Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.499
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(6): 1387-1401.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412859

RESUMO

The Crumbs homolog 1 (CRB1) gene is associated with retinal degeneration, most commonly Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Here, we demonstrate that murine retinas bearing the Rd8 mutation of Crb1 are characterized by the presence of intralesional bacteria. While normal CRB1 expression was enriched in the apical junctional complexes of retinal pigment epithelium and colonic enterocytes, Crb1 mutations dampened its expression at both sites. Consequent impairment of the outer blood retinal barrier and colonic intestinal epithelial barrier in Rd8 mice led to the translocation of intestinal bacteria from the lower gastrointestinal (GI) tract to the retina, resulting in secondary retinal degeneration. Either the depletion of bacteria systemically or the reintroduction of normal Crb1 expression colonically rescued Rd8-mutation-associated retinal degeneration without reversing the retinal barrier breach. Our data elucidate the pathogenesis of Crb1-mutation-associated retinal degenerations and suggest that antimicrobial agents have the potential to treat this devastating blinding disease.


Assuntos
Proteínas do Tecido Nervoso , Degeneração Retiniana , Animais , Camundongos , Translocação Bacteriana , Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
2.
Immunity ; 50(3): 723-737.e7, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30850344

RESUMO

Microglia from different nervous system regions are molecularly and anatomically distinct, but whether they also have different functions is unknown. We combined lineage tracing, single-cell transcriptomics, and electrophysiology of the mouse retina and showed that adult retinal microglia shared a common developmental lineage and were long-lived but resided in two distinct niches. Microglia in these niches differed in their interleukin-34 dependency and functional contribution to visual-information processing. During certain retinal-degeneration models, microglia from both pools relocated to the subretinal space, an inducible disease-associated niche that was poorly accessible to monocyte-derived cells. This microglial transition involved transcriptional reprogramming of microglia, characterized by reduced expression of homeostatic checkpoint genes and upregulation of injury-responsive genes. This transition was associated with protection of the retinal pigmented epithelium from damage caused by disease. Together, our data demonstrate that microglial function varies by retinal niche, thereby shedding light on the significance of microglia heterogeneity.


Assuntos
Homeostase/fisiologia , Microglia/patologia , Degeneração Retiniana/patologia , Animais , Modelos Animais de Doenças , Epitélio Corneano/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Retina/patologia , Regulação para Cima/fisiologia
3.
Proc Natl Acad Sci U S A ; 121(37): e2413104121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231211

RESUMO

The retinal fovea in human and nonhuman primates is essential for high acuity and color vision. Within the fovea lies specialized circuitry in which signals from a single cone photoreceptor are largely conveyed to one ON and one OFF type midget bipolar cell (MBC), which in turn connect to a single ON or OFF midget ganglion cell (MGC), respectively. Restoring foveal vision requires not only photoreceptor replacement but also appropriate reconnection with surviving ON and OFF MBCs and MGCs. However, our current understanding of the effects of cone loss on the remaining foveal midget pathway is limited. We thus used serial block-face electron microscopy to determine the degree of plasticity and potential remodeling of this pathway in adult Macaca fascicularis several months after acute photoreceptor loss upon photocoagulation. We reconstructed MBC structure and connectivity within and adjacent to the region of cone loss. We found that MBC dendrites within the scotoma retracted and failed to reach surviving cones to form new connections. However, both surviving cones and ON and OFF MBC dendrites at the scotoma border exhibited remodeling, suggesting that these neurons can demonstrate plasticity and rewiring at maturity. At six months postlesion, disconnected OFF MBCs clearly lost output ribbon synapses with their postsynaptic partners, whereas the majority of ON MBCs maintained their axonal ribbon numbers, suggesting differential timing or extent in ON and OFF midget circuit remodeling after cone loss. Our findings raise rewiring considerations for cell replacement approaches in the restoration of foveal vision.


Assuntos
Fóvea Central , Macaca fascicularis , Células Bipolares da Retina , Células Fotorreceptoras Retinianas Cones , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/patologia , Plasticidade Neuronal/fisiologia , Dendritos/fisiologia , Vias Visuais , Masculino
4.
Hum Mol Genet ; 33(9): 802-817, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38297980

RESUMO

Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.


Assuntos
Distrofias de Cones e Bastonetes , Tubulina (Proteína) , Humanos , Camundongos , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Distrofias de Cones e Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Mutação
5.
Hum Mol Genet ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39231530

RESUMO

Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology. Here we report the generation and initial characterization of a gene-edited animal model for PRPH2 disease associated with a nonsense mutation (c.1095:C>A, p.Y285X), which is predicted to truncate the peripherin-2 C-terminal domain. Young (P21) Prph2Y285X/WT mice developed near-normal photoreceptor numbers; however, OS membrane architecture was disrupted, OS protein levels were reduced, and in vivo and ex vivo electroretinography (ERG) analyses found that rod and cone photoreceptor function were each severely reduced. Interestingly, ERG studies also revealed that rod-mediated downstream signaling (b-waves) were functionally compensated in the young animals. This resiliency in retinal function was retained at P90, by which time substantial IRD-related photoreceptor loss had occurred. Altogether, the current studies validate a new mouse model for investigating PRPH2 disease pathophysiology, and demonstrate that rod and cone photoreceptor function and structure are each directly and substantially impaired by the Y285X mutation. They also reveal that Prph2 mutations can induce a functional compensation that resembles homeostatic plasticity, which can stabilize rod-derived signaling, and potentially dampen retinal dysfunction during some PRPH2-associated IRDs.

6.
Am J Hum Genet ; 110(3): 531-547, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809767

RESUMO

Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a splicing mutation in elongator acetyltransferase complex subunit 1 (ELP1). This mutation leads to the skipping of exon 20 and a tissue-specific reduction of ELP1, mainly in the central and peripheral nervous systems. FD is a complex neurological disorder accompanied by severe gait ataxia and retinal degeneration. There is currently no effective treatment to restore ELP1 production in individuals with FD, and the disease is ultimately fatal. After identifying kinetin as a small molecule able to correct the ELP1 splicing defect, we worked on its optimization to generate novel splicing modulator compounds (SMCs) that can be used in individuals with FD. Here, we optimize the potency, efficacy, and bio-distribution of second-generation kinetin derivatives to develop an oral treatment for FD that can efficiently pass the blood-brain barrier and correct the ELP1 splicing defect in the nervous system. We demonstrate that the novel compound PTC258 efficiently restores correct ELP1 splicing in mouse tissues, including brain, and most importantly, prevents the progressive neuronal degeneration that is characteristic of FD. Postnatal oral administration of PTC258 to the phenotypic mouse model TgFD9;Elp1Δ20/flox increases full-length ELP1 transcript in a dose-dependent manner and leads to a 2-fold increase in functional ELP1 in the brain. Remarkably, PTC258 treatment improves survival, gait ataxia, and retinal degeneration in the phenotypic FD mice. Our findings highlight the great therapeutic potential of this novel class of small molecules as an oral treatment for FD.


Assuntos
Disautonomia Familiar , Doenças Neurodegenerativas , Degeneração Retiniana , Camundongos , Animais , Disautonomia Familiar/genética , Cinetina , Marcha Atáxica , Administração Oral
7.
J Cell Sci ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39355864

RESUMO

PROMININ-1 (PROM1) mutations are associated with inherited, non-syndromic vision loss. We used CRISPR/Cas9 to induce prom1-null mutations in Xenopus laevis and then tracked retinal disease progression from the ages of 6 weeks to 3 years old. Prom1-null associated retinal degeneration in frogs is age-dependent and involves RPE dysfunction preceding photoreceptor degeneration. Before photoreceptor degeneration occurs, aging prom1-null frogs develop increasing size and numbers of cellular debris deposits in the subretinal space and outer segment layer, which resemble subretinal drusenoid deposits (SDD) in their location, histology, and representation in color fundus photography and optical coherence tomography (OCT). Evidence for an RPE origin of these deposits includes infiltration of pigment granules into the deposits, thinning of RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null mediated blindness of death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.

8.
Proc Natl Acad Sci U S A ; 120(19): e2221045120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126699

RESUMO

Chronic, progressive retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa, arise from genetic and environmental perturbations of cellular and tissue homeostasis. These disruptions accumulate with repeated exposures to stress over time, leading to progressive visual impairment and, in many cases, legal blindness. Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of pathogenesis when the opportunity to preserve the retinal structure and visual function is greatest. To address this urgent, unmet medical need, we employed a systems pharmacology platform for therapeutic development. Through integrative single-cell transcriptomics, proteomics, and phosphoproteomics, we identified universal molecular mechanisms across distinct models of age-related and inherited retinal degenerations, characterized by impaired physiological resilience to stress. Here, we report that selective, targeted pharmacological inhibition of cyclic nucleotide phosphodiesterases (PDEs), which serve as critical regulatory nodes that modulate intracellular second messenger signaling pathways, stabilized the transcriptome, proteome, and phosphoproteome through downstream activation of protective mechanisms coupled with synergistic inhibition of degenerative processes. This therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across various models of age-related and inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.


Assuntos
Retinopatia Diabética , Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Humanos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Retinose Pigmentar/metabolismo , Degeneração Macular/patologia , Retinopatia Diabética/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(43): e2301733120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37862382

RESUMO

Retinal pigment epithelium (RPE) cells have to phagocytose shed photoreceptor outer segments (POS) on a daily basis over the lifetime of an organism, but the mechanisms involved in the digestion and recycling of POS lipids are poorly understood. Although it was frequently assumed that peroxisomes may play an essential role, this was never investigated. Here, we show that global as well as RPE-selective loss of peroxisomal ß-oxidation in multifunctional protein 2 (MFP2) knockout mice impairs the digestive function of lysosomes in the RPE at a very early age, followed by RPE degeneration. This was accompanied by prolonged mammalian target of rapamycin activation, lipid deregulation, and mitochondrial structural anomalies without, however, causing oxidative stress or energy shortage. The RPE degeneration caused secondary photoreceptor death. Notably, the deterioration of the RPE did not occur in an Mfp2/rd1 mutant mouse line, characterized by absent POS shedding. Our findings prove that peroxisomal ß-oxidation in the RPE is essential for handling the polyunsaturated fatty acids present in ingested POS and shed light on retinopathy in patients with peroxisomal disorders. Our data also have implications for gene therapy development as they highlight the importance of targeting the RPE in addition to the photoreceptor cells.


Assuntos
Lisossomos , Epitélio Pigmentado da Retina , Camundongos , Humanos , Animais , Epitélio Pigmentado da Retina/metabolismo , Lisossomos/metabolismo , Fagocitose/genética , Estresse Oxidativo , Camundongos Knockout , Mamíferos
10.
Proc Natl Acad Sci U S A ; 120(50): e2314698120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064509

RESUMO

Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Camundongos , Animais , Doença de Stargardt/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Retinaldeído/metabolismo , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
11.
J Neurosci ; 44(35)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39060177

RESUMO

In retinitis pigmentosa (RP), rod and cone photoreceptors degenerate, depriving downstream neurons of light-sensitive input, leading to vision impairment or blindness. Although downstream neurons survive, some undergo morphological and physiological remodeling. Bipolar cells (BCs) link photoreceptors, which sense light, to retinal ganglion cells (RGCs), which send information to the brain. While photoreceptor loss disrupts input synapses to BCs, whether BC output synapses remodel has remained unknown. Here we report that synaptic output from BCs plummets in RP mouse models of both sexes owing to loss of voltage-gated Ca2+ channels. Remodeling reduces the reliability of synaptic output to repeated optogenetic stimuli, causing RGC firing to fail at high-stimulus frequencies. Fortunately, functional remodeling of BCs can be reversed by inhibiting the retinoic acid receptor (RAR). RAR inhibitors targeted to BCs present a new therapeutic opportunity for mitigating detrimental effects of remodeling on signals initiated either by surviving photoreceptors or by vision-restoring tools.


Assuntos
Células Bipolares da Retina , Sinapses , Tretinoína , Animais , Células Bipolares da Retina/efeitos dos fármacos , Células Bipolares da Retina/fisiologia , Camundongos , Tretinoína/farmacologia , Masculino , Feminino , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/genética , Degeneração Retiniana/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos
12.
J Biol Chem ; 300(6): 107344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705389

RESUMO

MicroRNAs (miRs) are short, evolutionarily conserved noncoding RNAs that canonically downregulate expression of target genes. The miR family composed of miR-204 and miR-211 is among the most highly expressed miRs in the retinal pigment epithelium (RPE) in both mouse and human and also retains high sequence identity. To assess the role of this miR family in the developed mouse eye, we generated two floxed conditional KO mouse lines crossed to the RPE65-ERT2-Cre driver mouse line to perform an RPE-specific conditional KO of this miR family in adult mice. After Cre-mediated deletion, we observed retinal structural changes by optical coherence tomography; dysfunction and loss of photoreceptors by retinal imaging; and retinal inflammation marked by subretinal infiltration of immune cells by imaging and immunostaining. Single-cell RNA sequencing of diseased RPE and retinas showed potential miR-regulated target genes, as well as changes in noncoding RNAs in the RPE, rod photoreceptors, and Müller glia. This work thus highlights the role of miR-204 and miR-211 in maintaining RPE function and how the loss of miRs in the RPE exerts effects on the neural retina, leading to inflammation and retinal degeneration.


Assuntos
Camundongos Knockout , MicroRNAs , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Camundongos , Deleção de Genes , Tomografia de Coerência Óptica
13.
J Biol Chem ; 300(8): 107569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009342

RESUMO

Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell line and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic WT controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate was increased. Oxygen consumption rate in response to physiological levels of lactate was significantly greater in WT than PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.


Assuntos
Glucose , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Glucose/metabolismo , Humanos , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/genética , Diferenciação Celular , Doença de Depósito de Glicogênio Tipo V/metabolismo , Doença de Depósito de Glicogênio Tipo V/genética , Doença de Depósito de Glicogênio Tipo V/patologia , Glicogênio/metabolismo , Consumo de Oxigênio
14.
J Biol Chem ; 300(10): 107772, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276938

RESUMO

Lipid-rich deposits called drusen accumulate under the retinal pigment epithelium (RPE) in the eyes of patients with age-related macular degeneration and Sorsby's fundus dystrophy (SFD). Drusen may contribute to photoreceptor degeneration in these blinding diseases. Stimulating ß-oxidation of fatty acids could decrease the availability of lipid with which RPE cells generate drusen. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate ß-oxidation and diminish lipid accumulation in fatty liver disease. In this report, we test the hypothesis that an ACC inhibitor, Firsocostat, can diminish lipid deposition by RPE cells. We probed metabolism and cellular function in mouse RPE-choroid tissue and human RPE cells. We used 13C6-glucose, 13C16-palmitate, and gas chromatography-linked mass spectrometry to monitor effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. We quantified lipid abundance, apolipoprotein E levels, and vascular endothelial growth factor release using liquid chromatography-mass spectrometry, ELISAs, and immunostaining. RPE barrier function was assessed by trans-epithelial electrical resistance (TEER). Firsocostat-mediated ACC inhibition increases ß-oxidation, decreases intracellular lipid levels, diminishes lipoprotein release, and increases TEER. When human serum or outer segments are used to stimulate lipoprotein release, fewer lipoproteins are released in the presence of Firsocostat. In a culture model of SFD, Firsocostat stimulates fatty acid oxidation, increases TEER, and decreases apolipoprotein E release. We conclude that Firsocostat remodels RPE metabolism and can limit lipid deposition. This suggests that ACC inhibition could be an effective strategy for diminishing pathologic drusen in the eyes of patients with age-related macular degeneration or SFD.

15.
J Biol Chem ; 300(10): 107739, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222682

RESUMO

The retina-specific ABCA transporter, ABCA4, is essential for vision, and its genetic variants are associated with a wide range of inherited retinal degenerative diseases, leading to blindness. Of the 1630 identified missense variants in ABCA4, ∼50% are of unknown pathogenicity (variants of unknown significance, VUS). This genetic uncertainty presents three main challenges: (i) inability to predict disease-causing variants in relatives of inherited retinal degenerative disease patients with multiple ABCA4 mutations; (ii) limitations in developing variant-specific treatments; and (iii) difficulty in using these variants for future disease prediction, affecting patients' life-planning and clinical trial participation. To unravel the clinical significance of ABCA4 genetic variants at the level of protein function, we have developed a virus-like particle-based system that expresses the ABCA4 protein and its variants. We validated the efficacy of this system in the enzymatic characterization (ATPase activity) of VLPs harboring ABCA4 and two variants of established pathogenicity: p.N965S and p.C1488R. Our results were consistent with previous reports and clinical phenotypes. We also applied this platform to characterize the VUS p.Y1779F and observed a functional impairment, suggesting a potential pathogenic impact. This approach offers an efficient, high-throughput method for ABCA4 VUS characterization. Our research points to the significant promise of the VLP-based system in the functional analysis of membrane proteins, offering important perspectives on the disease-causing potential of genetic variants and shedding light on genetic conditions involving such proteins.

16.
J Biol Chem ; 300(7): 107452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852887

RESUMO

Rare variants (RVs) in the gene encoding the regulatory enzyme complement factor I (CFI; FI) that reduce protein function or levels increase age-related macular degeneration risk. A total of 3357 subjects underwent screening in the SCOPE natural history study for geographic atrophy secondary to age-related macular degeneration, including CFI sequencing and serum FI measurement. Eleven CFI RV genotypes that were challenging to categorize as type I (low serum level) or type II (normal serum level, reduced enzymatic function) were characterized in the context of pure FI protein in C3b and C4b fluid phase cleavage assays and a novel bead-based functional assay (BBFA) of C3b cleavage. Four variants predicted or previously characterized as benign were analyzed by BBFA for comparison. In all, three variants (W51S, C67R, and I370T) resulted in low expression. Furthermore, four variants (P64L, R339Q, G527V, and P528T) were identified as being highly deleterious with IC50s for C3b breakdown >1 log increased versus the WT protein, while two variants (K476E and R474Q) were ∼1 log reduced in function. Meanwhile, six variants (P50A, T203I, K441R, E548Q, P553S, and S570T) had IC50s similar to WT. Odds ratios and BBFA IC50s were positively correlated (r = 0.76, p < 0.01), while odds ratios versus combined annotation dependent depletion (CADD) scores were not (r = 0.43, p = 0.16). Overall, 15 CFI RVs were functionally characterized which may aid future patient stratification for complement-targeted therapies. Pure protein in vitro analysis remains the gold standard for determining the functional consequence of CFI RVs.


Assuntos
Complemento C3b , Fator I do Complemento , Genótipo , Atrofia Geográfica , Humanos , Fator I do Complemento/genética , Fator I do Complemento/metabolismo , Atrofia Geográfica/genética , Atrofia Geográfica/sangue , Atrofia Geográfica/metabolismo , Feminino , Masculino , Complemento C3b/metabolismo , Complemento C3b/genética , Idoso , Estudos de Coortes , Degeneração Macular/genética , Degeneração Macular/metabolismo , Pessoa de Meia-Idade
17.
J Biol Chem ; 300(5): 107291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636661

RESUMO

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Assuntos
Ceramidas , Receptores de Adiponectina , Retina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Ceramidas/metabolismo , Retina/metabolismo , Retina/patologia , Camundongos Knockout , Ácidos Graxos Insaturados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética
18.
FASEB J ; 38(17): e70021, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39215566

RESUMO

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play an essential role in phototransduction and cellular Ca2+ homeostasis. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 are associated with achromatopsia, progressive cone dystrophy, and early-onset macular degeneration. Cone loss in patients with achromatopsia and cone dystrophy associated with CNG channel mutations has been documented by optical coherence tomography and in mouse models of CNG channel deficiency. Cone death in CNG channel-deficient retinas involves endoplasmic reticulum (ER) stress-associated apoptosis, dysregulation of cellular/ER Ca2+ homeostasis, impaired protein folding/processing, and impaired ER-associated degradation (ERAD). The E3 ubiquitin-protein ligase synoviolin 1 (SYVN1) is the primary component of the SYVN1/SEL1L ER retrotranslocon responsible for ERAD. Previous studies have shown that manipulations that protect cones and reduce ER stress/cone death in CNG channel deficiency, such as increasing ER Ca2+ preservation or treatment with an ER chaperone, increase the expression of SYVN1 and other components of the ER retrotranslocon. The present work investigated the effects of SYVN1 overexpression. Intraocular injection of AAV5-IRBP/GNAT2-Syvn1 resulted in overexpression of SYVN1 in cones of CNG channel-deficient mice. Following treatment, cone density in Cnga3-/- mice was significantly increased, compared with untreated controls, outer segment localization of cone opsin was improved, and ER stress/apoptotic cell death was reduced. Overexpression of SYVN1 also led to increased expression levels of the retrotranslocon components, degradation in ER protein 1 (DERL1), ERAD E3 ligase adaptor subunit (SEL1L), and homocysteine inducible ER protein with ubiquitin-like domain 1 (HERPUD1). Moreover, overexpression of SYVN1 likely enhanced protein ubiquitination/proteasome degradation in CNG channel-deficient retinas. This study demonstrates the role of SYVN1/ERAD in cone preservation in CNG channel deficiency and supports the strategy of promoting ERAD for cone protection.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Células Fotorreceptoras Retinianas Cones , Ubiquitina-Proteína Ligases , Animais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Camundongos , Retículo Endoplasmático/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Degradação Associada com o Retículo Endoplasmático , Camundongos Knockout , Camundongos Endogâmicos C57BL
19.
FASEB J ; 38(5): e23518, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38441532

RESUMO

NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.


Assuntos
Actinas , Dineínas , Animais , Camundongos , Transporte Biológico , Morte Celular , Dineínas/genética , Células Fotorreceptoras Retinianas Bastonetes
20.
FASEB J ; 38(5): e23522, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445789

RESUMO

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.


Assuntos
Proteínas de Transporte , Retina , Epitélio Pigmentado da Retina , Animais , Camundongos , Retinoides , Apolipoproteínas B/genética , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA