Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
BMC Genomics ; 25(1): 672, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969999

RESUMO

The scarcity of freshwater resources resulting in a significant yield loss presents a pressing challenge in agriculture. To address this issue, utilizing abundantly available saline water could offer a smart solution. In this study, we demonstrate that the genome sequence rhizosphere bacterium Tritonibacter mobilis AK171, a halophilic marine bacterium recognized for its ability to thrive in saline and waterlogged environments, isolated from mangroves, has the remarkable ability to enable plant growth using saline irrigation. AK171 is characterized as rod-shaped cells, displays agile movement in free-living conditions, and adopts a rosette arrangement in static media. Moreover, The qualitative evaluation of PGP traits showed that AK171 could produce siderophores and IAA but could not solubilize phosphate nor produce hydrolytic enzymes it exhibits a remarkable tolerance to high temperatures and salinity. In this study, we conducted a comprehensive genome sequence analysis of T. mobilis AK171 to unravel the genetic mechanisms underlying its plant growth-promoting abilities in such challenging conditions. Our analysis revealed diverse genes and pathways involved in the bacterium's adaptation to salinity and waterlogging stress. Notably, T. mobilis AK171 exhibited a high level of tolerance to salinity and waterlogging through the activation of stress-responsive genes and the production of specific enzymes and metabolites. Additionally, we identified genes associated with biofilm formation, indicating its potential role in establishing symbiotic relationships with host plants. Furthermore, our analysis unveiled the presence of genes responsible for synthesizing antimicrobial compounds, including tropodithietic acid (TDA), which can effectively control phytopathogens. This genomic insight into T. mobilis AK171 provides valuable information for understanding the molecular basis of plant-microbial interactions in saline and waterlogged environments. It offers potential applications for sustainable agriculture in challenging conditions.


Assuntos
Avicennia , Avicennia/microbiologia , Genoma Bacteriano , Genômica , Rizosfera , Salinidade , Filogenia , Desenvolvimento Vegetal , Sideróforos/metabolismo
2.
BMC Biotechnol ; 24(1): 54, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135187

RESUMO

BACKGROUND: Several studies have been reported previously on the bioactivities of different extracts of marine molluscs. Therefore, we decided to evaluate the cytotoxic and antimicrobial activities of S. pharaonis ink as a highly populated species in the Red Sea. We extracted the flavonoids from the ink and analyzed their composition. Then we evaluated systematically the cytotoxic and antimicrobial properties of this extract. A pharmacokinetic study was also conducted using SwissADME to assess the potential of the identified flavonoids and phenolic compounds from the ink extract to be orally active drug candidates. RESULTS: Cytotoxic activity was evaluated against 5 cell lines (MCF7, Hep G2, A549, and Caco2) at different concentrations (0.4 µg/mL, 1.6 µg/mL, 6.3 µg/mL, 25 µg/mL, 100 µg/mL). The viability of examined cells was reduced by the extract in a concentration-dependent manner. The highest cytotoxic effect of the extract was recorded against A549 and Hep G2 cancer cell lines cells with IC50 = 2.873 and 7.1 µg/mL respectively. The mechanistic analysis by flow cytometry of this extract on cell cycle progression and apoptosis induction indicated that the extract arrests the cell cycle at the S phase in Hep G2 and MCF7, while in A549 cell arrest was recorded at G1 phase. However, it causes G1 and S phase arrest in Caco2 cancer cell line. Our data showed that the extract has significant antimicrobial activity against all tested human microbial pathogens. However, the best inhibitory effect was observed against Candida albicans ATCC 10,221 with a minimum inhibitory concentration (MIC) of 1.95 µg/mL. Pharmacokinetic analysis using SwissADME showed that most flavonoids and phenolics compounds have high drug similarity as they satisfy Lipinski's criteria and have WLOGP values below 5.88 and TPSA below 131.6 Å2. CONCLUSION: S. pharaonis ink ethanolic extract showed a promising cytotoxic potency against various cell lines and a remarkable antimicrobial action against different pathogenic microbial strains. S. pharaonis ink is a novel source of important flavonoids that could be used in the future in different applications as a naturally safe and feasible alternative of synthetic drugs.


Assuntos
Anti-Infecciosos , Flavonoides , Fenóis , Humanos , Flavonoides/química , Flavonoides/farmacologia , Fenóis/química , Fenóis/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sepia/química , Linhagem Celular Tumoral , Células CACO-2 , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Células Hep G2 , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
3.
BMC Biotechnol ; 24(1): 14, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491556

RESUMO

Cancer associated drug resistance is a major cause for cancer aggravation, particularly as conventional therapies have presented limited efficiency, low specificity, resulting in long term deleterious side effects. Peptide based drugs have emerged as potential alternative cancer treatment tools due to their selectivity, ease of design and synthesis, safety profile, and low cost of manufacturing. In this study, we utilized the Red Sea metagenomics database, generated during AUC/KAUST Red Sea microbiome project, to derive a viable anticancer peptide (ACP). We generated a set of peptide hits from our library that shared similar composition to ACPs. A peptide with a homeodomain was selected, modified to improve its anticancer properties, verified to maintain high anticancer properties, and processed for further in-silico prediction of structure and function. The peptide's anticancer properties were then assessed in vitro on osteosarcoma U2OS cells, through cytotoxicity assay (MTT assay), scratch-wound healing assay, apoptosis/necrosis detection assay (Annexin/PI assay), RNA expression analysis of Caspase 3, KI67 and Survivin, and protein expression of PARP1. L929 mouse fibroblasts were also assessed for cytotoxicity treatment. In addition, the antimicrobial activity of the peptide was also examined on E coli and S. aureus, as sample representative species of the human bacterial microbiome, by examining viability, disk diffusion, morphological assessment, and hemolytic analysis. We observed a dose dependent cytotoxic response from peptide treatment of U2OS, with a higher tolerance in L929s. Wound closure was debilitated in cells exposed to the peptide, while annexin fluorescent imaging suggested peptide treatment caused apoptosis as a major mode of cell death. Caspase 3 gene expression was not altered, while KI67 and Survivin were both downregulated in peptide treated cells. Additionally, PARP-1 protein analysis showed a decrease in expression with peptide exposure. The peptide exhibited minimal antimicrobial activity on critical human microbiome species E. coli and S. aureus, with a low inhibition rate, maintenance of structural morphology and minimal hemolytic impact. These findings suggest our novel peptide displayed preliminary ACP properties against U2OS cells, through limited specificity, while triggering apoptosis as a primary mode of cell death and while having minimal impact on the microbiological species E. coli and S. aureus.


Assuntos
Anti-Infecciosos , Antineoplásicos , Sais , Animais , Camundongos , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/farmacologia , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Linhagem Celular Tumoral , Oceano Índico , Antígeno Ki-67/metabolismo , Staphylococcus aureus , Apoptose , Peptídeos/farmacologia , Peptídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Anexinas/farmacologia
4.
BMC Microbiol ; 24(1): 315, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39192220

RESUMO

The Red Sea is a promising habitat for the discovery of new bioactive marine natural products. Sponges associated microorganisms represent a wealthy source of compounds with unique chemical structures and diverse biological activities. Metagenomics is an important omics-based culture-independent technique that is used as an effective tool to get genomic and functional information on sponge symbionts. In this study, we used metagenomic analysis of two Egyptian Red Sea sponges Hyrtios erectus and Phorbas topsenti microbiomes to study the biodiversity and the biosynthetic potential of the Red Sea sponges to produce bioactive compounds. Our data revealed high biodiversity of the two sponges' microbiota with phylum Proteobacteria as the most dominant phylum in the associated microbial community with an average of 31% and 70% respectively. The analysis also revealed high biosynthetic potential of sponge Hyrtios erectus microbiome through detecting diverse types of biosynthetic gene clusters (BGCs) with predicted cytotoxic, antibacterial and inhibitory action. Most of these BGCs were predicted to be novel as they did not show any similarity with any MIBiG database known cluster. This study highlights the importance of the microbiome of the collected Red Sea sponge Hyrtios erectus as a valuable source of new bioactive natural products.


Assuntos
Metagenômica , Microbiota , Poríferos , Poríferos/microbiologia , Animais , Oceano Índico , Microbiota/genética , Egito , Bactérias/genética , Bactérias/classificação , Filogenia , Biodiversidade , Família Multigênica , Produtos Biológicos/metabolismo , Metagenoma , Proteobactérias/genética , Proteobactérias/classificação , Proteobactérias/isolamento & purificação
5.
Geochem Trans ; 25(1): 3, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700580

RESUMO

This study aimed to assess the influence of pollution on the quality of sediments and the risks associated with El-Qusier and Safaga Cities, Red Sea, Egypt, during 2021, divided into four sectors, using multiple pollution indices. To achieve that, we evaluated the metal pollution index (MPI), contamination factor (Cf), pollution load index (PLI), contamination security index (CSI), and anthropogenicity (Anp%). Moreover, carcinogenic and non-carcinogenic risks are used for human health hazards. Results indicated that Mn and Fe recorded the highest concentrations, whereas Cd had the lowest. El-Quseir City sediments were found the following metal ions: Fe > Mn > Ni > Zn > Cu > Co > Pb > Cd, where the order in the Safaga City was: Fe > Mn > Zn > Ni > Cu > Pb > Co > Cd. MPI > 1, this is alarming in the study area due to heavy metal pollution. In addition, Cf < 1 in all metals except Cd with contamination degree CD ranged from low to considerable contamination in El-Qusier city. In contrast, contamination ranged from significant to very high in Safaga city. PLI < 1 is lower than the reference at all monitored stations. CSI values ranged from relatively low to moderate. Besides Cd, data reflect each element's low environmental danger (EriMe40). This study's risk index (RI) is low to moderate in Sector 1 and high to extremely high in Sector 2. HQ and HI index < 1 means it is safe for human health in order: HI ingestion > HI dermal. CSR for different pathways was recorded as dermal > ingestion, in which total CSR for all paths is considered harmful, and the cancer risk is troublesome and higher than the reference ranges of 1 × 10-6-1 × 10-4. In conclusion, the examined heavy metals provide environmental hazards across the assessed locations.

6.
J Anim Ecol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937937

RESUMO

In this study, we estimate the niche overlap between native and invaded ranges of 36 Lessepsian fish, focusing on how this estimate might vary in relation to the temporal resolution of sea surface temperature and salinity, which are the main niche axes determining their distribution. Specifically, we wanted to address the following questions: (i) Does the choice of temporal averaging method of variables influence the estimation of niche overlap for individual variables? (ii) Does this temporal resolution effect persist when conducting bivariate niche estimations? Niches overlap was estimated by calculating two indices and these analyses were repeated at two temporal resolutions, matching observations to the classic 'multidecadal' average of environmental conditions and to the corresponding annual average of records. Results are compared with verify whether differences can be detected in the magnitude of niche commonality measured at annual or multidecadal temporal resolution. The findings show that the temporal resolution of the data significantly influences estimates of overlap in the thermal niche. Specifically, our analysis indicates a considerable disparity between native and invasive niche regions for most species, particularly when evaluated over multidecadal periods compared with matching occurrence data to the annual mean values of years the occurrence was observed, that is matching occurrence data to a common average of 'present' conditions or to the annual mean values of years of observation. In particular, the largest overlaps between native and invaded niches occur along the salinity axis, regardless of temporal resolution. When considering both temperature and salinity together, the results remain unaffected by the temporal resolution of the environmental data. Almost 30% of the species show a different niche in their introduced range, and for the other species, the overlap between native and invaded ranges was reduced with respect to the univariate analyses.

7.
Fish Shellfish Immunol ; 147: 109442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354966

RESUMO

The Red Sea is one of the world's hotspots for biodiversity, and for marine natural products (MNPs) as well. These MNPs attract special interest for their capabilities to combat inflammatory and oxidative stress-related diseases, being some of the most serious health problems worldwide nowadays. The current study aimed to identify the bioactive ingredients of the Red Sea soft coral Sarcophyton convolutum, and to assess its protective potentials against oxidative and inflammatory stresses. Coral extract (CE) was analyzed using GC-MS and HPLC. In a protection trial, adult zebrafish were intraperitoneally injected with two doses of crab extract, i.e. 50 and 500 µg/fish in 1 % DMSO as a vehicle, then challenged with 30 µg L-1 of CuSO4 for 48 h. All groups, but the negative control one, were challenged with 30 µg L-1 of CuSO4. Total antioxidant activity, as well as mRNA levels of proinflammatory markers and antioxidant enzyme genes were measured. The results showed richness of S. convolutum extract with various bioactive ingredients, including phenolic compounds, flavonoids, alkanes, fatty acids, sesquiterpenes, and pheromone-like substances. CuSO4 significantly induced the expected signals of inflammatory and oxidative stress, reducing both the antioxidant activity and increasing proinflammatory marker genes. However, CE, especially the low dose, showed significant capability to reduce proinflammatory markers and elevating the total antioxidant activity. Therefore, we concluded that S. convolutum can be a promising source for future efforts of drug discovery and a wide spectrum of pharmaceutical products.


Assuntos
Antozoários , Produtos Biológicos , Perciformes , Animais , Antioxidantes , Oceano Índico , Estresse Oxidativo , Peixe-Zebra
8.
BMC Vet Res ; 20(1): 104, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491459

RESUMO

BACKGROUND: members of the genus Sarcocystis are intracellular obligate protozoan parasites classified within the phylum Apicomplexa and have an obligate heteroxenous life cycle involving two hosts. A more comprehensive understanding of the prevalence and geographic range of different Sarcocystis species in marine ecosystems is needed globally and nationally. Hence, the objective of this study was to document the incidence of Sarcocystis infection in sharks within the aquarium ecosystem of Egypt and to identify the species through the characterization of the SSU rDNA gene. METHODS: All organs of the mako shark specimen underwent macroscopic screening to detect the existence of a Sarcocystis cyst. Ten cysts were collected from the intestine and processed separately to extract the genomic DNA. The polymerase chain reaction (PCR) was accomplished by amplifying a specific 18S ribosomal RNA (rRNA) gene fragment. Subsequently, the resulting amplicons were subjected to purification and sequencing processes. RESULTS: Macroscopic examination of the mako shark intestinal wall sample revealed the presence of Sarcocystis cysts of various sizes and shapes, and sequencing of the amplicons from Sarcocystis DNA revealed a 100% nucleotide identity with the sequence of Sarcocystis tenella recorded from sheep in Iran; The mako shark sequence has been deposited in the GeneBank with the accession number OQ721979. This study presents the first scientific evidence demonstrating the presence of the Sarcocystis parasite in sharks, thereby documenting this specific marine species as a novel intermediate host in the Sarcocystis life cycle. CONCLUSIONS: This is the first identification of Sarcocystis infection in sharks, and we anticipate it will be an essential study for future screenings and establishing effective management measures for this disease in aquatic ecosystems.


Assuntos
Sarcocystis , Tubarões , Animais , Ovinos/genética , Sarcocystis/genética , Ecossistema , Tubarões/genética , Filogenia , Oceano Índico , DNA Ribossômico , Estágios do Ciclo de Vida
9.
Dis Aquat Organ ; 158: 65-74, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661138

RESUMO

Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish near aquaculture installations was surveyed to evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from 2 aquaculture areas in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. Eleven fish from 7 species were confirmed to harbor the RSIV genome using a probe-based real-time PCR assay. The mean viral load of the RSIV-positive wild fish was 101.1 ± 0.4 copies mg-1 DNA, which was significantly lower than that of seemingly healthy red sea bream Pagrus major in a net pen during an RSIV outbreak (103.3 ± 1.5 copies mg-1 DNA) that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area in which the wild fish were captured. Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish appeared during or after the RSIV outbreak in cultured fish, suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured fish. Therefore, wild fish populations near aquaculture installations may not be a significant risk factor for RSIV outbreaks in cultured fish.


Assuntos
Aquicultura , Infecções por Vírus de DNA , Surtos de Doenças , Doenças dos Peixes , Iridovirus , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Surtos de Doenças/veterinária , Iridovirus/genética , Dourada/virologia , Peixes , Medição de Risco , Japão/epidemiologia , Animais Selvagens
10.
Environ Geochem Health ; 46(1): 22, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169010

RESUMO

The levels, spatial distribution, and sources of petroleum hydrocarbons and phthalates were assessed in surface sediment samples from the urban lagoon of Obhur near Jeddah, the largest city on the Red Sea coast of Saudi Arabia. The lagoon was divided into the inner zone, middle zone, and outer zone based on its geomorphological features and developmental activities. n-Alkanes, hopane and sterane biomarkers, and unresolved complex mixture were the major petroleum hydrocarbon compounds of the total extractable organic matter. Phthalates were also measured in the sediment samples. In the three zones, n-alkanes ranged from 89.3 ± 88.5 to 103.2 ± 114.9 ng/g, whereas the hopane and sterane biomarkers varied from 69.4 ± 75.3 to 77.7 ± 69.9 ng/g and 72.5 ± 77.9-89.5 ± 82.2 ng/g, respectively. The UCM concentrations ranged from 821 ± 1119 to 1297 ± 1684 ng/g and phthalates from 37.4 ± 34.5 65 ± 68 ng/g. The primary origins of these anthropogenic hydrocarbons in the lagoon sediments were petroleum products (boat engine discharges, boat washing, lubricants, and wastewater flows) and plasticizers (plastic waste and litter). The proportions of anthropogenic hydrocarbons derived from petroleum products in the sediment's TEOM ranged from 43 ± 33 to 62 ± 15%, while the percentages for plasticizers varied from 2.9 ± 1.2 to 4.0 ± 1.6%. The presence and inputs of these contaminants from petroleum and plastic wastes in the lagoon's sediments will eventually have an impact on its habitats, including the benthic nursery and spawning areas.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/análise , Oceano Índico , Arábia Saudita , Plastificantes , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Hidrocarbonetos/análise , Alcanos/análise , Biomarcadores , Triterpenos Pentacíclicos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise
11.
Bull Environ Contam Toxicol ; 113(1): 12, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009950

RESUMO

The study investigates heavy metal (HM) contamination in coastal sediments of Jeddah along Red Sea coast, analyzing spatial distribution and sources. 24 samples underwent (ICP-AES) for Fe, Al, Mn, Ni, Pb, Zn, Cu, Cr, Co, Sr, V, and As. HM averages followed Fe ˃ Al ˃ Sr ˃ Mn ˃ Zn ˃ V ˃ Cu ˃ Ni ˃ Cr ˃ As ˃ Co ˃ Pb. Contamination indices revealed severe Sr enrichment, minor As and Co enrichment, and no enrichment for other HMs. Sediment quality guidelines suggest Ni, Cu, Zn, and As risks to benthic communities at some sites, while Cr and Pb pose minimal risk. Multivariate analysis indicates natural sources for Fe, Al, Mn, Ni, Zn, Cu, Cr, Co, and V, and anthropogenic sources for Sr, As, and Pb, linked to agriculture, industry, and urbanization. Increased Sr values may stem from seawater acidification impacting calcitic corals and molluscs.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Sedimentos Geológicos/química , Arábia Saudita , Poluentes Químicos da Água/análise , Oceano Índico , Água do Mar/química
12.
Microb Pathog ; 174: 105921, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470347

RESUMO

Red sea bream iridovirus (RSIV) belongs to the family Iridoviridae, genus Megalocytivirus, which could widely infect marine fish, causing diseases and huge economic losses. Now it has been reported that RSIV was also detected in diseased mandarin fish. Transmission electron microscopy and immunohistochemistry showed that spleen was the main target organ in mandarin fish infected with RSIV. To investigate the immune response mechanism of mandarin fish to RSIV infection, transcriptomics of RSIV-infected mandarin fish was analyzed. A total of 53,040 unigenes were obtained, and there were 21,576 and 17,904 unigenes had significant hit the Nr and SwissProt databases, respectively. In RSIV-infected and non-infected spleen tissues, there were 309 differentially expressed genes (DEGs), including 100 up-regulated genes and 209 down-regulated genes. Gene Ontology database (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were performed to reveal the function information and give a better understanding of the signal transduction pathways of DEGs. Further analysis of the cytokine-cytokine receptor interactions pathway exhibited that the expression of cytokines was widely activated after viral infection. In addition, ten DEGs were randomly selected and verified by quantitative real-time PCR, which revealed a similar expression tendency as the high-throughput sequencing data. These findings present valuable information that will benefit for better understanding of RSIV infection in mandarin fish.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Dourada , Viroses , Animais , Iridovirus/genética , Transcriptoma , Iridoviridae/genética , Infecções por Vírus de DNA/veterinária
13.
BMC Cancer ; 23(1): 699, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495988

RESUMO

Drug resistance is a major cause of the inefficacy of conventional cancer therapies, and often accompanied by severe side effects. Thus, there is an urgent need to develop novel drugs with low cytotoxicity, high selectivity and minimal acquired chemical resistance. Peptide-based drugs (less than 0.5 kDa) have emerged as a potential approach to address these issues due to their high specificity and potent anticancer activity. In this study, we developed a support vector machine model (SVM) to detect the potential anticancer properties of novel peptides by scanning the American University in Cairo (AUC) Red Sea metagenomics library. We identified a novel 37-mer antimicrobial peptide through SVM pipeline analysis and characterized its anticancer potential through in silico cross-examination. The peptide sequence was further modified to enhance its anticancer activity, analyzed for gene ontology, and subsequently synthesized. To evaluate the anticancer properties of the modified 37-mer peptide, we assessed its effect on the viability and morphology of SNU449, HepG2, SKOV3, and HeLa cells, using an MTT assay. Additionally, we evaluated the migration capabilities of SNU449 and SKOV3 cells using a scratch-wound healing assay. The targeted selectivity of the modified peptide was examined by evaluating its hemolytic activity on human erythrocytes. Treatment with the peptide significantly reduced cell viability and had a critical impact on the morphology of hepatocellular carcinoma (SNU449 and HepG2), and ovarian cancer (SKOV3) cells, with a marginal effect on cervical cancer cell lines (HeLa). The viability of a human fibroblast cell line (1Br-hTERT) was also significantly reduced by peptide treatment, as were the proliferation and migration abilities of SNU449 and SKOV3 cells. The annexin V assay revealed programmed cell death (apoptosis) as one of the potential cellular death pathways in SNU449 cells upon peptide treatment. Finally, the peptide exhibited antimicrobial effects on both gram-positive and gram-negative bacterial strains. The findings presented here suggest the potential of our novel peptide as a potent anticancer and antimicrobial agent.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Antineoplásicos , Feminino , Humanos , Células HeLa , Linhagem Celular Tumoral , Oceano Índico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Proliferação de Células
14.
Arch Microbiol ; 205(9): 307, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580455

RESUMO

Isoptericola sp. AK164 is a Gram-positive, aerobic bacterial genus from the family Promicromonosporaceae, isolated from the root rhizosphere of Avicennia marina. AK164 significantly enhanced the growth of the Arabidopsis thaliana plant under normal and saline conditions. These bacteria can produce ACC deaminase and several enzymes playing a role in carbohydrate hydrolyses, such as cellulose, hemicellulose, and chitin degradation, which may contribute to plant growth, salt tolerance, and stress elevation. The genome sequence AK164 has a single circular chromosome of approximately 3.57 Mbp with a GC content of 73.53%. A whole genome sequence comparison of AK164 with type strains from the same genus, using digital DNA-DNA hybridization and average nucleotide identity calculations, revealed that AK164 might potentially belong to a new species of Isoptericola. Genome data and biochemical analyses indicate that AK164 could be a potential biostimulant for improving agriculture in submerged saline land.


Assuntos
Actinomycetales , Avicennia , Avicennia/genética , Avicennia/microbiologia , Rizosfera , Oceano Índico , Actinomycetales/genética , Bactérias/genética , Análise de Sequência , DNA , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ácidos Graxos/química
15.
Arch Microbiol ; 205(5): 195, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061654

RESUMO

Antibiotic resistance (AR) is an alarming global health concern, causing an annual death rate of more than 35,000 deaths in the US. AR is a natural phenomenon, reported in several pristine environments. In this study, we report AR in pristine Red Sea deep brine pools. Antimicrobial resistance genes (ARGs) were detected for several drug classes with tetracycline and macrolide resistance being the most abundant. As expected, ARGs abundance increased in accordance with the level of human impact with pristine Red Sea samples having the lowest mean ARG level followed by estuary samples, while activated sludge samples showed a significantly higher ARG level. ARG hierarchical clustering grouped drug classes for which resistance was detected in Atlantis II Deep brine pool independent of the rest of the samples. ARG abundance was significantly lower in the Discovery Deep brine pool. A correlation between integrons and ARGs abundance in brine pristine samples could be detected, while insertion sequences and plasmids showed a correlation with ARGs abundance in human-impacted samples not seen in brine pristine samples. This suggests different roles of distinct mobile genetic elements (MGEs) in ARG distribution in pristine versus human-impacted sites. Additionally, we showed the presence of mobile antibiotic resistance genes in the Atlantis II brine pool as evidenced by the co-existence of integrases and plasmid replication proteins on the same contigs harboring predicted multidrug-resistant efflux pumps. This study addresses the role of non-pathogenic environmental bacteria as a silent reservoir for ARGs, and the possible horizontal gene transfer mechanism mediating ARG acquisition.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Oceano Índico , Farmacorresistência Bacteriana/genética , Macrolídeos , Genes Bacterianos
16.
Environ Sci Technol ; 57(22): 8385-8395, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212854

RESUMO

The Dead Sea (DS) potash industry halite waste accumulation rate is estimated at 0.2 m year-1, across 140 km2 of evaporation ponds in Israel and Jordan, totaling ∼28 million m3 year-1. As accommodation in the southern DS basin space is nearly exhausted, it is planned in Israel to dredge newly precipitated salt and convey it in a solid state to the northern DS basin by constructing a 30 km conveyor to the northern DS basin where the salt will be disposed. Concerns regarding the environmental impacts of such massive undertaking led to the examination of alternative solutions. The alternative discussed in the paper, which takes into account the estimated halite waste volumes in Jordan as well, examines the feasibility for dissolution of the dredged halite and its transport in a dissolved state and disposal in the DS by seawater (SW) or desalination reject brine (RB) from the Red Sea─Dead Sea Project (RSDSP), if constructed. Results show that the high halite solubility in SW/RB and rapid dissolution kinetics are sufficiently fast to dispose of the dredged halite with the discussed volumes of the RSDSP. Thermodynamic calculations are presented to show that precipitation dynamics following the mixing of the Na+-Cl--loaded SW/RB with the DS brine could be controlled to avoid outsalting at the mixing point in the DS.


Assuntos
Sais , Cloreto de Sódio , Solubilidade
17.
BMC Vet Res ; 19(1): 23, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717850

RESUMO

An important food-producing sector in Egypt is aquaculture and fisheries; however, several pathogenic microorganisms lead to high mortalities and significant economic losses. The occurrence of Psychrobacter glacincola infection among 180 wild marine fishes collected from the Red sea at Hurghada, Egypt were investigated in the present study. The disease prevalence rate was 6.7%. The recovered isolates were subjected to biochemical and molecular identification. The study also investigated pathogenicity and the antibiogram profile of the recovered isolates. The clinical examination of the infected fish revealed various signs that included lethargy and sluggish movement, hemorrhages and ulcers on the body and the operculum, scale loss, and fin congestion and rot, especially at the tail fin. Furthermore, during postmortem examination, congestion of the liver, spleen, and kidney was observed. Interestingly, 12 isolates were recovered and were homogenous bacteriologically and biochemically. The phylogenetic analysis based on 16S rRNA gene confirmed that MRB62 identified strain was closely related the genus Psychrobacter and identified as P. glacincola and was pathogenic to Rhabdosargus haffara fish, causing 23.3% mortality combined with reporting a series of clinical signs similar to that found in naturally infected fishes. The present study also showed that P. glacincola isolates were sensitive to all antibiotics used for sensitivity testing. Our findings add to the body of knowledge regarding the occurrence of pathogenic P. glacincola infection in Egyptian marine fishes and its potential effects on fish. Future large-scale surveys exploring this bacterium among other freshwater and marine fishes in Egypt would be helpful for the implementation of effective strategies for the prevention and control of this infection are warranted.


Assuntos
Psychrobacter , Animais , Psychrobacter/genética , Egito/epidemiologia , RNA Ribossômico 16S/genética , Filogenia , Oceano Índico , Peixes/genética
18.
Dis Aquat Organ ; 155: 79-85, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589492

RESUMO

The morphology of farm-reared fish often differs from that of their wild counterparts, impacting their market value. Two caudal fin tip shapes, acutely angled and blunted, are recognized in farmed populations of red sea bream Pagrus major. The angled form is preferred by consumers over the blunt since it resembles that of wild fish. Discovering the cause of the blunted tip is crucial to maximizing the commercial value of farmed red sea bream. We hypothesized that the blunt fin tip is the result of opportunistic bacteria and conducted partial 16S rRNA metagenomic barcoding and generated a clone library of the 16S rRNA gene to compare bacterial communities of the 2 fin forms. Metagenomic barcoding revealed an abundance of 5 bacterial genera, Sulfitobacter, Vibrio, Tenacibaculum, Psychrobacter, and an unknown genus of Rhodobacteraceae, on the caudal fin surface. Sulfitobacter was significantly more common on the angled caudal fin than the blunted. Vibrio is the dominant genus on the blunted caudal fin. The clone library identified these genera to species level, and Sulfitobacter sp., Vibrio harveyi, Tenacibaculum maritimum, and Psychrobacter marincola were frequently observed in blunt caudal fins. Our results suggest that opportunistic pathogenic bacteria such as V. harveyi and T. maritimum are not the primary cause of caudal fin malformation, and multiple factors such as combinations of injury, stress, and pathogenic infection may be involved. The reason for the significantly greater occurrence of Sulfitobacter sp. in the angled caudal fin is unknown, and further investigation is needed.


Assuntos
Perciformes , Dourada , Tenacibaculum , Animais , RNA Ribossômico 16S/genética , Fazendas
19.
Mar Drugs ; 21(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827120

RESUMO

The chemical investigation of the organic extract of the red alga Laurencia majuscula collected from Hurghada reef in the Red Sea resulted in the isolation of five C15 acetogenins, including four tricyclic ones of the maneonene type (1-4) and a 5-membered one (5), 15 sesquiterpenes, including seven lauranes (6-12), one cuparane (13), one seco-laurane (14), one snyderane (15), two chamigranes (16, 17), two rearranged chamigranes (18, 19) and one aristolane (20), as well as a tricyclic diterpene (21) and a chlorinated fatty acid derivative (22). Among them, compounds 1-3, 5, 7, 8, 10, 11 and 14 are new natural products. The structures and the relative configurations of the isolated natural products have been established based on extensive analysis of their NMR and MS data, while the absolute configuration of maneonenes F (1) and G (2) was determined on the basis of single-crystal X-ray diffraction analysis. The anti-inflammatory activity of compounds 1, 2, 4-8, 10, 12-16, 18 and 20-22 was evaluated by measuring suppression of nitric oxide (NO) release in TLR4-activated RAW 264.7 macrophages in culture. All compounds, except 6, exhibited significant anti-inflammatory activity. Among them, metabolites 1, 4 and 18 did not exhibit any cytostatic activity at the tested concentrations. The most prominent anti-inflammatory activity, accompanied by absence of cytostatic activity at the same concentration, was exerted by compounds 5 and 18, with IC50 values of 3.69 µM and 3.55 µΜ, respectively.


Assuntos
Produtos Biológicos , Citostáticos , Laurencia , Sesquiterpenos , Laurencia/química , Estrutura Molecular , Oceano Índico , Anti-Inflamatórios/química , Sesquiterpenos/química
20.
Proc Natl Acad Sci U S A ; 117(41): 25378-25385, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32958634

RESUMO

Our study reveals a hitherto overlooked ecological threat of climate change. Studies of warming events in the ocean have typically focused on the events' maximum temperature and duration as the cause of devastating disturbances in coral reefs, kelp forests, and rocky shores. In this study, however, we found that the rate of onset (Ronset), rather than the peak, was the likely trigger of mass mortality of coral reef fishes in the Red Sea. Following a steep rise in water temperature (4.2 °C in 2.5 d), thermally stressed fish belonging to dozens of species became fatally infected by Streptococcus iniae Piscivores and benthivores were disproportionately impacted whereas zooplanktivores were spared. Mortality rates peaked 2 wk later, coinciding with a second warming event with extreme Ronset The epizootic lasted ∼2 mo, extending beyond the warming events through the consumption of pathogen-laden carcasses by uninfected fish. The warming was widespread, with an evident decline in wind speed, barometric pressure, and latent heat flux. A reassessment of past reports suggests that steep Ronset was also the probable trigger of mass mortalities of wild fish elsewhere. If the ongoing increase in the frequency and intensity of marine heat waves is associated with a corresponding increase in the frequency of extreme Ronset, calamities inflicted on coral reefs by the warming oceans may extend far beyond coral bleaching.


Assuntos
Mudança Climática , Recifes de Corais , Doenças dos Peixes/mortalidade , Peixes , Infecções Estreptocócicas/veterinária , Animais , Antozoários , Surtos de Doenças/veterinária , Doenças dos Peixes/microbiologia , Resposta ao Choque Térmico , Oceano Índico , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/mortalidade , Streptococcus iniae/isolamento & purificação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA