread to many parts of the world and is rapidly becoming a global health concern. Accurate identification of T. indotineae requires elaborate mycological investigations which is beyond the domain of routine microbiology testing. Extensive, non-inflammatory and atypical presentations are commonly seen with this novel species. T. indotineae shows an alarmingly high rate of mutations in the squalene epoxidase gene leading to lowered in vitro susceptibility to terbinafine. This has also translated into a lowered clinical response and requirement of a higher dose and much longer durations of treatment with the drug. Although the species remains largely susceptible to itraconazole, prolonged treatment durations are required to achieve cure with itraconazole. Fluconazole and griseofulvin do not have satisfactory in vitro or clinical activity. Apart from requirement of prolonged treatment durations, relapse postsuccessful treatment is a distressing and yet unexplained consequence of this "species-shift." Use of third generation azoles and combinations of systemic antifungals is unwarranted as both have not demonstrated clear superiority over itraconazole given alone, and the former is an important class of drugs for invasive mycoses.


Assuntos
Antifúngicos , Tinha , Trichophyton , Humanos , Antifúngicos/uso terapêutico , Tinha/tratamento farmacológico , Tinha/diagnóstico , Tinha/microbiologia , Trichophyton/efeitos dos fármacos , Trichophyton/genética , Itraconazol/uso terapêutico , Terbinafina/uso terapêutico
11.
Environ Res ; 252(Pt 2): 118880, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582421

RESUMO

Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Glicolipídeos , Hidrocarbonetos , Poluentes do Solo , Poluentes do Solo/metabolismo , Glicolipídeos/metabolismo , Carvão Vegetal/química , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Petróleo/metabolismo , Solo/química
12.
Environ Res ; 245: 118063, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160975

RESUMO

Priming effect (PE) is recognized as an important potential mechanism for dissolved organic matter (DOM) degradation in aquatic ecosystems. However, the priming effects (PEs) of various priming substances on the degradation of DOM pools in urban lakes along diverse trophic states remain unknown. To address this knowledge gap, the PEs and drivers of glucose and plant leachate of lake water with three trophic states were investigated. We reveal differences in the bioavailability of DOM in lake water, glucose, and plant leachate. The PE of the same priming substance was significantly higher in highly-eutrophic lake water than in mesotrophic lake. The priming intensity induced by glucose was significantly higher when compared to plant leachate. Regarding the addition of glucose, humic-like components (C1 and C3) showed slight PE, while the tyrosine-like component C2 showed negative PE. However, the positive PEs were observed on three components after adding plant leachate. The driver of PE by glucose shifted from nutrients to DOM components with increasing trophic levels. The PEs induced by plant leachate were affected by nutrients, chlorophyll-a (Chl-a), water chemistry, and DOM components in lightly/moderately-eutrophic lake water. This study revealed the intensities, directions, and drivers of PEs, providing essential insights into uncovering the DOM biogeochemical process in urban lakes.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Ecossistema , Água , Glucose , Espectrometria de Fluorescência , China , Substâncias Húmicas/análise
13.
J Environ Manage ; 366: 121750, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972193

RESUMO

The study of dissolved organic matter (DOM) presents a significant challenge for environmental analyses and the monitoring of wastewater treatment plants (WWTPs). This is particularly true for the tracking of recalcitrant to biodegradation dissolved organic matter (rDOM) compounds, which is generated during the thermal pretreatment of sludge. This study aims to develop analytical and chemometric methods to differentiate melanoidins from humic acids (HAs), two components of rDOM that require monitoring at various stages of wastewater treatment processes due to their distinct biological effects. The developed method implements the separation of macromolecules through ultra-high-performance liquid chromatography size-exclusion chromatography (U-HPLC SEC) followed by online UV and fluorescence detection. UV detection was performed at 210, 254, and 280 nm, and fluorescence detection at six excitation/emission pairs: 230/355 nm, 270/355 nm, 240/440 nm, 270/500 nm, 330/425 nm, and 390/500 nm. Chromatograms obtained for each sample from these nine detection modes were integrated and separated into four molecular fractions: >40 kDa, 20-40 kDa, 10-20 kDa, and <10 kDa. To enhance analytical resolution and normalize the data, ratios were calculated from the areas of chromatographic peaks obtained for each detection mode. The results demonstrate the utility of these ratios in discriminating samples composed of HAs, melanoidins, and their mixtures, through principal component analysis (PCA). Low molecular weight fractions were found to be specific to melanoidins, while high molecular weight fractions were characteristic of HAs. For the detection modes specific to melanoidins, UV absorbance at 210, 254, and 280 nm were predominantly present in the numerators, with tryptophan-like fluorescence emissions in the denominators. Conversely, fluorescence emissions largely represented both numerators and denominators for HAs. This online method also enables the discrimination of pseudo-melanoidins, compounds revealing a nitrogen deficiency in their chemical structures.

14.
J Environ Manage ; 351: 119687, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061097

RESUMO

Ridge-furrow with full film mulching has been widely applied to increase crop yield and water productivity on the Loess Plateau, but it may stimulate carbon (C) mineralization. How to integrate other technological benefits based on this technology for long-term maintenance of high yield and soil fertility is a pressing issue. With the local farmers' practice (FP) as a control, three integrated soil-crop system management (ISSM) practices integrating fertilizer rates, fertilizer types and planting densities (ISSM-N1, ISSM-N2 and ISSM-MN) were established to improve maize yield and soil quality. Compared with the FP, the maize yield increased by 13.34%, 21.83% and 30.24%, and the soil quality index (SQI) increased by 9.66%, 14.91% and 38.38% for ISSM-N1, ISSM-N2 and ISSM-MN, respectively. However, ISSM-N1 did not significantly increase yield, and ISSM-N2 increased residual soil nitrate and decreased nitrogen (N) partial factor productivity significantly. Compared to the FP, ISSM practices increased soil organic carbon (SOC), labile organic C fractions (LOCFs) and potassium permanganate organic C fractions in the topsoil to varying degrees, but only ISSM-MN reached significant levels for most C fractions. The sensitivity index indicated very easily oxidizable C (24.6%), easily oxidizable C (24.7%), hot-water extractable C (30.8%), labile organic C (24.7%) and particulate organic C (57.3%) were more sensitive than SOC (22.7%). ISSM-MN sequestered significantly higher C than the other treatments. The results of the relative importance analysis and the structural equation model indicated that LOCFs were the direct contributors to yield, while recalcitrant C (CO) was the indirect contributor, revealing the underlying mechanism that CO decomposed to replenish LOCFs and the total N pool with the water soluble C pool as the transit station. Overall, ISSM-MN is the most promising strategy to improve crop yield and soil fertility in the long term on the Loess Plateau.


Assuntos
Agricultura , Solo , Solo/química , Agricultura/métodos , Carbono/análise , Fertilizantes/análise , Zea mays , Nitrogênio/análise , Água/análise , China
15.
Eur J Orthop Surg Traumatol ; 34(1): 175-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37389708

RESUMO

INTRODUCTION: Tennis elbow management has primarily been conservative over the years with over 90% of the cases being managed conservatively. Surgical intervention may be necessary only for symptomatic recalcitrant cases of tennis elbow cases. However, there are gaps in the literature when it comes to comparison of the return to pre-operative return to their work and level of activities among patients who undergo arthroscopic management and those who receive conservative management. METHODS: A retrospective observational study was conducted to compare 23 patients receiving continued intensive conservative (CIC) management in group 1 with 24 patients undergoing arthroscopic release of the extensor carpi radialis brevis and lateral epicondyle decortication (ARD) in group 2. The study had a minimum follow-up period of 3.5 years. The researchers compared the groups in terms of return to work (RTW) at the same intensity or lower level and any changes in their previous work. Objective grip strength and patient-reported outcome measures, such as post-intervention satisfaction level (rated on a scale of 0-100) and visual analog scale (VAS) for residual elbow pain, were also compared between the two groups. RESULTS: Return to work (RTW) occurred significantly earlier in group 2 (mean 6.13 months) compared to group 1 (mean 4.64 months), and a greater number of patients in group 2 (13/24, 54.2%) were able to return to the same of work. Although not statistically significant, the ARD group exhibited comparable patient satisfaction (p = 0.62) and visual analog scale (VAS) scores for residual elbow pain (p = 0.67). Grip strength was comparable (p = 0.084, 0.121) between the affected and unaffected sides of the bilateral upper extremities and among both groups of patients. CONCLUSION: The use of ARD for RTE (recalcitrant tennis elbow) indicates a significantly earlier return to work (RTW) at the same or lower intensity level compared to the standard CIC therapy protocol. Objective grip strength was comparable to the non-affected side and among the two groups of patients receiving two different management modalities. Comparable patient-reported satisfaction and residual lateral elbow pain were also noted among both the groups. LEVEL OF EVIDENCE: Retrospective, comparative study, level III.


Assuntos
Satisfação do Paciente , Cotovelo de Tenista , Humanos , Estudos Retrospectivos , Tratamento Conservador , Cotovelo de Tenista/cirurgia , Retorno ao Trabalho , Artroscopia/métodos , Dor , Artralgia
16.
BMC Genomics ; 24(1): 126, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932328

RESUMO

BACKGROUND: Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS: In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS: We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.


Assuntos
Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Desidratação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Sementes/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas
17.
BMC Plant Biol ; 23(1): 67, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721119

RESUMO

BACKGROUND: Panax notoginseng (Burk) F.H. Chen is an essential plant in the family of Araliaceae. Its seeds are classified as a type of morphophysiological dormancy (MPD), and are characterized by recalcitrance during the after-ripening process. However, it is not clear about the molecular mechanism on the after-ripening in recalcitrant seeds. RESULTS: In this study, exogenous supply of gibberellic acid (GA3) with different concentrations shortened after-ripening process and promoted the germination of P. notoginseng seeds. Among the identified plant hormone metabolites, exogenous GA3 results in an increased level of endogenous hormone GA3 through permeation. A total of 2971 and 9827 differentially expressed genes (DEGs) were identified in response to 50 mg L-1 GA3 (LG) and 500 mg L-1 GA3 (HG) treatment, respectively, and the plant hormone signal and related metabolic pathways regulated by GA3 was significantly enriched. Weighted gene co-expression network analysis (WGCNA) revealed that GA3 treatment enhances GA biosynthesis and accumulation, while inhibiting the gene expression related to ABA signal transduction. This effect was associated with higher expression of crucial seed embryo development and cell wall loosening genes, Leafy Contyledon1 (LEC1), Late Embryogenesis Abundant (LEA), expansins (EXP) and Pectinesterase (PME). CONCLUSIONS: Exogenous GA3 application promotes germination and shorts the after-ripening process of P. notoginseng seeds by increasing GA3 contents through permeation. Furthermore, the altered ratio of GA and ABA contributes to the development of the embryo, breaks the mechanical constraints of the seed coat and promotes the protrusion of the radicle in recalcitrant P. notoginseng seeds. These findings improve our knowledge of the contribution of GA to regulating the dormancy of MPD seeds during the after-ripening process, and provide new theoretical guidance for the application of recalcitrant seeds in agricultural production and storage.


Assuntos
Panax notoginseng , Plantas Medicinais , Reguladores de Crescimento de Plantas , Germinação , Sementes
18.
Planta ; 257(2): 33, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609883

RESUMO

MAIN CONCLUSIONS: Fully mature acorns of Quercus variabilis, Q. aliena, Q. mongolica, and Q. glandulifera are desiccation-sensitive. X-ray computer tomography showed that cotyledons shrink during drying, but embryos are protected. Information available on recalcitrant acorns of tropical and sub-tropical species of Quercus suggests that an impermeable pericarp, which limits the entry and loss of water only through the hilum (scar), is the underlying mechanism that prevents drying of the embryo axis following dispersal until the germination season. However, there is a lack of consensus supporting this proposition across species, and it is not well understood if such mechanisms occur in temperate Quercus species. This study investigated the significance of the acorn pericarp for temperate oak species and presents an ecological framework based on the post-dispersal climatic conditions. Using Quercus variabilis, Q. aliena, Q. mongolica, and Q. glandulifera acorns, the relationship between moisture content (MC) and germination was established, and X-ray computed tomography (X-ray CT) was used to understand the internal structural changes of cotyledons and embryonic axis occurring during desiccation. Water entry and exit routes through the scar, pericarp and apex were determined by imbibition and drying experiments. Climatic data and acorn morphological characteristics and germination were subjected to a principal component analysis (PCA). Freshly dispersed acorns of all species had a moisture content (MC) above 35% fresh weight (FW) basis, but drying to 15-10% MC resulted in complete loss of viability, implying recalcitrance behaviour. X-ray CT images suggested that the pericarp offers some protection to cotyledons and embryonic axis during desiccation, but it is contingent on MC. Extensive drying to a low MC with the scar and apex covered with vaseline resulted in internal tissues shrinkage, corresponding with viability loss. Water could enter or exit through the pericarp, albeit at a much slower rate than through the scar. A combination of factors including acorn anatomy, moisture content at the time of dispersal, microhabitat, the position of acorns in the soil prevent embryo desiccation below the critical MC and thus promotes survival of acorns on/in the soil during winter in temperate regions. Pericarp anatomy, to some extent, prevents excessive drying of the embryonic axis by slowing water movement, but prolonged drying or predatory pressure could result in pericarp cracks, favouring the absorption of water during sporadic rain. In the latter case, the survival of acorns possibly depends extensively on the continuous erratic rainfall, i.e. continuous wet-dry cycle, but in-situ experiments are yet to be performed to test this hypothesis.


Assuntos
Cotilédone , Quercus , Água , Sementes , Dessecação , Cicatriz
19.
Microb Ecol ; 86(4): 3043-3056, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831075

RESUMO

Recalcitrant dissolved organic carbon (RDOC) produced by microbial carbon pumps (MCPs) in the ocean is crucial for carbon sequestration and regulating climate change in the history of Earth. However, the importance of microbes on RDOC formation in terrestrial aquatic systems, such as rivers and lakes, remains to be determined. By integrating metagenomic (MG) and metatranscriptomic (MT) sequencing, we defined the microbial communities and their transcriptional activities in both water and silt of a typical karst river, the Lijiang River, in Southwest China. Betaproteobacteria predominated in water, serving as the most prevalent population remodeling components of dissolved organic carbon (DOC). Binning method recovered 45 metagenome-assembled genomes (MAGs) from water and silt. Functional annotation of MAGs showed Proteobacteria was less versatile in degrading complex carbon, though cellulose and chitin utilization genes were widespread in this phylum, whereas Bacteroidetes had high potential for the utilization of macro-molecular organic carbon. Metabolic remodeling revealed that increased shared metabolites within the bacterial community are associated with increased concentration of DOC, highlighting the significance of microbial cooperation during producing and remodeling of carbon components. Beta-oxidation, leucine degradation, and mevalonate (MVA) modules were significantly positively correlated with the concentration of RDOC. Blockage of the leucine degradation pathway in Limnohabitans and UBA4660-related MAGs were associated with decreased RDOC in the karst river, while the Fluviicola-related MAG containing a complete leucine degradation pathway was positively correlated with RDOC concentration. Collectively, our study revealed the linkage between bacteria metabolic processes and carbon sequestration. This provided novel insights into the microbial roles in karst-rivers carbon sink.


Assuntos
Sequestro de Carbono , Rios , Rios/química , Matéria Orgânica Dissolvida , Leucina/metabolismo , Multiômica , Carbono/metabolismo , Bactérias/genética , Bactérias/metabolismo , Água/metabolismo
20.
Environ Sci Technol ; 57(30): 11325-11335, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37395618

RESUMO

Simultaneous recovery of energy and carbon from recalcitrant wastewater has attracted ever-growing interest for water management. However, the existing technologies to break down recalcitrant pollutants are mainly energy and chemical intensive. Here, a novel hydrothermal reaction amended with activated carbon (AC) was demonstrated to enable an unprecedented 99.5% removal of an exemplar difficult-to-degrade contaminant, polyvinyl alcohol (PVA), from wastewater. Meanwhile, an easy-separated hydrochar (C6H7.08O0.99) with an abundance of unsaturated aromatic rings was produced, exhibiting 118.46% of energy yield with a high heating value of 32.9 MJ/kg, outperforming the hydrochar(s) reported to date. The retrieved energy from the hydrochar was able to entirely offset the energy needs for this hydrothermal process. Interestingly, the AC catalyst can sustain in situ reuse over 125 cycles with no evidence of irreversible deactivation. The adjacent carbonyl groups on AC were revealed to provide active sites for dehydrogenation from either the C-H (1.24 Å) or O-H (1.40 Å) bond in PVA, forming hydroxyl groups on AC and highly reactive intermediates (ΔG0 = -11.5 kcal/mol). It was further proved that the free oxygen in the headspace extracted H atoms from the newly formed hydroxyl groups on AC (ΔG0 = -4.7 kcal/mol), thus regenerating the carbonyl sites on AC for the next catalytic hydrothermal dehydrogenation cycles. The long-lasting catalyst reusability and energy self-sufficient approach offer a sustainable route to carbon neutrality in recalcitrant wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA