Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Arch Toxicol ; 98(5): 1561-1572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498159

RESUMO

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.


Assuntos
Esfingomielina Fosfodiesterase , Picada de Aranha , Venenos de Aranha , Humanos , Esfingomielina Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/toxicidade , Rim , Morte Celular
2.
Arch Toxicol ; 97(12): 3285-3301, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37707622

RESUMO

Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.


Assuntos
Esfingomielina Fosfodiesterase , Venenos de Aranha , Animais , Humanos , Inflamação , Interleucina-1/metabolismo , Diester Fosfórico Hidrolases/toxicidade , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo , Aranhas/química , Aranhas/metabolismo , Venenos de Aranha/toxicidade , Picada de Aranha/patologia , Receptores ErbB/metabolismo
3.
Exp Parasitol ; 254: 108616, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696328

RESUMO

Sphingomyelinase D is a toxin present in venomous spiders and bacteria and is associated with infection symptoms in patients affected by spider bites. It was observed that in Ixodes scapularis ticks, sphingomyelinase-like protein secreted in saliva can modulate the host immune response, affecting the transmission of flavivirus to the host via exosomes. In this work, a sphingomyelinase D-like protein (RmSMase) from R. microplus, a tick responsible for economic losses and a vector of pathogens for cattle, was investigated. The amino acid sequence revealed the lack of important residues for enzymatic activity, but the recombinant protein showed sphingomyelinase D activity. RmSMase shows Ca2+ and Mg2+ dependence in acidic pH, differing from IsSMase, which has Mg2+ dependence in neutral pH. Due to the difference between RmSMase and other SMases described, the data suggest that RmSMase belongs to SMase D class IIc. RmSMase mRNA transcription levels are upregulated during tick feeding, and the recombinant protein was recognized by host antibodies elicited after heavy tick infestation, indicating that RmSMase is present in tick saliva and may play a role in the tick feeding process.

4.
Arch Toxicol ; 94(10): 3563-3577, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32607614

RESUMO

The spiders of the Loxosceles genus (called brown or violin spiders) are of medical relevance in several countries due to the many human envenomation cases reported. The main component of Loxosceles venom is the enzyme sphingomyelinase D (SMase D), which is responsible for the local and systemic effects induced by the whole venom. Here, we investigated the cytotoxic and genotoxic effects caused by Loxosceles laeta venom and SMase D on human keratinocytes to better understand the dermonecrosis development mechanism. Our findings indicate that whole venom, as well as SMase D, increases intracellular superoxide levels, leading to DNA damage. These effects appear to be dependent on the binding of SMase D to the cell surface, although the complete pathway triggered as a result of the binding still needs to be elucidated. Moreover, after SMase D treatment, we observed the presence of histone γH2AX, suggesting that the cells are undergoing DNA repair. Moreover, when ATR kinase was inhibited, the cell viability of human keratinocytes was decreased. Together, our findings strongly suggest that L. laeta venom, as well as SMase D, increases intracellular superoxide levels, leading to DNA damage in human keratinocytes. Additionally, the induced DNA damage is repaired through the activation of an apparent ATR-mediated DNA-damage response. This knowledge may contribute to a better understanding of the behaviour of human keratinocytes during cutaneous loxoscelism, a condition that affects thousands of people around the world.


Assuntos
Dano ao DNA/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Diester Fosfórico Hidrolases/toxicidade , Venenos de Aranha/toxicidade , Superóxidos/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular , Células HaCaT , Histonas/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Aranhas/enzimologia , Superóxidos/análise
5.
J Enzyme Inhib Med Chem ; 34(1): 310-321, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30734604

RESUMO

Loxosceles spiders' venoms consist of a mixture of proteins, including the sphingomyelinases D (SMases D), which are the main toxic components responsible for local and systemic effects in human envenomation. Herein, based on the structural information of SMase D from Loxosceles laeta spider venom and virtual docking-based screening approach, three benzene sulphonate compounds (named 1, 5 and 6) were identified as potential Loxosceles SMase D inhibitors. All compounds inhibited the hydrolysis of the sphingomyelin substrate by both recombinant and native SMases D. Compounds 5 and 6 acted as SMases D uncompetitive inhibitors with Ki values of 0.49 µM and 0.59 µM, respectively. Compound 1 is a mixed type inhibitor, and presented a Ki value of 0.54 µM. In addition, the three compounds inhibited the binding of SMases D to human erythrocytes and the removal of glycophorin C from the cell surface, which are important events in the complement-dependent haemolysis induced by Loxosceles venom. Moreover, compounds 5 and 6 reduced the binding of SMases to human keratinocytes membrane and the venom induced cell death. Importantly, compounds 5 and 6 also controlled the development of the necrotic lesion in an in vivo model of loxoscelism. Together, our findings indicate that the novel SMase D inhibitors presented here are able to suppress both local and systemic reactions induced by Loxosceles venoms. Since the number of Loxosceles envenomation accidents is currently growing worldwide, our results indicate that both inhibitors are promising scaffolds for the rational design of new drugs targeting SMases D from these spiders.


Assuntos
Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Dermatopatias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Picada de Aranha/tratamento farmacológico , Animais , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Coelhos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Aranhas
6.
J Cell Biochem ; 118(8): 2053-2063, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27808444

RESUMO

Sphingomyelinases D have only been identified in arachnid venoms, Corynebacteria, Arcanobacterium, Photobacterium and in the fungi Aspergillus and Coccidioides. The arachnid and bacterial enzymes share very low sequence identity and do not contain the HKD sequence motif characteristic of the phospholipase D superfamily, however, molecular modeling and circular dichroism of SMases D from Loxosceles intermedia and Corynebacterium pseudotuberculosis indicate similar folds. The phospholipase, hemolytic and necrotic activities and mice vessel permeabilities were compared and both enzymes possess the ability to hydrolyze phospholipids and also promote similar pathological reactions in the host suggesting the existence of a common underlying mechanism in tissue disruption. J. Cell. Biochem. 118:2053-2063, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Artrópodes/toxicidade , Proteínas de Bactérias/toxicidade , Permeabilidade Capilar/efeitos dos fármacos , Corynebacterium pseudotuberculosis/química , Diester Fosfórico Hidrolases/toxicidade , Aranhas/química , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Corynebacterium pseudotuberculosis/enzimologia , Corynebacterium pseudotuberculosis/patogenicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hemólise/efeitos dos fármacos , Cavalos , Humanos , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Carneiro Doméstico , Pele/efeitos dos fármacos , Pele/patologia , Aranhas/enzimologia , Aranhas/patogenicidade
7.
Biochim Biophys Acta Biomembr ; 1859(5): 888-895, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28126480

RESUMO

We introduce a custom-built instrument designed to perform fast LAURDAN Generalized Polarization (GP) imaging on planar supported membranes. It is mounted on a widefield fluorescence microscope and allows kinetic analysis of the GP function in the millisecond time scale, largely improving the temporal resolution previously achieved using laser scanning based microscopes. A dedicated protocol to calibrate LAURDAN GP data obtained with charge-coupled device (CCD) cameras as detectors is also presented, enabling reliable assignment of GP values in the field of view. Using this methodology we studied structural and dynamical transformations induced by Sphingomyelinase D (SM-D) on planar supported membranes composed of N-lauroyl sphingomyelin (C12SM). GP data show the evolution of an initially compositionally homogeneous symmetric bilayer existing in a single liquid disordered phase, to an intermediate configuration showing coexistence of liquid disordered and solid ordered domains, which are not always in-register across the axial plane of the bilayer. This intermediate state, caused by the transformation of C12SM to C12-ceramide-1-phosphate in the distal leaflet of the bilayer, evolved to a single solid ordered phase at longer time scales. Additionally, we comparatively studied this system using the membrane fluorophore DiIC18. The advantages and limitations of both fluorescent dyes are discussed, emphasizing the adequacy of LAURDAN GP imaging to explore this type of membrane phenomena.


Assuntos
2-Naftilamina/análogos & derivados , Polarização de Fluorescência , Corantes Fluorescentes , Lauratos , Bicamadas Lipídicas/química , Diester Fosfórico Hidrolases/metabolismo , Imagem Óptica
8.
Toxins (Basel) ; 13(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916208

RESUMO

The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one of the most toxic Loxosceles venoms. We show here that S. tropicus venom presents active SMases D. However, regarding hemolysis development, it seems that these toxins in this species present different molecular mechanisms of action than that described for Loxosceles venoms, whereas it is similar to those present in bacteria containing SMase D. Besides, our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms' composition may play a role in the toxic potential of venoms from Sicarius species.


Assuntos
Evolução Molecular , Hemólise/efeitos dos fármacos , Diester Fosfórico Hidrolases/toxicidade , Venenos de Aranha/toxicidade , Aranhas/enzimologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HaCaT , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Masculino , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fatores Sexuais , Especificidade da Espécie , Venenos de Aranha/enzimologia , Venenos de Aranha/genética , Aranhas/classificação , Aranhas/genética
9.
Toxicon ; 191: 1-8, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33347860

RESUMO

The Loxosceles genus belongs to the Sicariidae family and it comprises species whose venom can cause accidents with potentially fatal consequences. We have previously shown that SMase D is the enzyme responsible for the main pathological effects of Loxosceles venom. Despite the severity of accidents with Loxosceles, few species are considered to be of medical importance. Little is known about the venom of non-synanthropic species that live in natural environments. To contribute to a better understanding about the venom's toxicity of Loxosceles genus, the aim of this study was to (i) characterize the toxic properties of Loxosceles amazonica from two different localities and a recent described cave species Loxosceles willianilsoni and (ii) compare these venoms with that from Loxosceles laeta, which is among the most toxic ones. We show here that both L. amazonica venoms (from the two studied locations) and L. willianilsoni presented SMase D activity similar to that exhibited by L. laeta venom. Although L. amazonica and L. willianilsoni venoms were able to induce complement dependent human erythrocytes lysis, they were not able to induce cell death of human keratinocytes, as promoted by L. laeta venom, in the concentrations tested. These results indicate that other species of Loxosceles, in addition to those classified as medically important, have toxic potential to cause accidents in humans, despite interspecific variations that denote possible less toxicity.


Assuntos
Diester Fosfórico Hidrolases/toxicidade , Venenos de Aranha/toxicidade , Animais , Eritrócitos/efeitos dos fármacos , Humanos , Queratinócitos , Picada de Aranha
10.
Toxins (Basel) ; 12(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316084

RESUMO

Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30-35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody's neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization.


Assuntos
Anticorpos Monoclonais , Antivenenos , Anticorpos de Cadeia Única , Venenos de Aranha/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antígenos/imunologia , Antivenenos/administração & dosagem , Antivenenos/imunologia , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Modelos Moleculares , Testes de Neutralização , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/imunologia , Picada de Aranha/terapia , Venenos de Aranha/efeitos adversos , Aranhas/imunologia
11.
Mol Immunol ; 94: 45-53, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29257998

RESUMO

Envenomation by Loxosceles spiders can result in severe systemic and local reactions, which are mainly triggered by Sphingomyelinase D (SMase D), a toxic component of Loxosceles venom. SMase D induces a systemic inflammatory condition similar to the reaction observed during an endotoxic shock. Considering the potent pro-inflammatory potential of Loxosceles venom and the SMase D, in this study we have used the whole human blood model to study the endotoxic-like shock triggered by SMase D. Recombinant purified SMase D from L. intermedia venom, similarly to LPS, induced activation of blood leukocytes, as observed by the increase in the expression of CD11b and TLR4, production of reactive oxygen and nitrogen species (superoxide anion and peroxynitrite) and release of TNF-α. Complement consumption in the plasma was also detected, and complement inhibition by compstatin decreased the SMase D and LPS-induced leukocyte activation, as demonstrated by a reduction in the expression of CD11b and TLR4 and superoxide anion production. Similar results were found for the L. intermedia venom, except for the production of TNF-α. These findings indicate that SMase D present in Loxosceles venom is able to activate leukocytes in a partially complement-dependent manner, which can contribute to the systemic inflammation that follows envenomation by this spider. Thus, future therapeutic management of systemic Loxosceles envenomation could include the use of complement inhibitors as adjunct therapy.


Assuntos
Proteínas do Sistema Complemento/fisiologia , Leucócitos/efeitos dos fármacos , Diester Fosfórico Hidrolases/farmacologia , Venenos de Aranha/enzimologia , Animais , Granulócitos/efeitos dos fármacos , Granulócitos/fisiologia , Humanos , Leucócitos/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Diester Fosfórico Hidrolases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Venenos de Aranha/farmacologia , Aranhas
12.
Front Immunol ; 9: 653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666624

RESUMO

Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito B/imunologia , Diester Fosfórico Hidrolases/imunologia , Venenos de Aranha/imunologia , Animais , Feminino , Imunização , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes/imunologia
13.
Toxins (Basel) ; 9(3)2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257106

RESUMO

Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D) is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP). Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.


Assuntos
Diester Fosfórico Hidrolases/toxicidade , Substâncias Protetoras/uso terapêutico , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/tratamento farmacológico , Venenos de Aranha/toxicidade , Tetraciclina/uso terapêutico , Animais , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Substâncias Protetoras/farmacologia , Proteinúria/induzido quimicamente , Insuficiência Renal/patologia , Aranhas , Tetraciclina/farmacologia
14.
Toxicon ; 132: 19-28, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408204

RESUMO

Loxosceles rufescens is a circum-Mediterranean spider species, potentially harmful to humans. Its native area covers the Mediterranean Basin and Near East. Easily spread with transported goods, it is meanwhile an alien and invasive species to nearly all other continents and many islands. This species occurs in semi-arid steppe-like habitats, typically under stones and in cavities, which enables it to settle inside buildings when invading the synanthropic environment. This review analyses the literature of L. rufescens bites to humans (38 publications) of which only 11 publications refer to 12 verified spider bites (11% of the reported bites). Two published allegedly deadly spider bites (Thailand 2014 and Italy 2016) involve non-verified spider bites and are thus not reliable. The symptoms and therapy of these 11 verified bites are described: only five cases showed moderate systemic effects, nine cases developed necrosis, four cases needed surgical debridement, all cases healed without complications within a few weeks. In conclusion, L. rufescens is a spider species globally spread by human activity, it rarely bites humans and the bites are less harmful than often described. There is no known fatal issue.


Assuntos
Picada de Aranha/patologia , Aranhas , Animais , Ecossistema , Humanos , Espécies Introduzidas , Necrose/induzido quimicamente , Especificidade da Espécie , Picada de Aranha/diagnóstico , Picada de Aranha/epidemiologia , Picada de Aranha/terapia
15.
Toxicon ; 93: 11-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25449105

RESUMO

The medical importance of Loxosceles spiders has promoted extensive research on different aspects of their venoms. Most of the reported cases of loxoscelism have occurred in the Americas, and thus, much work has focused on North and South American Loxosceles species. Interestingly, loxoscelism cases are rare in the Mediterranean Basin although Loxosceles rufescens, endemic to the Mediterranean, is an abundant spider even in human-altered areas. Thus, it has been suggested that the venom of L. rufescens could be of less medical relevance than that of its congeners. In this study, we challenge this hypothesis by using multiple approaches to study venom variation in selected species and lineages from the Mediterranean Basin and the Canary Islands. We found that SMase D activity, the key bioactive component of Loxosceles venom, is comparable to American species that are confirmed to have medically relevant bites. The venom protein composition using SDS-PAGE presents some differences among regional Loxosceles taxa in banding pattern and intensity, mostly between the Canarian and L. rufescens lineages. Differences between these species also exist in the expression of different paralogs of the SicTox gene family, with the Canarian species being less diverse. In conclusion, our results do not support the challenged hypothesis, and suggest that venom of these species may indeed be as potent as other Loxosceles species. Pending confirmation of loxoscelism with direct evidence of Loxosceles bites with species identification by professionals, Loxosceles in the Mediterranean region should conservatively be considered medically relevant taxa.


Assuntos
Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/toxicidade , Filogenia , Picada de Aranha/epidemiologia , Picada de Aranha/fisiopatologia , Venenos de Aranha/enzimologia , Sequência de Bases , Teorema de Bayes , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Região do Mediterrâneo/epidemiologia , Modelos Genéticos , Dados de Sequência Molecular , Oxazinas , Análise de Sequência de DNA , Espanha/epidemiologia , Especificidade da Espécie , Venenos de Aranha/toxicidade
16.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1418-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286953

RESUMO

Brown spider envenomation results in dermonecrosis, intravascular coagulation, haemolysis and renal failure, mainly owing to the action of sphingomyelinases D (SMases D), which catalyze the hydrolysis of sphingomyelin to produce ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidylcholine to produce lysophosphatidic acid. Here, the heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of LgRec1, a novel SMase D from Loxosceles gaucho venom, are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 52.98, b = 62.27, c = 84.84 Šand diffracted to a maximum resolution of 2.6 Å.


Assuntos
Proteínas de Artrópodes/química , Diester Fosfórico Hidrolases/química , Venenos de Aranha/enzimologia , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular
17.
Toxicon ; 86: 59-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24878371

RESUMO

A chimeric protein (rCpLi) was constructed expressing three epitopes of rLiD1, a dermonecrotic toxin from the venom of Loxosceles intermedia spider. We have analyzed the neutralization potential of sera obtained by immunization of horses with rCpLi and rCpLi combined with initial doses of venoms and compared these with antivenom traditionally produced in horses using crude Loxosceles gaucho, Loxosceles laeta and L. intermedia venoms as antigens. We have demonstrated by ELISA that horses immunized with three initial doses of crude venom containing mixtures of L. intermedia, L. gaucho and L. laeta followed by nine doses of rCpLi generate antibodies with the same reactivity as those produced following immunization with traditional antivenom, towards the venoms of the three Loxosceles sp. species. Results from in vivo and in vitro neutralization assays showed that the new horse sera are able to neutralize the dermonecrotic activity of Loxosceles venoms, which are of medical importance in Brazil and some of these sera are capable of meeting the necessary potency requirements that could allow for their therapeutic use in humans. This immunization strategy combining both antigens used approximately 67% less crude Loxosceles venoms compared to traditional immunization protocol and can mean the development of Loxosceles antivenoms with the consequent reduction of devastation of arachnid fauna.


Assuntos
Antivenenos/biossíntese , Cavalos/imunologia , Diester Fosfórico Hidrolases/imunologia , Proteínas Recombinantes de Fusão/imunologia , Venenos de Aranha/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Imunização/métodos , Imunização/veterinária , Testes de Neutralização
18.
Med. interna Méx ; 33(1): 18-27, ene.-feb. 2017. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-894231

RESUMO

Resumen ANTECEDENTES: el loxoscelismo es una intoxicación por la mordedura de la araña Loxosceles reclusa, cuyo veneno contiene esfingomielinasa-D, causante de hemólisis y necrosis. Se reporta una serie de casos que describen su evolución clínica y respuesta al tratamiento. OBJETIVO: describir la evolución y características clínicas de pacientes con loxoscelismo sistémico y dermonecrótico, su respuesta al tratamiento y las complicaciones. PACIENTES Y MÉTODO: estudio que incluyó el análisis descriptivo de pacientes tratados en el servicio de Medicina Interna, Unidad Médica de Alta Especialidad Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, de 2010 a 2015. RESULTADOS: se atendieron ocho hombres (67%) y cuatro mujeres (33%), con edad media de 39.4 años (16-83 años). El sitio de mordedura en cinco casos (42%) fue el miembro pélvico izquierdo; cuatro casos en el miembro torácico derecho (33%), dos en la cara (17%) y uno en el miembro torácico izquierdo (9%). Nueve casos provenían del Estado de México, dos de la Ciudad de México y uno de Hidalgo. Manifestación clínica: flictenas (cinco casos), edema y eritema (tres), placa liveloide (tres) y necrosis (un caso). Nueve (75%) pacientes se trataron inicialmente en la unidad de cuidados intensivos. Se reportaron las siguientes complicaciones sistémicas: renales (67%), pulmonares con administración de aminas (33%) y hematológicas (8%). Diez casos recibieron faboterápico, con media de 1.5 viales (0 a 4); cinco casos (42%) recibieron dapsona y cuatro de ellos (33%) padecieron metahemoglobinemia; once (92%) pacientes requirieron lavado-desbridación y 7 (58%) injerto cutáneo; cuatro pacientes (33%) tuvieron infección agregada de la herida. El promedio de estancia hospitalaria fue 16.2 días (3 a 40 días). CONCLUSIÓN: la evolución y pronóstico de esta afección depende de una sospecha inicial, diagnóstico y tratamiento oportunos. El loxoscelismo debe incluirse en los diagnósticos diferenciales de lesiones necróticas y progresivas, con o sin afección sistémica.


Abstract BACKGROUND: Loxoscelism is a poisoning caused by the bite of Loxosceles recluse spider, whose venom contains sphingomyelinaseD, causing hemolysis and necrosis. We report a case series describing their clinical course and response to treatment. OBJECTIVE: To describe the evolution and clinical characteristics of patients with systemic and dermonecrotic loxoscelism, their response to treatment and complications. PATIENTS AND METHOD: A descriptive analysis of patients treated in the Internal Medicine Service, Centro Médico Nacional La Raza, from 2010 to 2015. RESULTS: A total of 8 men (67%) and 4 women (33%) were included. Mean age was 39.4 years (16-83 years). Bite site was left pelvic limb in 5 cases (42%), 4 in the right forelimb (33%), 2 in the face (17%) and 1 in left forelimb (9%). Nine cases came from Estado de México, 2 from Mexico City and 1 from Hidalgo. Initial manifestations included blisters (five cases), edema and erythema (three cases), liveloide plate (three cases) and necrosis (one case). Nine (75%) patients were initially managed in ICU. Systemic complications were renal (67%), lung with use of amines (33%) and hematological (8%). Ten cases were treated with fabotherapy, with an average of 1.5 vials (0-4). Five cases (42%) received dapsone and 4 of them (33%) developed methemoglobinemia. Eleven (92%) required surgical washing and debridement and 7 (58%) skin graft; four patients (33%) had secondary wound infection. Average hospital stay was 16.2 days (3-40 days). CONCLUSIONS: The evolution and prognosis depends on initial suspicion early diagnosis and treatment. Loxoscelism should be included in the differential diagnosis of progressive necrotic lesions, with or without systemic involvement.

19.
J Vet Emerg Crit Care (San Antonio) ; 19(4): 329-36, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25164631

RESUMO

OBJECTIVE: To provide a comprehensive review of relevant literature regarding the brown recluse spider (BRS) and to define those criteria that must be satisfied before making a diagnosis of brown recluse envenomation. ETIOLOGY: The complex venom of the BRS contains sphingomyelinase D, which is capable of producing all the clinical signs in the human and some animal models. DIAGNOSIS: There is no current commercially available test. In humans there are many proposed guidelines to achieve a definitive diagnosis; however, there are no established guidelines for veterinary patients. THERAPY: Currently, no consensus exists for treatment of BRS envenomation other than supportive care, which includes rest, thorough cleaning of the site, ice, compression, and elevation. PROGNOSIS: Prognosis varies based on severity of clinical signs and response to supportive care.


Assuntos
Aranha Marrom Reclusa , Picada de Aranha/veterinária , Venenos de Aranha/toxicidade , Animais , Antivenenos/uso terapêutico , Emergências/veterinária , Diester Fosfórico Hidrolases , Picada de Aranha/tratamento farmacológico , Venenos de Aranha/enzimologia
20.
Biol. Res ; 47: 1-10, 2014. ilus, graf
Artigo em Inglês | LILACS | ID: lil-710925

RESUMO

BACKGROUND: Loxoscelism is the envenomation caused by the bite of Loxosceles spp. spiders. It entails severe necrotizing skin lesions, sometimes accompanied by systemic reactions and even death. There are no diagnostic means and treatment is mostly palliative. The main toxin, found in several isoforms in the venom, is sphingomyelinase D (SMD), a phospholipase that has been used to generate antibodies intended for medical applications. Nucleic acid aptamers are a promising alternative to antibodies. Aptamers may be isolated from a combinatorial mixture of oligonucleotides by iterative selection of those that bind to the target. In this work, two Loxosceles laeta SMD isoforms, Ll1 and Ll2, were produced in bacteria and used as targets with the aim of identifying RNA aptamers that inhibit sphingomyelinase activity. RESULTS: Six RNA aptamers capable of eliciting partial but statistically significant inhibitions of the sphingomyelinase activity of recombinant SMD-Ll1 and SMD-Ll2 were obtained: four aptamers exert ~17% inhibition of SMD-Ll1, while two aptamers result in ~25% inhibition of SMD-Ll2 and ~18% cross inhibition of SMD-Ll1. CONCLUSIONS: This work is the first attempt to obtain aptamers with therapeutic and diagnostic potential for loxoscelism and provides an initial platform to undertake the development of novel anti Loxoscelesvenom agents.


Assuntos
Animais , Aptâmeros de Nucleotídeos/isolamento & purificação , Aptâmeros de Nucleotídeos/metabolismo , Diester Fosfórico Hidrolases , Inibidores de Fosfodiesterase/isolamento & purificação , Venenos de Aranha/enzimologia , Aptâmeros de Nucleotídeos/uso terapêutico , Aranha Marrom Reclusa/enzimologia , Cromatografia de Afinidade , Clonagem Molecular , Expressão Gênica/genética , Inibidores de Fosfodiesterase , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/classificação , Análise de Sequência de DNA/métodos , Picada de Aranha/tratamento farmacológico , Venenos de Aranha/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA