Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Saudi Pharm J ; 30(6): 863-873, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812142

RESUMO

Sodium-glucose co-transporter 2 (SGLT 2) inhibitors are a relatively new antidiabetic drug with antioxidant and anti-inflammatory properties. Therefore, this study aimed to investigate whether SGLT 2 inhibitors have a neuroprotective effect in PD. Twenty-four Wistar rats were randomized into four groups. The first one (control group) received dimethyl sulfoxide (DMSO) as a vehicle (0.2 mL/48 hr, S.C). The second group (positive control) received rotenone (ROT) (2.5 mg/kg/48 hr, S.C) for 20 successive days, whereas the third and fourth groups received empagliflozin (EMP) (1 and 2 mg/kg/day, orally), respectively. The two groups received rotenone (2.5 mg/kg/48 hr S.C) concomitantly with EMP for another 20 days on the fifth day. By the end of the experimental period, behavioral examinations were done. Subsequently, rats were sacrificed, blood samples and brain tissues were collected for analysis. ROT significantly elevated oxidative stress and proinflammatory markers as well as α-synuclein. However, dopamine (DP), antioxidants, tyrosine hydroxylase (TH), and Parkin were significantly decreased. Groups of (EMP + ROT) significantly maintained oxidative stress and inflammatory markers elevation, maintained α-synuclein and Parkin levels, and elevated TH activity and dopamine level. In both low and high doses, EMP produced a neuroprotective effect against the PD rat model, with the high dose inducing a more significant effect.

2.
Br J Nutr ; 116(2): 223-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27264638

RESUMO

The endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.


Assuntos
Antioxidantes/farmacologia , Doenças Cardiovasculares/fisiopatologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , Complicações do Diabetes/sangue , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/etiologia , Óxido Nítrico Sintase/sangue , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/sangue
3.
Front Endocrinol (Lausanne) ; 12: 713192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744998

RESUMO

Background: Hypoglycemia is an important event that could be related to increased mortality in patients with diabetes. The risk of hypoglycemia is not clearly illustrated to increase when Sodiumglucose co-transporter 2 (SGLT-2) inhibitors are used concomitantly with sulfonylureas. The present study will assess the risk of hypoglycemia associated with the concomitant use of SGLT-2 inhibitors and sulfonylureas compared with placebo and sulfonylureas. Method: We searched Medline, EMBASE, Cochrane Central Register of Controlled Trials, and Clinicaltrial.gov and identified the randomized trials comparing SGLT-2 inhibitors with placebo for type 2 diabetes treated with sulfonylureas. The risk of bias in each trial was assessed using the Cochrane tool. The risk ratio of hypoglycemia was measured using the Mantel Haenszel method. We also performed subgroup analysis to examine the dosage effects. The number needed to harm (NNH) was measured according to the duration of intervention. Results: A total of 12 studies, including 3761 participants, were enrolled in our systematic review and meta-analysis. The risk ratio of hypoglycemia was 1.67 (95% CI 1.42 to 1.97). The NNH was 13 (95% CI 9 to 21) for a treatment duration of 24 weeks or less, 11 (8 to 18) for 25 to 48 weeks, and 7 (5 to 10) for more than 48 weeks. Subgroup analysis showed that no difference was found between higher and lower doses of SGLT-2 inhibitors. The risk ratio related to lower dose SGLT-2 inhibitors was 1.56 (95% CI 1.30 to 1.88), and the risk ratio related to higher dose SGLT-2 inhibitors was 1.70 (95% CI 1.42 to 2.04). Conclusions: The risk of hypoglycemia was significantly increased in subjects treated with SGLT-2 inhibitors compared with placebo. Addition of SGLT-2 inhibitors to sulfonylureas would lead to one more case of hypoglycemia in every 13 patients with a treatment duration less than 24 weeks. This suggests that a decrease in sulfonylureas dose may be an important recommendation when adding SGLT-2 inhibitors to sulfonylureas.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemia/induzido quimicamente , Hipoglicemiantes , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Compostos de Sulfonilureia/efeitos adversos , Quimioterapia Combinada/efeitos adversos , Humanos , Hipoglicemia/epidemiologia , Razão de Chances , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Compostos de Sulfonilureia/administração & dosagem
4.
Mol Genet Metab Rep ; 29: 100813, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712576

RESUMO

Glycogen Storage Disease type 1b (GSDIb) is a genetic disorder with long term severe complications. Accumulation of the glucose analog 1,5-anhydroglucitol-6-phosphate (1,5AG6P) in neutrophils inhibits the phosphorylation of glucose in these cells, causing neutropenia and neutrophil dysfunctions. This condition leads to serious infections and inflammatory bowel disease (IBD) in GSDIb patients. We show here that dapagliflozin, an inhibitor of the renal sodium-glucose co-transporter-2 (SGLT2), improves neutrophil function in an inducible mouse model of GSDIb by reducing 1,5AG6P accumulation in myeloid cells.

5.
JACC Basic Transl Sci ; 6(8): 705-718, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466757

RESUMO

An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.

6.
Metabol Open ; 7: 100049, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015603

RESUMO

BACKGROUND: Sodium-glucose co-transporter 2 (SGLT2) inhibitor, a new class of glucose lowering agents, has been shown to be reno-protective in diabetes. OBJECTIVE: We aimed to explore whether SGLT2 inhibitor ipragliflozin has a direct reno-protective effect on non-diabetic chronic kidney disease (CKD) in mice. METHODS: CKD mice was induced by feeding of 0.25% w/w adenine containing diet. Low dose ipragliflozin (0.03 or 0.1 mg/kg/day) was orally administered to CKD mice for 4 weeks, concomitantly with adenine containing diet. RESULTS: CKD mice exhibited increases in kidney weight/body weight ratio, plasma creatinine levels, urinary fatty acid binding protein 1 excretion and plasma interleukin-6 levels, and a decrease in hematocrit, accompanied by morphological changes such as crystal deposits in the tubules, tubular dilatation, interstitial fibrosis, and increased 8-hydroxy-2'-deoxyguanosine staining. Low dose ipragliflozin (0.03 or 0.1 mg/kg/day) did not affect either plasma glucose levels or urinary glucose excretion, while it improved levels in plasma creatinine (P < 0.05 for 0.03 mg/kg/day, P < 0.001 for 0.1 mg/kg/day), interleukin-6 (P < 0.05 for 0.1 mg/kg/day) and hematocrit (P < 0.05 for 0.1 mg/kg/day), and morphological changes dose-dependently except crystal deposit formation in the CKD mice. CONCLUSIONS: Low-dose ipragliflozin has a reno-protective effect in non-diabetic adenine-induced CKD mice, independently of plasma glucose levels and urinary glucose excretion. Low dose SGLT2 inhibitor may be a useful therapeutic option for non-diabetic CKD with the advantage of fewer adverse effects.

7.
JHEP Rep ; 2(6): 100192, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33163950

RESUMO

Non-alcoholic fatty liver disease (NAFLD), specifically its progressive form non-alcoholic steatohepatitis (NASH), represents the fastest growing indication for liver transplantation in Western countries. Diabetes mellitus, morbid obesity and cardiovascular disease are frequently present in patients with NAFLD who are candidates for liver transplantation. These factors require specific evaluation, including a detailed pre-surgical risk stratification, in order to improve outcomes after liver transplantation. Moreover, in the post-transplantation setting, the incidence of cardiovascular events and metabolic complications can be amplified by immunosuppressive therapy, which is a well-known driver of metabolic alterations. Indeed, patients with NASH are more prone to developing early post-transplant complications and, in the long-term, de novo malignancy and cardiovascular events, corresponding to higher mortality rates. Therefore, a tailored multidisciplinary approach is required for these patients, both before and after liver transplantation. Appropriate candidate selection, lifestyle modifications and specific assessment in the pre-transplant setting, as well as pharmacological strategies, adjustment of immunosuppression and a healthy lifestyle in the post-transplant setting, play a key role in correct management.

8.
Saudi J Biol Sci ; 26(2): 421-426, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31485187

RESUMO

To describe the effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid (SUA) in patients with type 2 diabetes mellitus (T2DM). PubMed, EMBASE, and CENTRAL were searched for randomized controlled trials of SGLT2 inhibitors in patients with T2DM up to Aug 10, 2017, without language or date restrictions. Thirty-one studies totaling 13,650 patients were included. SGLT2 inhibitors significantly decreased SUA levels compared with placebo, canagliflozin WMD -37.02 µmol/L, 95% CI [-38.41, -35.63], dapagliflozin WMD -38.05 µmol/L, 95% CI [-44.47, -31.62], empagliflozin WMD -42.07 µmol/L, 95% CI [-46.27, -37.86]. The drug class effect of SUA reduction suggesting SGLT2 inhibitors might be beneficial for diabetic patients with hyperuricemia.

9.
J Clin Transl Endocrinol ; 15: 45-53, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30619718

RESUMO

Diabetes is a common metabolic disorder that involves glucose, amino acids, and fatty acids. Either insulin deficiency or insulin resistance may cause diabetes. Insulin deficiency causes type 1 diabetes and diabetes associated with total pancreatectomy. Glucagon produces insulin resistance. Glucagon-induced insulin resistance promotes type 2 diabetes and diabetes associated with glucagonoma. Further, glucagon-induced insulin resistance aggravates the metabolic consequences of the insulin-deficient state. A major metabolic effect of insulin is the accumulation of glucose as glycogen in the liver. Glucagon opposes hepatic insulin action and enhances the rate of gluconeogenesis, increasing hepatic glucose output. In order to support gluconeogenesis, glucagon promotes skeletal muscle wasting to supply amino acids as gluconeogenic precursors. Glucagon promotes hepatic fatty acid oxidation to supply energy required to sustain gluconeogenesis. Hepatic fatty acid oxidation generates ß-hydroxybutyrate and acetoacetate (ketogenesis). Prospective studies reveal that elevated glucagon secretion at baseline occurs in healthy subjects who develop impaired glucose tolerance at follow-up compared with subjects who maintain normal glucose tolerance, suggesting a relationship between elevated glucagon secretion and development of impaired glucose tolerance. Prospective studies have identified animal protein consumption as an independent risk factor for type 2 diabetes and cardiovascular disease. Animal protein intake activates glucagon secretion inducing sustained elevations in plasma glucagon. Glucagon is a major hormone that causes insulin resistance. Insulin resistance is an established cardiovascular risk factor additionally to its pathogenic role in diabetes. Glucagon may be a potential link between animal protein intake and the risk of developing type 2 diabetes and cardiovascular disease.

10.
Biochem Biophys Rep ; 15: 103-106, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30148215

RESUMO

The sympathetic nervous system plays a crucial role in metabolic function and glucose homeostasis. Norepinephrine is the main neurotransmitter released from sympathetic neurons. The major goal of our studies was to examine the impact of norepinephrine on metabolism related gene expression in obesity in vivo. Interestingly, we discovered that norepinephrine had a detrimental effect in our studies. C57BL6/J mice fed a high fat diet were intraperitoneally injected with 0.2 or 2 mg/kg/day norepinephrine. These doses of norepinephrine have been used previously by other researchers. Survival of the mice was documented. Kidney and bladder tissues were excised and fixed for histological studies. A subset of norepinephrine treated mice experienced unexpected adverse events which included bladder distension and reduced kidney perfusion as suggested by kidney discolouration. This eventuated in the mice having to be sacrificed or the mice succumbed to the pathological condition. To our knowledge, such an effect of norepinephrine has not been previously reported in mice. Morphological examination of kidney and bladder indicated marked detrimental architectural changes, which we postulate is associated with norepinephrine induced vasoconstriction, urinary retention and renal impairment. Our studies highlight that administration of norepinephrine to mice may trigger adverse effects relating predominantly to the urogenital tract which can result in decline in a subpopulation of these mice. Researchers administering norepinephrine in mouse models should be aware and look out for these unexpected adverse events associated with the use of norepinephrine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA