Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 222, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775731

RESUMO

According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.

2.
J Biol Chem ; 289(19): 13374-84, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24652292

RESUMO

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.


Assuntos
Carnitina Aciltransferases/química , Mitocôndrias/genética , Proteínas Mitocondriais/química , Aminoácidos Básicos/química , Aminoácidos Básicos/genética , Aminoácidos Básicos/metabolismo , Transporte Biológico Ativo/fisiologia , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Comput Struct Biotechnol J ; 19: 5600-5612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34849194

RESUMO

In mitochondria, metabolic processes require the trafficking of solutes and organic molecules, such as amino acids. This task is accomplished by the Mitochondrial Carrier Family members (also known as SLC25), among which the SLC25A29 is responsible for the translocation of basic amino acids. In this regard, nitric oxide levels originated by the arginine mitochondrial catabolism have been shown to strongly affect cancer cells' metabolic status. Furthermore, the metabolic disease saccharopinuria has been linked to a mitochondrial dysregulation caused by a toxic intermediate of the lysine catabolism. In both cases, a reduction of the activity of SLC25A29 has been shown to ameliorate these pathological conditions. However, no detailed structural data are available on SLC25A29. In the present work, molecular modelling, docking and dynamics simulations have been employed to analyse the structural determinants of ligands recognition by SLC25A29 in the c-state. Results confirm and reinforce earlier predictions that Asn73, Arg160 and Glu161, and Arg257 represent the ligand contact points I, II, and III, respectively, and that Arg160, Trp204 and Arg257 form a stable interaction, likely critical for ligand binding and translocation. These results are discussed in view of the experimental data available for SLC25A29 and other homologous carriers of the same family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA