Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 221(2): 1090-1100, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145791

RESUMO

Floral nectaries are an interesting example of a convergent trait in flowering plants, and are associated with the diversification of numerous angiosperm lineages, including the adaptive radiation of the New World Aquilegia species. However, we know very little as to what genes contribute to nectary development and evolution, particularly in noncore eudicot taxa. We analyzed expression patterns and used RNAi-based methods to investigate the functions of homologs from the STYLISH (STY) family in nectar spur development in Aquilegia coerulea. We found that AqSTY1 exhibits concentrated expression in the presumptive nectary of the growing spur tip, and triple gene silencing of the three STY-like genes revealed that they function in style and nectary development. Strong expression of STY homologs was also detected in the nectary-bearing petals of Delphinium and Epimedium. Our results suggest that the novel recruitment of STY homologs to control nectary development is likely to have occurred before the diversification of the Ranunculaceae and Berberidaceae. To date, the STY homologs of the Ranunculales are the only alternative loci for the control of nectary development in flowering plants, providing a critical data point in understanding the evolutionary origin and developmental basis of nectaries.


Assuntos
Aquilegia/genética , Aquilegia/crescimento & desenvolvimento , Aquilegia/ultraestrutura , Evolução Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/ultraestrutura , Néctar de Plantas
3.
Heliyon ; 10(12): e32674, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021911

RESUMO

Color plays a pivotal role in product design, as it can evoke emotional responses from users. Understanding these emotional needs is crucial for effective brand image design. This paper introduces a novel approach, the Brand Image Design using Deep Multi-Scale Fusion Neural Network optimized with Cheetah Optimization Algorithm (BID-DMSFNN-COA), for classifying product color brand images as "Stylish" and "Natural". By leveraging deep learning techniques and optimization algorithms, the proposed method aims to enhance brand image accuracy and address existing challenges in product color trend forecasting research. Initially, data are collected from the Mnist Data Set. The data are then supplied into the pre-processing section. In the pre-processing segment, it removes the noise and enhances the input image utilizing master slave adaptive notch filter. The Deep Multi-Scale Fusion Neural Network optimized with cheetah optimization algorithm effectively classifies the product colour brand image as "Stylish" and "Natural". Implemented on the MATLAB platform, the BID-DMSFNN-COA technique achieves remarkable accuracy rates of 99 % for both "Natural" and "Stylish" classifications. In comparison, existing methods such as BID-GNN, BID-ANN, and BID-CNN yield lower accuracy rates ranging from 65 % to 85 % for "Stylish" and 65 %-70 % for "Natural" product color brand image design. The simulation outcomes reveal the superior performance of the BID-DMSFNN-COA technique across various metrics including accuracy, F-score, precision, recall, sensitivity, specificity, and ROC analysis. Notably, the proposed method consistently outperforms existing approaches, providing higher values across all evaluation criteria. These findings underscore the effectiveness of the BID-DMSFNN-COA technique in enhancing brand image design through accurate product color classification.

4.
Plant Signal Behav ; 4(2): 83-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19649177

RESUMO

In angiosperms, the gynoecium constitutes the female reproductive organ that after fertilization develops into a fruit and in Arabidopsis thaliana the gynoecium is formed by the congenital fusion of two carpels. In the last few years many genes involved in female organ development have been identified and there have been several reports on the involvement of the plant hormone auxin in gynoecium patterning. An auxin gradient has been suggested to establish the apical-basal patterning of the gynoecium and recently it has been shown that elevated apical auxin levels can compensate for the loss of several style-promoting factors but that auxin is dependent on their action in apical-basal patterning. Here we discuss the role of auxin and different upstream, downstream or parallel factors in the apical-basal patterning of the gynoecium. We focus specifically on the development of style and stigma and discuss the most recent findings.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA