RESUMO
Rhipicephalus microplus, the cattle fever tick, is the most important ectoparasite impacting the livestock industry worldwide. Overreliance on chemical treatments for tick control has led to the emergence of acaricide-resistant ticks and environmental contamination. An immunological strategy based on vaccines offers an alternative approach to tick control. To develop novel tick vaccines, it is crucial to identify and evaluate antigens capable of generating protection in cattle. Chitinases are enzymes that degrade older chitin at the time of moulting, therefore allowing interstadial metamorphosis. In this study, 1 R. microplus chitinase was identified and its capacity to reduce fitness in ticks fed on immunized cattle was evaluated. First, the predicted amino acid sequence was determined in 4 isolates and their similarity was analysed by bioinformatics. Four peptides containing predicted B-cell epitopes were designed. The immunogenicity of each peptide was assessed by inoculating 2 cattle, 4 times at 21 days intervals, and the antibody response was verified by indirect ELISA. A challenge experiment was conducted with those peptides that were immunogenic. The chitinase gene was successfully amplified and sequenced, enabling comparison with reference strains. Notably, a 99.32% identity and 99.84% similarity were ascertained among the sequences. Furthermore, native protein recognition was demonstrated through western blot assays. Chitinase peptide 3 reduced the weight and oviposition of engorged ticks, as well as larvae viability, exhibiting a 71% efficacy. Therefore, chitinase 3 emerges as a viable vaccine candidate, holding promise for its integration into a multiantigenic vaccine against R. microplus.
RESUMO
Babesia spp. and Theileria spp. are tick-borne protozoan parasites with veterinary importance. In China, epidemiological and genetic investigations on many Babesia and Theileria species were still absent in many areas and many tick species. From Aug 2021 to May 2023, 645 ticks were collected from the body surface of domestic animals (camels, goats, sheep, and cattle) using tweezers in seven counties in three provinces including Xinjiang (Qitai, Mulei, Hutubi, and Shihezi counties), Chongqing (Youyang and Yunyang counties), and Qinghai (Huangzhong county). Three tick species were morphologically and molecularly identified (334 Hyalomma asiaticum from Xinjiang, 245 Rhipicephalus microplus from Chongqing, and 66 Haemaphysalis qinghaiensis from Qinghai). A total of three Babesia species and two Theileria species were detected targeting the 18S gene. The COI and cytb sequences were also recovered from Babesia strains for further identification. In R. microplus from Chongqing, Babesia bigemina, the agent of bovine babesiosis, was detected. Notably, in H. asiaticum ticks from Xinjiang, a putative novel genotype of Babesia caballi was identified (0.90%, 3/334), whose COI and cytb genes have as low as 85.82% and 90.64-90.91% nucleotide identities to currently available sequences. It is noteworthy whether the sequence differences of its cytb contribute to the drug resistance of this variant due to the involvement of cytb in the drug resistance of Babesia. In addition, Theileria orientalis and Theileria annulata were detected in R. microplus from Chongqing (12.20%, 31/245) and H. asiaticum from Xinjiang (1.50%, 5/334), respectively. These results suggest that these protozoan parasites may be circulating in domestic animals in these areas. The pathogenicity of the novel genotype of B. caballi also warrants further investigation.
Assuntos
Babesia , Genótipo , Theileria , Animais , Babesia/genética , Babesia/isolamento & purificação , Babesia/classificação , Theileria/genética , Theileria/isolamento & purificação , China/epidemiologia , Bovinos , Filogenia , Ixodidae/parasitologia , Ovinos , Babesiose/parasitologia , Babesiose/epidemiologia , Theileriose/epidemiologia , Theileriose/parasitologia , CabrasRESUMO
This study examined the pattern of resistance to widely applied synthetic pyrethroids, i.e., cypermethrin and deltamethrin, against larvae of Rhipicephalus microplus ticks sampled from Marathwada region in Maharashtra, India. The study also examined the role of α- and ß-esterases and glutathione-S-transferase (GST) in resistance development. All eight R. microplus isolates tested were resistant to deltamethrin (RL IV), having RR50 values from 6.88 to 131.26. LPT analysis exhibited the resistance level II deltamethrin resistance in Beed and Hingoli, III in Dharashiv, and IV in Sambhajinagar, Parbhani, Latur, Jalna, and Nanded isolates. The LIT analysis showed that Dharashiv field isolates had the lowest LC50 value of 229.09 ppm against cypermethrin, while Sambhajinagar field isolates had the highest at 489.78 ppm. The RR50 ranged from 1145.45 to 2448.9. Seven isolates were level I resistant to cypermethrin while the Jalna isolate was level II resistant. In larvae treated with deltamethrin and cypermethrin, the activity of α- and ß-esterase enzymes increased significantly compared to control groups. The enzyme ratios in treated larvae ranged from 0.7533 to 1.7023 for α-esterase and 0.7434 to 3.2054 for ß-esterase. The Hingoli isolate treated with cypermethrin exhibited the highest α-esterase activity (903.261), whereas Sambhajinagar isolate had the highest GST enzyme ratio (2.8224) after deltamethrin exposure. When exposed to cypermethrin, the Hingoli isolate showed the highest GST enzyme ratio, 2.0832. The present study provides the current resistance status in tick populations from Marathwada region indicating deltamethrin and cypermethrin to be ineffective for tick control. The results also suggest that SP compounds should be regulated in this region and alternative control strategies should be introduced.
Assuntos
Acaricidas , Glutationa Transferase , Larva , Nitrilas , Piretrinas , Rhipicephalus , Animais , Piretrinas/farmacologia , Índia , Rhipicephalus/efeitos dos fármacos , Rhipicephalus/enzimologia , Nitrilas/farmacologia , Larva/efeitos dos fármacos , Glutationa Transferase/metabolismo , Acaricidas/farmacologia , Esterases/metabolismo , Resistência a Inseticidas , Resistência a MedicamentosRESUMO
Cattle ticks (Rhipicephalus microplus) are important economic ectoparasites causing direct and indirect damage to cattle and leading to severe economic losses in cattle husbandry. It is common knowledge that R. microplus is a species complex including five clades; however, the relationships within the R. microplus complex remain unresolved. In the present study, we assembled the complete mitochondrial genome of clade C by next-generation sequencing and proved its correctness based on long PCR amplification. It was 15,004 bp in length and consisted of 13 protein genes, 22 transfer genes, and two ribosomal genes located in the two strains. There were two copies of the repeat region (pseudo-nad1 and tRNA-Glu). Data revealed that cox1, cox2, and cox3 genes were conserved within R. microplus with small genetic differences. Ka/Ks ratios suggested that 12 protein genes (excluding nad6) may be neutral selection. The genetic and phylogenetic analyses indicated that clade C was greatly close to clade B. Findings in the current study provided more data for the identification and differentiation of the R. microplus complex and made up for the lack of information about R. microplus clade C.
Assuntos
Doenças dos Bovinos , Genoma Mitocondrial , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Rhipicephalus/genética , Filogenia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Doenças dos Bovinos/parasitologiaRESUMO
The present study aimed to analyze the cladistics and population structure analysis of Rhipicephalus microplus ticks infesting buffaloes in Haryana, India, as well as the assessment of the anti-tick efficacy of the ethanolic extracts of Cassia fistula (bark, pod pulp, and flowers) against R. microplus larvae. The molecular characterization and population structure analysis were performed by targeting the amplification of the partial mitochondrial cytochrome C oxidase subunit 1 (cox1) gene, whereas anti-tick efficacy was evaluated using a larval packet test. The sequences generated herein revealed a homology of 98.26-100% to the GenBank-archived R. microplus sequences. In population structure analysis, high haplotype (0.500 ± 0.265) and low nucleotide (0.002 ± 0.001) diversities were recorded for the sequences generated in this study. Significantly negative neutrality indices were recorded for the overall dataset. The extracts were found to significantly affect mortality rates in a dose-dependent manner, and the ethanolic extracts of the bark, pod pulp, and flowers of C. fistula exhibited median lethal concentration (LC50) values of 27.989, 40.457, and 49.43 mg/mL, respectively. The LC50 value recorded for the combination of the ethanolic extracts of the bark, flower, and pod pulp of C. fistula was 19.724 mg/mL, whereas the synthetic acaricide ivermectin had an LC50 value of 351.56 mg/mL. In conclusion, R. microplus populations infesting cattle and buffalo hosts in India exhibited negligible genetic differentiation and high gene flow between them. Additionally, the combination of all C. fistula extracts could serve as a potential substitute for the synthetic acaricide.
Assuntos
Acaricidas , Cassia , Larva , Extratos Vegetais , Rhipicephalus , Animais , Rhipicephalus/efeitos dos fármacos , Rhipicephalus/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Cassia/química , Acaricidas/farmacologia , Extratos Vegetais/farmacologia , Índia , Búfalos , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/prevenção & controle , Complexo IV da Cadeia de Transporte de Elétrons/genéticaRESUMO
Rhipicephalus microplus poses a significant economic threat due to its role in transmitting Babesia bigemina, B. bovis and Anaplasma marginale. Chemical control methods, commonly employed, encounter challenges like resistance, high costs, and environmental concerns. Emerging as an alternative, entomopathogenic fungi, particularly Beauveria bassiana, present a promising avenue for biological control. Molecular identification using the internal transcribed spacer (ITS1-5.8-ITS4) region ensures accurate species identification. This study investigated two B. bassiana strains, assessing their molecular characterization, impact on R. microplus mortality, and reproductive effects on adult females. The Reproductive Aptitude Index (RAI) is employed to evaluate tick egg viability post-treatment, providing insights into the potential of these fungi for tick control. Results indicate the BbLn2021-1 strain causes 96% mortality, and BbSf2021-1 induces 100% mortality. The commercial strain exhibited 28% mortality, while the control treatment showed 12%. Statistical analysis reveals a significant difference between treatments (p < 0.01). The Reproductive Efficiency Index (REI) underscores BbSf2021-1is superiority, yielding lower egg weights than other treatments. Regarding the RAI, BbLn2021-1 and BbSf2021-1 show no significant differences but differ significantly from the commercial and control (p < 0.01). These findings suggest that strains isolated and characterized from the natural environment could have potential applications in field trials, serving as a biocontrol alternative for R. microplus ticks.
Assuntos
Beauveria , Controle Biológico de Vetores , Reprodução , Rhipicephalus , Animais , Rhipicephalus/microbiologia , Rhipicephalus/fisiologia , Beauveria/fisiologia , Feminino , Óvulo/microbiologia , Óvulo/fisiologia , Controle de Ácaros e CarrapatosRESUMO
Rhipicephalus (Boophilus) microplus, an invasive species to Africa, and the endemic R. (B.) decoloratus are of high economic importance in the cattle industry. Invasion of the alien species in South Africa has mostly been reported for traditional communal grazing areas where it seemed to be rapid and, in some cases, even replaced the native species. The alien species is also assumed to already be resistant to acaricides upon invasion. The presence of R. (B.) microplus on commercial farms was therefore investigated and resistance screening of both species to field concentrations of cypermethrin, amitraz, and chlorfenvinphos was determined by means of the larval immersion test. Results showed that only 3.7% (of 383) tick collections submitted were R. (B.) microplus populations. A further 1.6% (of 383) showed co-existence of the two species. Comparing the level of resistance to the acaricides between the two species indicated a mean phenotypic resistance of 66.2 and 26.5% of R. (B.) decoloratus populations to cypermethrin and amitraz, respectively. This was significantly lower for R. (B.) microplus, with 23.0 and 4.1% of its populations resistant to cypermethrin and amitraz, respectively. Closed commercial farming areas seemed to have a preventative advantage for the invasion of R. (B.) microplus and displacement of R. (B.) decoloratus by R. (B.) microplus. Regular monitoring of these two species may be of high importance to prevent unnecessary financial losses due to insufficient control and increased awareness of the threat of Asiatic babesiosis vectored by R. (B.) microplus.
Assuntos
Acaricidas , Doenças dos Bovinos , Piretrinas , Rhipicephalus , Infestações por Carrapato , Toluidinas , Animais , Bovinos , Acaricidas/farmacologia , Fazendas , África do Sul/epidemiologia , Infestações por Carrapato/veterinária , Doenças dos Bovinos/epidemiologiaRESUMO
Ticks are competent vectors of a wide range of pathogens. They are of veterinary and public health importance as they affect both animal and human health. Transhumance and the transboundary movements of cattle within the West African Sub-region have facilitated the spread of ticks which threatens the introduction of invasive species. Currently, Rhipicephalus microplus have been identified in the Upper East Region of Ghana which could mean a wider distribution of the species across the country due to livestock trade. This study focused on three sites in the Greater Accra Region, which serves as the gateway to receiving most of the cattle transported from the northern regions of Ghana. Ticks were sampled from August 2022 in the wet season to January 2023 in the dry season. Three tick genera were identified: Amblyomma (19.5%), Hyalomma (1.1%), and Rhipicephalus (79.3%) from the 1,489 feeding ticks collected from cattle. Furthermore, Rhipicephalus microplus, Hyalomma rufipes and Amblyomma variegatum were identified molecularly using primers that target the mitochondrial COI gene. There was a significant association between the tick species and seasons (p < 0.001). Finding R. microplus in this study indicates the extent of the spread of this invasive tick species in Ghana and highlights the need for efficient surveillance systems and control measures within the country.
Assuntos
Doenças dos Bovinos , Ixodidae , Rhipicephalus , Infestações por Carrapato , Humanos , Bovinos , Animais , Rhipicephalus/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Gana , Doenças dos Bovinos/epidemiologia , Ixodidae/genética , Espécies IntroduzidasRESUMO
In Ecuador, the main tick species affecting cattle are Rhipicephalus microplus and Amblyomma cajennense sensu lato. Understanding their spatial distribution is crucial. To assess their distribution, data from 2895 farms visited between 2012 and 2017 were utilized. Ticks were collected during animal inspections, with each farm's location georeferenced. Bioclimatic variables and vapor pressure deficit data were obtained from Climatologies at High resolution for the Earth´s Land Surface Areas (CHELSA) dataset. They were overlaid to develop predictive maps for each species using Random Forest (RF) models. The cross-validation results for RF prediction models showed high accuracy for both R. microplus and A. cajennense s.l. presence with values of accuracy = 0.97 and 0.98, sensitivity = 0.96 and 0.99, and specificity = 0.96 and 0.93, respectively. A carefully selected subset of bioclimatic variables was used to describe the presence of each tick species. Higher levels of precipitation had positive effect on the presence of R. microplus but a negative effect on A. cajennense s.l. In contrast, isothermality (BIO3) was more important for the presence of A. cajennense s.l. compared to R. microplus. As a result, R. microplus had a broader distribution across the country, while A. cajennense s.l. was mainly found in coastal areas with evident seasonality. The coexistence of both species in some regions could be attributed to transitional zones, whereas high altitudes limited tick presence. This information can aid in developing appropriate tick management plans, particularly considering A. cajennense s.l.'s broad host range species and R. microplus's specificity for cattle. Moreover, the predictive models can identify areas at risk of associated challenging hemoparasite, requiring special attention and mitigation measures.
Assuntos
Amblyomma , Distribuição Animal , Doenças dos Bovinos , Clima , Rhipicephalus , Infestações por Carrapato , Animais , Equador , Bovinos , Rhipicephalus/fisiologia , Amblyomma/fisiologia , Amblyomma/crescimento & desenvolvimento , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologiaRESUMO
This study aimed to investigate seven outbreaks of A. marginale infection in two regions of Brazil, affecting taurine, zebu, and crossbred cattle. We assessed the possible causes, treatment measures, and genetic diversity of A. marginale. These outbreaks occurred in two states (Goiás: outbreaks 1-7; Mato Grosso do Sul: outbreak 3), breeds (Holstein, Nellore, and crossbreed), age groups (beef cattle: 18-25 days old and 7-8 months; dairy cattle: 18-25 days old, 13-14 months, and cow after the first birth) and rearing systems (feedlot, pasture, pen in a wood shaving bedding system and compost bedded-pack barns). Metaphylactic or prophylactic treatments varied according to outbreak (imidocarb dipropionate: outbreaks 1-4 and 6; enrofloxacin: outbreaks 5 and 7; diminazene diaceturate: outbreak 5). In outbreaks 6 and 7, the packed cell volume was monitored. In all outbreaks, the practice of needle/syringe sharing was discontinued. For outbreaks 1-3, clinical signs and mortality (range, 4.8-13.3%) occurred 36-45 days after entry into the feedlot. In outbreak 4, A. marginale was diagnosed in 66.2% of the calves (bacteremia, 0-4.5%), with a mortality of 8.6%. Among nursing calves aged 60 days during outbreak 5, 53.8% were infected with A. marginale, with average bacteremia of 2.7% (range, 0-21.3%), and a mortality of 13.8%. In dairy heifers aged 14 months, raised in paddocks lacking vegetation cover and infested with R. microplus, then transitioned to a rotational grazing system also infested with R. microplus, the A. marginale bacteremia ranged from 3.2 to 6.7%, with a mortality of 20%. Before monitoring during outbreak 7, the mortality was 17.9%, but no further deaths were observed after monitoring initiation. In conclusion, possible causes triggering the outbreaks included primary tick infestation, needle/syringe sharing, and stress factors which may have affected the immunological statues of animals in the feedlots. Control measures performed in all outbreaks were effective. The partial msp4 gene sequences of A. marginale generated herein belonged to two haplotypes, but further research would be needed to investigate if this finding has any clinical significance.
Assuntos
Anaplasma marginale , Anaplasmose , Doenças dos Bovinos , Surtos de Doenças , Variação Genética , Animais , Brasil/epidemiologia , Bovinos , Surtos de Doenças/veterinária , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Anaplasma marginale/genética , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Feminino , Criação de Animais Domésticos/métodos , MasculinoRESUMO
The cattle tick, Rhipicephalus microplus (Acari: Ixodidae), is a multi-billion dollar ectoparasite of global importance affecting beef and milk production. Submerged cultures of cosmopolitan entomopathogenic fungal species of the genus Metarhizium typically produce microsclerotia that provide both long-term survival and environmental resistance. Microsclerotia hold great potential as an unconventional active propagule to control this tick under laboratory and semi-field conditions. However, heat stress caused especially by elevated temperatures poses a critical environmental constraint for the successful development and efficacy of microsclerotia under tropical conditions. First, we screened six strains of Metarhizium anisopliae, Metarhizium robertsii and Metarhizium humberi for their ability to produce microsclerotia by submerged liquid cultivation. In addition, we assessed the biological fitness and bioefficacy of dried microsclerotial pellets under amenable (27 °C) and heat-stressed (32 °C) incubation against engorged adult females of R. microplus. Microsclerotia in pelletized formulation prepared with carriers based on diatomaceous earth and microcrystalline cellulose exhibited conidial production at different extents according to the fungal strain and the incubation temperature, but most strains displayed reduced sporogenesis when exposed to 32 °C. Engorged tick females exposed to sporulated microsclerotia from pelletized M. anisopliae CG47 or IP 119 had fewer number of hatching larvae in comparison to the control group, irrespective of the incubation temperature tested. The minimum dosage of microsclerotial pellets that effectively reduced hatchability of tick larvae was estimated to be 2 mg per plate (equivalent to 6.0 kg per hectare). Metarhizium microsclerotial pellets exhibited significant tolerance to 32 °C and pronounced acaricidal activity against this economically important ectoparasite of cattle, even under simulated environmental heat stress. KEY POINTS: ⢠Heat stress affects conidial production by microsclerotia of most pelletized Metarhizium strains ⢠Heat stress does not impair the acaricidal performance of pelletized microsclerotia ⢠Pellet formulation of Metarhizium microsclerotia is a promising mycoacaricide.
Assuntos
Metarhizium , Rhipicephalus , Termotolerância , Animais , Feminino , Controle Biológico de Vetores , Rhipicephalus/microbiologia , Larva/microbiologia , Esporos FúngicosRESUMO
The aim of this work was to quantitatively analyse the magnitude of the migration of Rhipicephalus microplus ticks among cattle under field conditions, in groups of bovines with different stocking rates. The role of this phenomenon in the epidemiology of Anaplasma marginale has been discussed. Cattle naturally infested with R. microplus (donors) and cattle non-infested with R. microplus (recipients) were clustered for 13 days into two groups with low and high stocking rates (G1 and G2 respectively). The initial prevalence of infestation (infested cattle / total cattle) was 20% in both groups. Adult migratory ticks from donor to recipient cattle were recorded by examination of the recipient cattle on days 2, 6, 9, and 13. The tick infestation rate, calculated using the Kaplan-Meier survival test, was higher in G2 (p = 0.05). The cumulative incidence on day 13 was 25% in G1 and 65% in G2, with no significant differences. The results demonstrate that migration of adults of R. microplus under field conditions occurs, in accordance with previous studies, and that its magnitude is associated with the stocking rate. These results highlight the relevance of R. microplus in the epidemiology of A. marginale through its role as a vector in the intrastadial transmission of this pathogen of cattle.
Assuntos
Anaplasma marginale , Anaplasmose , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Bovinos , Animais , Anaplasmose/epidemiologia , Doenças dos Bovinos/epidemiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterináriaRESUMO
Sphingomyelinase D is a toxin present in venomous spiders and bacteria and is associated with infection symptoms in patients affected by spider bites. It was observed that in Ixodes scapularis ticks, sphingomyelinase-like protein secreted in saliva can modulate the host immune response, affecting the transmission of flavivirus to the host via exosomes. In this work, a sphingomyelinase D-like protein (RmSMase) from R. microplus, a tick responsible for economic losses and a vector of pathogens for cattle, was investigated. The amino acid sequence revealed the lack of important residues for enzymatic activity, but the recombinant protein showed sphingomyelinase D activity. RmSMase shows Ca2+ and Mg2+ dependence in acidic pH, differing from IsSMase, which has Mg2+ dependence in neutral pH. Due to the difference between RmSMase and other SMases described, the data suggest that RmSMase belongs to SMase D class IIc. RmSMase mRNA transcription levels are upregulated during tick feeding, and the recombinant protein was recognized by host antibodies elicited after heavy tick infestation, indicating that RmSMase is present in tick saliva and may play a role in the tick feeding process.
RESUMO
Currently, livestock owners manage tick infestations using chemicals, but the method is increasingly losing effectiveness as resistant tick populations have established in the field conditions. Thus, to develop effective tick management strategies, monitoring of resistance in most predominant tick species, Rhipicephalus microplus was targeted. The ticks were collected from eleven districts of Madhya Pradesh and one district of Punjab and tested against deltamethrin (DLM), cypermethrin (CYP), coumaphos (CMP), ivermectin (IVM) and fipronil (FIP), through adult immersion and larval packet tests. The field isolates were highly resistant to DLM [Resistance factor (RF) = 3.98-38.84]. Against CYP, resistance was observed in BWN (Barwani; RF = 2.81) and MND (Mandsaur; RF = 3.23) isolates. Surprisingly, most of the isolates were susceptible to CMP (0.34-1.58). Emerging level of resistance against IVM (1.05-4.98) and FIP (0.40-2.18) was also observed in all the isolates. Significantly elevated production of esterases (p < 0.01) was 90% correlated with RF of DLM while no positive correlation between production of monooxygenase and Glutathione S-transferase with RF to DLM was noted. Multiple sequence analysis of S4-5 linker region of the sodium channel gene of all the isolates revealed a point mutation at 190th position (C190A) which is associated with DLM resistance. Treatment of resistant LDH (Ludhiana) isolate with IVM resulted in upregulation of RmABCC2 gene and insignificant upregulation of RmABCC1 and RmABCB10 genes indicating the probability of linking IVM resistance with over-expression of RmABCC2 gene. The possible tick management strategies are discussed.
Assuntos
Acaricidas , Piretrinas , Rhipicephalus , Animais , Acaricidas/farmacologia , Rhipicephalus/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/farmacologia , Resistência a Inseticidas/genética , Ivermectina/farmacologia , Piretrinas/farmacologiaRESUMO
The current work evaluated the efficacy of 10 commercial acaricides in different pHs (4.5, 5.5, and 6.5) in laboratory (adult immersion tests (AIT), pH evaluation over time) and field assays (tick counts and efficacy). In the AIT (n=70), higher efficacies were obtained when the acaricide emulsion had a more acidic pH (4.5), mainly for two combinations of pyrethroids + organophosphate (acaricide 3 and acaricide 9). For amidine, a higher pH (6.5) showed a higher efficacy. Over time, there was a trend in the pH of these emulsions increasing. When the efficacy of chlorpyrifos + cypermethrin + piperonyl butoxide (acaricide 3) at different pHs was evaluated over time (0, 6, 12, and 24h) by AIT, the less acidic pH (6.5) showed a strongly variation in the acaricide efficacy range. The mean pH of the water samples from different regions of Brazil was 6.5. In the field, the association of pyrethroid + organophosphates (acaricide 9) with pH of 4.5 and 5.5 were more effective in tick control than the emulsion prepared with this same spray formulation at pH 6.5. The pH of the acaricide emulsions is an important point of attention and is recommended that the veterinary industry start to develop/share information regarding how the pH can affect the acaricide efficacy.
Assuntos
Acaricidas , Rhipicephalus , Controle de Ácaros e Carrapatos , Animais , Bovinos , Concentração de Íons de Hidrogênio , Acaricidas/química , Acaricidas/farmacologia , Emulsões , Controle de Ácaros e Carrapatos/métodos , Piretrinas/química , Piretrinas/farmacologia , Organofosfatos/química , Organofosfatos/farmacologia , Rhipicephalus/efeitos dos fármacosRESUMO
Chemical control of tick infestation on dairy farms in India strongly relies upon the use of synthetic pyrethroids (deltamethrin) and organophosphate (coumaphos) drugs. Therefore, the present manuscript aims to investigate the resistance status of Rhipicephalus microplus ticks against these acaricides. Fully engorged adult R. microplus ticks were randomly collected from 8 dairy farms in North India and evaluated for acaricide resistance by using the Larval Packet Test (LPT). Of these, ticks collected from one and three farms showed the emergence of Level I acaricide resistance against deltamethrin and coumaphos, respectively. Significant positive correlations were found in the enzymatic activity (α-esterase, ß-esterase, glutathione-S-transferase, and mono-oxygenase) of R. microplus tick resistant against coumaphos. Native electrophoretogram analysis showed six different types of esterase activity in R. microplus (EST-1b to EST-6b), and EST-5b activity was more predominantly expressed in resistant ticks. Further, inhibitor studies using various esterase inhibitors suggested that EST-5b is a putative acetylcholine-esterase (AchE), and increased expression of one of the AchE might be responsible for the emergence of acaricide resistance. Further, no mutations were detected in the carboxylesterase (G1120A) and domain II S4-5 linker region (C190A) of the sodium channel genes of resistant R. microplus ticks, indicating that increased expression of detoxification enzymes was the probable mechanism for the development of acaricide resistance in the resistant ticks.
Assuntos
Acaricidas , Piretrinas , Rhipicephalus , Animais , Rhipicephalus/genética , Acaricidas/farmacologia , Cumafos , Organofosfatos/farmacologia , Piretrinas/farmacologia , Esterases/genética , Esterases/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismoRESUMO
Ticks are a public health threat due to their tendency to spread pathogens that affect humans and animals. With reports of Rhipicephalus (Boophilus) microplus invasion in neighbouring countries, there is the risk of this species invading Ghana through livestock trade. Previous identification of tick species in Ghana has been based on morphological identification, which can be ineffective, especially with damaged tick specimens or engorged nymphs. This study focused on the Kassena-Nankana District, which serves as a trade route for cattle into Ghana, to determine the presence of R. microplus. Three genera of ticks were identified as Amblyomma (70.9%), Hyalomma (21.3%) and Rhipicephalus (7.8%). The engorged nymphs that could not be identified morphologically were analyzed using primers that target the mitochondrial 16S rRNA gene. This study reports the first record of R. (B.) microplus in Ghana. Furthermore, R. microplus constituted 54.8% of the Boophilus species collected in this study. This finding is an addition to the diverse tick species previously collected in Ghana, most of which are of veterinary and public health importance. With reports of acaricide resistance in R. microplus and its role in spreading infectious pathogens, the detection of this species in Ghana cannot be overlooked. Nationwide surveillance will be essential to ascertain its distribution, its effects on cattle production, and the control measures adopted.
Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Bovinos , Doenças dos Bovinos/parasitologia , Gana , Filogenia , Rhipicephalus/classificação , Rhipicephalus/fisiologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/prevenção & controle , AnimaisRESUMO
The tick Rhipicephalus microplus is a vector of infectious agents that causes great economic loss in the productivity of cattle herds. Several studies have sought natural compounds with acaricidal activity to control ticks, without allowing the development of resistance, without causing environmental damage, and without presenting toxicity to the hosts. The activity of ozone on the natural biomolecules of living beings has been studied as an alternative to control arthropods and acaricidal effects were shown on ticks. The aim of the present study was to assess the acaricidal effect on larvae and engorged females of R. microplus according to ozone dose. Larvae (n = 377) were distributed in 10 groups and engorged females (n = 284) were distributed in 14 groups. One group was used as control (not exposed to ozone) and the other groups were exposed to ozone gas for 5-105 min. Ozone had a dose-dependent acaricidal effect on both larvae and engorged females. Dosages between 355 and 2130 mg/L min had a delayed acaricidal effect (12-180 h), leading to the death of all engorged females before laying eggs, whereas doses between 3195 and 7455 mg/L min showed immediate acaricidal effect (5 min to 4 h). Doses between 1775 and 6390 mg/L min had an immediate (up to 5 min) acaricidal effect on the larvae of this species. Further studies should consider longer follow-up times during the assessment of the acaricidal activity against ticks.
Assuntos
Acaricidas , Rhipicephalus , Feminino , Animais , Bovinos , Acaricidas/farmacologia , LarvaRESUMO
The purpose of this study was to investigate tick species around Mount Fanjing and analyze bacterial communities in two species - Rhipicephalus microplus and Haemaphysalis longicornis - parasitizing cattle in Tongren, Guizhou province, Southwest China, using high-throughput sequencing methods. In April 2019, ticks were collected from five sites in Jiangkou County, Yinjiang County, and Songtao County. In total, 296 ticks were collected, comprising two genera and three species: H. longicornis, Haemaphysalis flava, and R. microplus. Rhipicephalus microplus was the most representative species (57.4%) within the collected group, being the dominant species in Tongren City, followed by H. longicornis (39.5%) and H. flava (3.0%). Beta-diversity analysis revealed differences in bacterial community composition among the tick species. The bacterial community structure of R. microplus collected in the three counties was highly similar. Chlorella and Bacillus were highly abundant in H. longicornis. Rickettsia was detected at high relative abundance in R. microplus but in low relative abundance in H. longicornis, suggesting that Rickettsia is more associated with R. microplus than with H. longicornis. More in-depth investigations are needed to determine the pathogenic risk of Rickettsia and its relationship with the host. This is the first survey on tick-borne bacterial communities in this area, which is of great significance for the prevention and control of tick-borne diseases locally.
Assuntos
Doenças dos Bovinos , Chlorella , Besouros , Ixodidae , Rhipicephalus , Rickettsia , Animais , Bovinos , Ixodidae/microbiologia , Rhipicephalus/microbiologia , ChinaRESUMO
Ticks and tick-borne diseases constitute a substantial hazard to the livestock industry. The rising costs and lack of availability of synthetic chemical acaricides for farmers with limited resources, tick resistance to current acaricides, and residual issues in meat and milk consumed by humans further aggravate the situation. Developing innovative, eco-friendly tick management techniques, such as natural products and commodities, is vital. Similarly, searching for effective and feasible treatments for tick-borne diseases is essential. Flavonoids are a class of natural chemicals with multiple bioactivities, including the inhibition of enzymes. We selected eighty flavonoids having enzyme inhibitory, insecticide, and pesticide properties. Flavonoids' inhibitory effects on the acetylcholinesterase (AChE1) and triose-phosphate isomerase (TIM) proteins of Rhipicephalus microplus were examined utilizing a molecular docking approach. Our research demonstrated that flavonoids interact with the active areas of proteins. Seven flavonoids (methylenebisphloridzin, thearubigin, fortunellin, quercetagetin-7-O-(6-O-caffeoyl-ß-d-glucopyranoside), quercetagetin-7-O-(6-O-p-coumaroyl-ß-glucopyranoside), rutin, and kaempferol 3-neohesperidoside) were the most potent AChE1 inhibitors, while the other three flavonoids (quercetagetin-7-O-(6-O-caffeoyl-ß-d-glucopyranoside), isorhamnetin, and liquiritin) were the potent inhibitors of TIM. These computationally-driven discoveries are beneficial and can be utilized in assessing drug bioavailability in both in vitro and in vivo settings. This knowledge can create new strategies for managing ticks and tick-borne diseases.