Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1802-1810.e4, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701741

RESUMO

Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.


Assuntos
Amidas , Lisina , Ácidos Fosfóricos , Polifosfatos , Lisina/metabolismo , Lisina/química , Polifosfatos/química , Polifosfatos/metabolismo , Fosforilação , Humanos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Proteínas/genética
2.
Fungal Genet Biol ; 131: 103240, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185286

RESUMO

Protein phosphatase-2A (PP2A) is a heterotrimeric enzyme composed of a catalytic subunit, a regulatory subunit, and a structural subunit. In Candida albicans, Cdc55 and Rts1 have been identified as possible regulatory subunits of PP2A containing the catalytic subunit Pph21 and structural subunit Tpd3. The Tpd3-Pph21 phosphatase regulates cell morphogenesis and division. However, the functions of Cdc55 and Rts1 remain unclear. Here, we constructed cdc55Δ/Δ and rts1Δ/Δ mutants and found that they exhibit different defects in multiple phenotypes although both show similar hyperphosphorylation of the septin Sep7 and aberrant septin organization. Under yeast growth conditions, the cdc55Δ/Δ mutant grows slowly as pseudohyphae with some cells lacking the nucleus, while rts1Δ/Δ cells are round and enlarged and seem to undergo incomplete cell separation producing multinucleated cells. Strong chitin deposition occurs at the septum of cdc55Δ/Δ cells and on the surface of rts1Δ/Δ cells, which likely contributes to increased susceptibility to caspofungin. Also, cdc55Δ/Δ exhibits severe defects in hyphal and biofilm formation, while rts1Δ/Δ is partially defective. Both mutants show reduced virulence in mice, suggesting that PP2A-B subunits could serve as potential antifungal targets.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/patologia , Domínio Catalítico/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase/microbiologia , Caspofungina/farmacologia , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Modelos Animais de Doenças , Farmacorresistência Fúngica/genética , Feminino , Proteínas Fúngicas/genética , Deleção de Genes , Rim/microbiologia , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Fenótipo , Fosforilação/genética , Proteína Fosfatase 2/genética , Virulência/genética
3.
J Cell Sci ; 127(Pt 22): 4974-83, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25236599

RESUMO

Sister chromatid bi-orientation on the mitotic spindle is essential for proper chromosome segregation. Defects in bi-orientation are sensed and corrected to prevent chromosome mis-segregation and aneuploidy. This response depends on the adaptor protein Sgo1, which associates with pericentromeric chromatin in mitosis. The mechanisms underlying Sgo1 function and regulation are unclear. Here, we show that Sgo1 is an anaphase-promoting complex/cyclosome (APC/C) substrate in budding yeast (Saccharomyces cerevisiae), and that its mitotic destruction depends on an unusual D-box-related sequence motif near its C-terminus. We find that the removal of Sgo1 from chromosomes before anaphase is not dependent on its destruction, but rather on other mechanisms responsive to tension between sister chromatids. Additionally, we find that Sgo1 recruits the protein phosphatase 2A (PP2A) isoform containing Rts1 to the pericentromeric region prior to bi-orientation, and that artificial recruitment of Rts1 to this region of a single chromosome is sufficient to perform the function of Sgo1 on that chromosome. We conclude that in early mitosis, Sgo1 associates transiently with pericentromeric chromatin to promote bi-orientation, in large part by recruiting the Rts1 isoform of PP2A.


Assuntos
Cromátides/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromátides/genética , Segregação de Cromossomos , Cromossomos Fúngicos , Cromossomos Humanos , Humanos , Mitose/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
DNA Res ; 31(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300630

RESUMO

While conjugation-related genes have been identified in many plasmids by genome sequencing, functional analyses have not yet been performed in most cases, and a full set of conjugation genes has been identified for only a few plasmids. Rts1, a prototype IncT plasmid, is a conjugative plasmid that was originally isolated from Proteus vulgaris. Here, we conducted a systematic deletion analysis of Rts1 to fully understand its conjugation system. Through this analysis along with complementation assays, we identified 32 genes that are required for the efficient conjugation of Rts1 from Escherichia coli to E. coli. In addition, the functions of the 28 genes were determined or predicted; 21 were involved in mating-pair formation, three were involved in DNA transfer and replication, including a relaxase gene belonging to the MOBH12 family, one was involved in coupling, and three were involved in transcriptional regulation. Among the functionally well-analysed conjugation systems, most of the 28 genes showed the highest similarity to those of the SXT element, which is an integrative conjugative element of Vibrio cholerae. The Rts1 conjugation gene set included all 23 genes required for the SXT system. Two groups of plasmids with conjugation systems nearly identical or very similar to that of Rts1 were also identified.


Assuntos
Conjugação Genética , Escherichia coli , Escherichia coli/genética , Plasmídeos/genética , Sequência de Bases , Mapeamento Cromossômico , DNA Bacteriano/genética
5.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961087

RESUMO

Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism Saccharomyces cerevisiae. We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis. Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2ARts1), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2ARts1-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes.

6.
Microbiol Res ; 260: 127031, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35461031

RESUMO

In Saccharomyces cerevisiae, impairment of protein phosphatase PP2ARts1 leads to temperature and hyperosmotic stress sensitivity, yet the underlying mechanism and the scope of action of the phosphatase in the stress response remain elusive. Using a quantitative mass spectrometry-based approach we have identified a set of putative substrate proteins that show both hyperosmotic stress- and PP2ARts1-dependent changes in their phosphorylation pattern. A comparative analysis with published MS-shotgun data revealed that the phosphorylation status of many of these sites is regulated by the MAPKAP kinase Rck2, suggesting that the phosphatase antagonizes Rck2 signaling. Detailed gel mobility shift assays and protein-protein interaction analysis strongly indicate that Rck2 activity is directly regulated by PP2ARts1 via a SLiM B56-family interaction motif, revealing how PP2ARts1 influences the response to hyperosmotic stress in Yeast.


Assuntos
Pressão Osmótica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteína Fosfatase 2 , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia
7.
Genetics ; 213(2): 517-528, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31488515

RESUMO

Cell size is proportional to growth rate. Thus, cells growing rapidly in rich nutrients can be nearly twice the size of cells growing slowly in poor nutrients. This proportional relationship appears to hold across all orders of life, yet the underlying mechanisms are unknown. In budding yeast, most growth occurs during mitosis, and the proportional relationship between cell size and growth rate is therefore enforced primarily by modulating growth in mitosis. When growth is slow, the duration of mitosis is increased to allow more time for growth, yet the amount of growth required to complete mitosis is reduced, which leads to the birth of small daughter cells. Previous studies have found that Rts1, a member of the conserved B56 family of protein phosphatase 2A regulatory subunits, works in a TORC2 signaling network that influences cell size and growth rate. However, it was unclear whether Rts1 influences cell growth and size in mitosis. Here, we show that Rts1 is required for the proportional relationship between cell size and growth rate during mitosis. Moreover, nutrients and Rts1 influence the duration and extent of growth in mitosis via Wee1 and Pds1/securin, two conserved regulators of mitotic progression. Together, the data are consistent with a model in which global signals that set growth rate also set the critical amount of growth required for cell cycle progression, which would provide a simple mechanistic explanation for the proportional relationship between cell size and growth rate.


Assuntos
Proteínas de Ciclo Celular/genética , Tamanho Celular , Proteína Fosfatase 2/genética , Proteínas Tirosina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Securina/genética , Proliferação de Células/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mitose/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais
8.
Elife ; 82019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30667359

RESUMO

Homologous recombination helps ensure the timely completion of genome duplication by restarting collapsed replication forks. However, this beneficial function is not without risk as replication restarted by homologous recombination is prone to template switching (TS) that can generate deleterious genome rearrangements associated with diseases such as cancer. Previously we established an assay for studying TS in Schizosaccharomyces pombe (Nguyen et al., 2015). Here, we show that TS is detected up to 75 kb downstream of a collapsed replication fork and can be triggered by head-on collision between the restarted fork and RNA Polymerase III transcription. The Pif1 DNA helicase, Pfh1, promotes efficient restart and also suppresses TS. A further three conserved helicases (Fbh1, Rqh1 and Srs2) strongly suppress TS, but there is no change in TS frequency in cells lacking Fml1 or Mus81. We discuss how these factors likely influence TS.


Assuntos
Replicação do DNA/genética , Recombinação Homóloga/genética , Schizosaccharomyces/genética , Moldes Genéticos , Pareamento de Bases/genética , Mutação/genética , RNA de Transferência/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Wellcome Open Res ; 3: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721551

RESUMO

Background: Understanding DNA replication initiation is essential to understand the mis-regulation of replication seen in cancer and other human disorders. DNA replication initiates from DNA replication origins. In eukaryotes, replication is dependent on cell cycle kinases which function during S phase. Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) act to phosphorylate the DNA helicase (composed of mini chromosome maintenance proteins: Mcm2-7) and firing factors to activate replication origins. It has recently been found that Rif1 can oppose DDK phosphorylation. Rif1 can recruit protein phosphatase 1 (PP1) to dephosphorylate MCM and restricts origin firing. In this study, we investigate a potential role for another phosphatase, protein phosphatase 2A (PP2A), in regulating DNA replication initiation. The PP2A regulatory subunit Rts1 was previously identified in a large-scale genomic screen to have a genetic interaction with ORC2 (a DNA replication licensing factor). Deletion of RTS1 synthetically rescued the temperature-sensitive (ts-) phenotype of ORC2 mutants. Methods: We deleted RTS1 in multiple ts-replication factor Saccharomyces cerevisiae strains, including ORC2.  Dilution series assays were carried out to compare qualitatively the growth of double mutant ∆rts1 ts-replication factor strains relative to the respective single mutant strains.   Results: No synthetic rescue of temperature-sensitivity was observed. Instead we found an additive phenotype, indicating gene products function in separate biological processes. These findings are in agreement with a recent genomic screen which found that RTS1 deletion in several ts-replication factor strains led to increased temperature-sensitivity. Conclusions: We find no evidence that Rts1 is involved in the dephosphorylation of DNA replication initiation factors.

10.
Genetics ; 210(1): 155-170, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986907

RESUMO

Nutrient availability, growth rate, and cell size are closely linked. For example, in budding yeast, the rate of cell growth is proportional to nutrient availability, cell size is proportional to growth rate, and growth rate is proportional to cell size. Thus, cells grow slowly in poor nutrients and are nearly half the size of cells growing in rich nutrients. Moreover, large cells grow faster than small cells. A signaling network that surrounds TOR kinase complex 2 (TORC2) plays an important role in enforcing these proportional relationships. Cells that lack components of the TORC2 network fail to modulate their growth rate or size in response to changes in nutrient availability. Here, we show that budding yeast homologs of the Lkb1 tumor suppressor kinase are required for normal modulation of TORC2 signaling in response to changes in carbon source. Lkb1 kinases activate Snf1/AMPK to initiate transcription of genes required for utilization of poor carbon sources. However, Lkb1 influences TORC2 signaling via a novel pathway that is independent of Snf1/AMPK. Of the three Lkb1 homologs in budding yeast, Elm1 plays the most important role in modulating TORC2. Elm1 activates a pair of related kinases called Gin4 and Hsl1. Previous work found that loss of Gin4 and Hsl1 causes cells to undergo unrestrained growth during a prolonged mitotic arrest, which suggests that they play a role in linking cell cycle progression to cell growth. We found that Gin4 and Hsl1 also control the TORC2 network. In addition, Gin4 and Hsl1 are themselves influenced by signals from the TORC2 network, consistent with previous work showing that the TORC2 network constitutes a feedback loop. Together, the data suggest a model in which the TORC2 network sets growth rate in response to carbon source, while also relaying signals via Gin4 and Hsl1 that set the critical amount of growth required for cell cycle progression. This kind of close linkage between control of cell growth and size would suggest a simple mechanistic explanation for the proportional relationship between cell size and growth rate.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Crescimento Celular , Proliferação de Células/genética , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transdução de Sinais/genética
11.
Curr Biol ; 28(2): 196-210.e4, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29290562

RESUMO

The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2ARts1) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA