Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Annu Rev Biochem ; 88: 605-633, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31018111

RESUMO

Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.


Assuntos
Técnicas Biossensoriais/métodos , Espécies Reativas de Oxigênio/análise , Corantes Fluorescentes , Imagem Óptica , Oxirredução , Estresse Oxidativo
2.
Trends Biochem Sci ; 47(5): 372-374, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427478

RESUMO

Modifications of cysteine residues in redox-sensitive proteins are key to redox signaling and stress response in all organisms. A novel type of redox switch was recently discovered that comprises lysine and cysteine residues covalently linked by an nitrogen-oxygen-sulfur (NOS) bridge. Here, we discuss chemical and biological implications of this discovery.


Assuntos
Cisteína , Lisina , Cisteína/química , Lisina/metabolismo , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteínas/química
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35074895

RESUMO

The development of small-molecules targeting different components of SARS-CoV-2 is a key strategy to complement antibody-based treatments and vaccination campaigns in managing the COVID-19 pandemic. Here, we show that two thiol-based chemical probes that act as reducing agents, P2119 and P2165, inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, the angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity to the reduction of key disulfides, specifically by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol-reducing moiety pointed directly toward Cys432. These collective findings establish the vulnerability of human coronaviruses to thiol-based chemical probes and lay the groundwork for developing compounds of this class, as a strategy to inhibit the SARS-CoV-2 infection by shifting the spike glycoprotein redox scaffold.


Assuntos
Amino Álcoois/farmacologia , Enzima de Conversão de Angiotensina 2/química , Antivirais/farmacologia , Éteres Fenílicos/farmacologia , Receptores Virais/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Compostos de Sulfidrila/farmacologia , Regulação Alostérica , Amino Álcoois/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Sítios de Ligação , COVID-19/virologia , Linhagem Celular , Dissulfetos/antagonistas & inibidores , Dissulfetos/química , Dissulfetos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Oxirredução , Éteres Fenílicos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Sulfidrila/química , Tratamento Farmacológico da COVID-19
4.
Artigo em Inglês | MEDLINE | ID: mdl-38959411

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aggressive and thus far incurable disease, characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis, and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)Hhigh and NAD(P)Hlow sub-populations. NAD(P)Hhigh fibroblasts exhibited elevated pro-fibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)Hlow fibroblasts. The NAD(P)Hhigh population was present in healthy lungs but expanded with time after bleomycin injury suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)Hhigh cells in freshly dissociated lungs of subjects with IPF relative to controls, and similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.

5.
J Neuroinflammation ; 21(1): 191, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095788

RESUMO

OBJECTIVE: Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS: The levels of the immunoproteasome ß5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome ß5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of ß5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS: Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the ß5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS: Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Camundongos Endogâmicos C57BL , Neurônios , Obesidade , Complexo de Endopeptidases do Proteassoma , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Hipotálamo/metabolismo , Obesidade/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Oligopeptídeos
6.
Annu Rev Physiol ; 82: 79-101, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589825

RESUMO

On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.


Assuntos
Ritmo Circadiano/fisiologia , Coração/fisiologia , Animais , Fenômenos Fisiológicos Cardiovasculares , Fenômenos Cronobiológicos , Humanos
7.
Angew Chem Int Ed Engl ; : e202411133, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091222

RESUMO

The sulfane sulfur pool, comprised of persulfide (RS-SH) and polysulfide (RS-SnH) derived from hydrogen sulfide (H2S), has emerged as a major player in redox biochemistry. Mitochondria, besides energy generation, serve as significant cellular redox hubs, mediate stress response and cellular health. However, the effects of endogenous mitochondrial sulfane sulfur (MSS) remain largely uncharacterized as compared with their cytosolic counterparts, cytosolic sulfane sulfur (CSS). To investigate this, we designed a novel artificial substrate for mitochondrial 3-mercaptopyruvate sulfurtransferase (3-MST), a key enzyme involved in MSS biosynthesis. Using cells expressing a mitochondrion-localized persulfide biosensor, we demonstrate this tool's ability to selectively enhance MSS. While H2S was previously known to suppress human immunodeficiency virus (HIV-1), we found that MSS profoundly affected the HIV-1 life cycle, mediating viral reactivation from latency. Additionally, we provide evidence for the role of the host's mitochondrial redox state, membrane potential, apoptosis, and respiration rates in managing HIV-1 latency and reactivation. Together, dynamic fluctuations in the MSS pool have a significant and possibly conflicting effect on HIV-1 viral latency. The precision tools developed herein allow for orthogonal generation of persulfide within both mitochondria and the cytosol and will be useful in interrogating disease biology.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36368609

RESUMO

This commentary acknowledges the contributions of the Ukrainian biologist, Dr. Volodymyr Lushchak, to the understanding of the physiological adaptive strategy called "Preparation for Oxidative Stress" (POS). In the 1990s, various studies revealed that activities of antioxidant enzymes rose in animals under hypometabolic conditions. These timely observations allowed scientists to propose that this increase could prepare animals for reoxygenation events following the release of oxygen restriction, but in doing so, would trigger oxidative damage, hence the use of the term "preparation". Over next 25 years, the phenomenon was described in detail in more than one hundred studies of animals under conditions of aestivation, hypoxia/anoxia, freezing, severe dehydration, ultraviolet exposure, air exposure of water-breathing animals, salinity stress, and others. The POS phenomenon remained without a mechanistic explanation until 2013, when it was proposed that a small increase in oxyradical formation during hypoxia exposure (in hypoxia-tolerant animals) could activate redox-sensitive transcription factors that, in turn, would initiate transcription and translation of antioxidant enzymes. Dr. Lushchak, who studied goldfish under severe hypoxia in the 1990s, had actually proposed the increased production of oxyradicals under this condition and concluded that it would lead to an upregulation of antioxidant enzymes, the hallmark of the POS strategy. However, his research partner at the time, Dr. Hermes-Lima, thought the idea did not have sufficient evidence to support it and recommended the removal of this explanation. In those days, the main line of thinking was that increased oxyradical formation under hypoxia was "impossible". So, as it turns out, the ideas of Dr. Lushchak were well ahead of his time. It then took >10 years before the biochemical and molecular mechanisms responsible for triggering the POS response were clarified. In the present article, this fascinating history is described to highlight Dr. Lushchak's contributions and insights about the POS theory.


Assuntos
Antioxidantes , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio , Hipóxia , Espécies Reativas de Oxigênio
9.
Semin Cancer Biol ; 73: 86-100, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33434641

RESUMO

Evidence demonstrates the importance of lipid metabolism and signaling in cancer cell biology. De novo lipogenesis is an important source of lipids for cancer cells, but exogenous lipid uptake remains essential for many cancer cells. Dietary lipids can modify lipids present in tumor microenvironment affecting cancer cell metabolism. Clinical trials have shown that diets rich in polyunsaturated fatty acids (PUFA) can negatively affect tumor growth. However, certain n-6 PUFAs can also contribute to cancer progression. Identifying the molecular mechanisms through which lipids affect cancer progression will provide an opportunity for focused dietary interventions that could translate into the development of personalized diets for cancer control. However, the effective mechanisms of action of PUFAs have not been fully clarified yet. Mitochondria controls ATP generation, redox homeostasis, metabolic signaling, apoptotic pathways and many aspects of autophagy, and it has been recognized to play a key role in cancer. The purpose of this review is to summarize the current evidence linking dietary lipids effects on mitochondrial aspects with consequences for cancer progression and the molecular mechanisms that underlie this association.


Assuntos
Gorduras na Dieta , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/metabolismo , Neoplasias , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Progressão da Doença , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
10.
J Cell Sci ; 133(22)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33148611

RESUMO

In response to environmental stimuli, macrophages change their nutrient consumption and undergo an early metabolic adaptation that progressively shapes their polarization state. During the transient, early phase of pro-inflammatory macrophage activation, an increase in tricarboxylic acid (TCA) cycle activity has been reported, but the relative contribution of branched-chain amino acid (BCAA) leucine remains to be determined. Here, we show that glucose but not glutamine is a major contributor of the increase in TCA cycle metabolites during early macrophage activation in humans. We then show that, although uptake of BCAAs is not altered, their transamination by BCAT1 is increased following 8 h lipopolysaccharide (LPS) stimulation. Of note, leucine is not metabolized to integrate into the TCA cycle in basal or stimulated human macrophages. Surprisingly, the pharmacological inhibition of BCAT1 reduced glucose-derived itaconate, α-ketoglutarate and 2-hydroxyglutarate levels without affecting succinate and citrate levels, indicating a partial inhibition of the TCA cycle. This indirect effect is associated with NRF2 (also known as NFE2L2) activation and anti-oxidant responses. These results suggest a moonlighting role of BCAT1 through redox-mediated control of mitochondrial function during early macrophage activation.


Assuntos
Ativação de Macrófagos , Macrófagos , Mitocôndrias , Transaminases , Ciclo do Ácido Cítrico , Humanos , Leucina/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Transaminases/metabolismo
11.
IUBMB Life ; 74(1): 24-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34227739

RESUMO

Research on oxidants and electrophiles has shifted from focusing on damage to biomolecules to the more fine-grained physiological arena. Redox transitions as excursions from a steady-state redox set point are continually ongoing in maintenance of redox balance. Current excitement on these topics results from the fact that recent research provided mechanistic insight, which gives rise to more concrete and differentiated questions. This Commentary focuses on redox eustress and the feedback restoration of steady state as concepts in active maintenance of physiological health, with brief discussion of redox stress response to viral infection, exemplified by COVID-19.


Assuntos
COVID-19/metabolismo , Homeostase , Oxirredução , SARS-CoV-2 , COVID-19/imunologia , Retroalimentação Fisiológica , Hormese , Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Imunidade Inata , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
12.
Biochem Soc Trans ; 50(3): 1205-1213, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35758268

RESUMO

GPX4 is a selenocysteine-containing protein that plays an essential role in repairing peroxidised phospholipids. Its role in organismal homeostasis has been known for decades, and it has been reported to play a pivotal role in cell survival and mammalian embryonic development. In recent years, GPX4 has been associated with a cell death modality dubbed ferroptosis. The framing of this molecular pathway of cell death was essential for understanding the conditions that determine GPX4 dependency and ultimately to the process of lipid peroxidation. Since its discovery, ferroptosis has been gaining momentum as a promising target for yet-incurable diseases, including cancer and neurodegeneration. Given the current interest, in the present review, we provide newcomers in the field with an overview of the biology of GPX4 and cover some of its most recent discoveries.


Assuntos
Ferroptose , Animais , Morte Celular , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/fisiologia , Mamíferos/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
13.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012330

RESUMO

Many authors described negative but reversible effects of high-altitude hypoxic exposure on animal and human fertility in terms of sperm concentration, function, and biochemical alterations. The aim of this study was to evaluate the acute and chronic effects of high-altitude exposure on classical sperm parameters, redox status, and membrane composition in a group of travellers. Five healthy Italian males, all lowlanders not accustomed to the altitude, were evaluated after 19 days-trekking through low, moderate, and high altitudes in the Himalayas. Sperm samples were collected before (Pre), 10 days after (Post), and 70 days after the end of the expedition (Follow-up). Sperm concentration, cholesterol and oxysterol membrane content, and redox status were measured. Hypoxic trek led to a significant reduction in sperm concentration (p < 0.001, η2p = 0.91), with a reduction from Pre to Post (71.33 ± 38.81 to 60.65 ± 34.63 × 106/mL) and a further reduction at Follow-up (to 37.13 ± 39.17 × 106/mL). The seminal volume was significantly affected by the hypoxic trek (p = 0.001, η2p = 0.75) with a significant reduction from Pre to Post (2.86 ± 0.75 to 1.68 ± 0.49 mL) and with partial recovery at Follow-up (to 2.46 ± 0.45 mL). Moreover, subjects had an increase in ROS production (+86%), and a decrease in antioxidant capacity (−37%) in the Post period with partial recovery at Follow-up. These results integrated the hormonal response on thyroid function, hypothalamus−pituitary−gonadal axis, and the prolactin/cortisol pathways previously reported. An uncontrolled ROS production, rather than a compromised antioxidant activity, was likely the cause of impaired sperm quality. The reduction in fertility status observed in this study may lie in an evolutionary Darwinian explanation, i.e., limiting reproduction due to the "adaptive disadvantage" offered by the combined stressors of high-altitude hypoxia and daily physical exercise.


Assuntos
Altitude , Sêmen , Antioxidantes/metabolismo , Fertilidade , Humanos , Hipóxia , Masculino , Oxirredução , Espécies Reativas de Oxigênio , Sêmen/metabolismo
14.
Nitric Oxide ; 107: 46-57, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253886

RESUMO

The hydropersulfide (RSSH) functional group has received significant recent interest due to its unique chemical properties that set it apart from other biological species. The chemistry of RSSH predicts that one possible biological role may be as a protectant against cellular oxidative and electrophilic stress. That is, RSSH has reducing and nucleophilic properties that may combat the potentially destructive biochemistry of toxicologically relevant oxidants and electrophiles. However, there are currently numerous other molecules that have established roles in this regard. For example, ascorbate and tocopherols are potent antioxidants that quench deleterious oxidative reactions and glutathione (GSH) is a well-established and highly prevalent biological protectant against electrophile toxicity. Thus, in order to begin to understand the possible role of RSSH species as protectants against oxidative/electrophilic stress, the inherent chemical properties of RSSH versus these other protectants will be discussed and contrasted.


Assuntos
Antioxidantes/fisiologia , Estresse Oxidativo/fisiologia , Sulfetos/metabolismo , Animais , Antioxidantes/química , Ácido Ascórbico/química , Ácido Ascórbico/fisiologia , Glutationa/química , Glutationa/fisiologia , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/química , Óxido Nítrico/fisiologia , Oxirredução , Sulfetos/química
15.
Environ Res ; 197: 111083, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775680

RESUMO

Over the last few decades, nanotechnology has risen to the forefront of both the research and industrial interest, resulting in the manufacture and utilization of various nanomaterials, as well as in their integration into a wide range of fields. However, the consequent elevated exposure to such materials raises serious concerns regarding their effects on human health and safety. Existing scientific data indicate that the induction of oxidative stress, through the excessive generation of Reactive Oxygen Species (ROS), might be the principal mechanism of exerting their toxicity. Meanwhile, a number of nanomaterials exhibit antioxidant properties, either intrinsic or resulting from their functionalization with conventional antioxidants. Considering that their redox properties are implicated in the manifestation of their biological effects, we propose an integrated approach for the assessment of the redox-related activities of nanomaterials at three biological levels (in vitro-cell free systems, cell cultures, in vivo). Towards this direction, a battery of translational biomarkers is recommended, and a series of reliable protocols are presented in detail. The aim of the present approach is to acquire a better understanding with respect to the biological actions of nanomaterials in the interrelated fields of Redox Biology and Toxicology.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/toxicidade , Nanotecnologia , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio
16.
J Biol Chem ; 294(38): 14105-14118, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366732

RESUMO

Thioredoxin (Trx) is a conserved, cytosolic reductase in all known organisms. The enzyme receives two electrons from NADPH via thioredoxin reductase (TrxR) and passes them on to multiple cellular reductases via disulfide exchange. Despite the ubiquity of thioredoxins in all taxa, little is known about the functions of resurrected ancestral thioredoxins in the context of a modern mesophilic organism. Here, we report on functional in vitro and in vivo analyses of seven resurrected Precambrian thioredoxins, dating back 1-4 billion years, in the Escherichia coli cytoplasm. Using synthetic gene constructs for recombinant expression of the ancestral enzymes, along with thermodynamic and kinetic assays, we show that all ancestral thioredoxins, as today's thioredoxins, exhibit strongly reducing redox potentials, suggesting that thioredoxins served as catalysts of cellular reduction reactions from the beginning of evolution, even before the oxygen catastrophe. A detailed, quantitative characterization of their interactions with the electron donor TrxR from Escherichia coli and the electron acceptor methionine sulfoxide reductase, also from E. coli, strongly hinted that thioredoxins and thioredoxin reductases co-evolved and that the promiscuity of thioredoxins toward downstream electron acceptors was maintained during evolution. In summary, our findings suggest that thioredoxins evolved high specificity for their sole electron donor TrxR while maintaining promiscuity to their multiple electron acceptors.


Assuntos
Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Evolução Molecular , História Antiga , Cinética , NADP/metabolismo , Oxidantes/metabolismo , Oxirredução , Relação Estrutura-Atividade
17.
Pflugers Arch ; 472(2): 137-153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707289

RESUMO

A growing body of evidence suggests that exercise shows pleiotropic effects on the maintenance of systemic homeostasis through mitochondria. Dysregulation of mitochondrial dynamism is associated with metabolic inflexibility, resulting in many of the metabolic diseases and aging. Studies have suggested that exercise prevents and delays the progression of mitochondrial dysfunction by improving mitochondrial metabolism, biogenesis, and quality control. Exercise modulates functions of mitochondrial dynamics-regulating proteins through post-translational modification mechanisms. In this review, we discuss the putative mechanisms underlying maintenance of mitochondrial homeostasis by exercise, especially focusing on the post-translational modifications of several signaling proteins contributing to mitochondrial biogenesis, autophagy or mitophagy flux, and fission/fusion cycle. We also introduce novel small molecules that can potentially mimic exercise therapy through preserving mitochondrial dynamism. These recent advancements in the field of mitochondrial biology may lead to a greater understanding of exercise signaling.


Assuntos
Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Atividade Motora , Animais , Humanos , Mitofagia
18.
Bioessays ; 40(9): e1800041, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30019441

RESUMO

The Rashomon effect - a phenomenon studied in the arts and social sciences - occurs when the same event is given contradictory interpretations by different individuals involved. The effect was named after Akira Kurosawa's 1950 film Rashomon, in which a murder is described in four contradictory ways by four witnesses. In the film, a samurai has been killed under mysterious circumstances. Four people give contradictory reports about the crime. In particular, the samurai's wife claims that she was sexually abused by a bandit, fainted, and then awoke to find her husband dead; the bandit claims that he seduced the wife and challenged the samurai in a battle to victory or at least to an honorable death; the woodcutter (who may have been an onlooker) claims that he witnessed the rape and murder but was not involved; and the dead samurai's spirit claims that he committed suicide. The Rashomon effect is not only about constructing different versions of the world based on differences in perspective; it occurs when such differences appear together with the absence of evidence to assess any version of the truth, plus "the social pressure for closure on the question." In this commentary, we describe the relevance of the Rashomon effect beyond the arts and social sciences, namely in the field of biology. We use examples from redox biology, which is full of contradictions, thus making it fertile ground on which to apply reasoning derived from the Rashomon effect.


Assuntos
Biologia/métodos , Estresse Oxidativo/fisiologia , Fisiologia/métodos , Animais , Humanos , Oxirredução
19.
Proc Natl Acad Sci U S A ; 114(26): 6764-6769, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607049

RESUMO

NADPH oxidases (NOXs) are the only enzymes exclusively dedicated to reactive oxygen species (ROS) generation. Dysregulation of these polytopic membrane proteins impacts the redox signaling cascades that control cell proliferation and death. We describe the atomic crystal structures of the catalytic flavin adenine dinucleotide (FAD)- and heme-binding domains of Cylindrospermum stagnale NOX5. The two domains form the core subunit that is common to all seven members of the NOX family. The domain structures were then docked in silico to provide a generic model for the NOX family. A linear arrangement of cofactors (NADPH, FAD, and two membrane-embedded heme moieties) injects electrons from the intracellular side across the membrane to a specific oxygen-binding cavity on the extracytoplasmic side. The overall spatial organization of critical interactions is revealed between the intracellular loops on the transmembrane domain and the NADPH-oxidizing dehydrogenase domain. In particular, the C terminus functions as a toggle switch, which affects access of the NADPH substrate to the enzyme. The essence of this mechanistic model is that the regulatory cues conformationally gate NADPH-binding, implicitly providing a handle for activating/deactivating the very first step in the redox chain. Such insight provides a framework to the discovery of much needed drugs that selectively target the distinct members of the NOX family and interfere with ROS signaling.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , NADPH Oxidases/química , Cristalografia por Raios X , Domínios Proteicos , Estrutura Secundária de Proteína
20.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142884

RESUMO

Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Luminescentes/genética , Imagem Molecular/métodos , Animais , Glutationa/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA