Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Proteome Res ; 23(10): 4742-4760, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39302699

RESUMO

Staphylococcus aureus is a leading cause of severe pneumonia. Our recent proteomic investigations into S. aureus invasion of human lung epithelial cells revealed three key adaptive responses: activation of the SigB and CodY regulons and upregulation of the hibernation-promoting factor SaHPF. Therefore, our present study aimed at a functional and proteomic dissection of the contributions of CodY, SigB and SaHPF to host invasion using transposon mutants of the methicillin-resistant S. aureus USA300. Interestingly, disruption of codY resulted in a "small colony variant" phenotype and redirected the bacteria from (phago)lysosomes into the host cell cytoplasm. Furthermore, we show that CodY, SigB and SaHPF contribute differentially to host cell adhesion, invasion, intracellular survival and cytotoxicity. CodY- or SigB-deficient bacteria experienced faster intracellular clearance than the parental strain, underscoring the importance of these regulators for intracellular persistence. We also show an unprecedented role of SaHPF in host cell adhesion and invasion. Proteomic analysis of the different mutants focuses attention on the CodY-perceived metabolic state of the bacteria and the SigB-perceived environmental cues in bacterial decision-making prior and during infection. Additionally, it underscores the impact of the nutritional status and bacterial stress on the initiation and progression of staphylococcal lung infections.


Assuntos
Proteínas de Bactérias , Células Epiteliais , Proteômica , Humanos , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Pulmão/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Aderência Bacteriana , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fator sigma
2.
J Biol Chem ; 299(3): 102933, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690275

RESUMO

SigA (σA) is an essential protein and the primary sigma factor in Mycobacterium tuberculosis (Mtb). However, due to the absence of genetic tools, our understanding of the role and regulation of σA activity and its molecular attributes that help modulate Mtb survival is scant. Here, we generated a conditional gene replacement of σA in Mtb and showed that its depletion results in a severe survival defect in vitro, ex vivo, and in vivo in a murine infection model. Our RNA-seq analysis suggests that σA either directly or indirectly regulates ∼57% of the Mtb transcriptome, including ∼28% of essential genes. Surprisingly, we note that despite having ∼64% similarity with σA, overexpression of the primary-like σ factor SigB (σB) fails to compensate for the absence of σA, suggesting minimal functional redundancy. RNA-seq analysis of the Mtb σB deletion mutant revealed that 433 genes are regulated by σB, of which 283 overlap with the σA transcriptome. Additionally, surface plasmon resonance, in vitro transcription, and functional complementation experiments reveal that σA residues between 132-179 that are disordered and missing from all experimentally determined σA-RNAP structural models are imperative for σA function. Moreover, phosphorylation of σA in the intrinsically disordered N-terminal region plays a regulatory role in modulating its activity. Collectively, these observations and analysis provide a rationale for the centrality of σA for the survival and pathogenicity of this bacillus.


Assuntos
Proteínas de Bactérias , Viabilidade Microbiana , Mycobacterium tuberculosis , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Animais , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Transcriptoma , Tuberculose/microbiologia , Deleção de Sequência , Viabilidade Microbiana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
3.
J Bacteriol ; 205(1): e0037522, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36515540

RESUMO

By chance, we discovered a window of extracellular magnesium (Mg2+) availability that modulates the division frequency of Bacillus subtilis without affecting its growth rate. In this window, cells grown with excess Mg2+ produce shorter cells than do those grown in unsupplemented medium. The Mg2+-responsive adjustment in cell length occurs in both rich and minimal media as well as in domesticated and undomesticated strains. Of other divalent cations tested, manganese (Mn2+) and zinc (Zn2+) also resulted in cell shortening, but this occurred only at concentrations that affected growth. Cell length decreased proportionally with increasing Mg2+ from 0.2 mM to 4.0 mM, with little or no detectable change being observed in labile, intracellular Mg2+, based on a riboswitch reporter. Cells grown in excess Mg2+ had fewer nucleoids and possessed more FtsZ-rings per unit cell length, consistent with the increased division frequency. Remarkably, when shifting cells from unsupplemented to supplemented medium, more than half of the cell length decrease occurred in the first 10 min, consistent with rapid division onset. Relative to unsupplemented cells, cells growing at steady-state with excess Mg2+ showed an enhanced expression of a large number of SigB-regulated genes and the activation of the Fur, MntR, and Zur regulons. Thus, by manipulating the availability of one nutrient, we were able to uncouple the growth rate from the division frequency and identify transcriptional changes that suggest that cell division is accompanied by the general stress response and an enhanced demand to sequester and/or increase the uptake of iron, Mn2+, and Zn2+. IMPORTANCE The signals that cells use to trigger cell division are unknown. Although division is often considered intrinsic to the cell cycle, microorganisms can continue to grow and repeat rounds of DNA replication without dividing, indicating that cycles of division can be skipped. Here, we show that by manipulating a single nutrient, namely, Mg2+, cell division can be uncoupled from the growth rate. This finding can be applied to investigate the nature of the cell division signal(s).


Assuntos
Bacillus subtilis , Magnésio , Magnésio/metabolismo , Bacillus subtilis/metabolismo , Manganês/metabolismo , Transporte Biológico , Divisão Celular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Infect Immun ; 91(6): e0057122, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125941

RESUMO

Listeria monocytogenes is a bacterial pathogen capable of causing severe infections but also thriving outside the host. To respond to different stress conditions, L. monocytogenes mainly utilizes the general stress response regulon, which largely is controlled by the alternative sigma factor Sigma B (SigB). In addition, SigB is important for virulence gene expression and infectivity. Upon encountering stress, a large multicomponent protein complex known as the stressosome becomes activated, ultimately leading to SigB activation. RsbX is a protein needed to reset a "stressed" stressosome and prevent unnecessary SigB activation in nonstressed conditions. Consequently, absence of RsbX leads to constitutive activation of SigB even without prevailing stress stimulus. To further examine the involvement of SigB in the virulence of this pathogen, we investigated whether a strain with constitutively active SigB would be affected in virulence factor expression and/or infectivity in cultured cells and in a chicken embryo infection model. Our results suggest that increased SigB activity does not substantially alter virulence gene expression compared with the wild-type (WT) strain at transcript and protein levels. Bacteria lacking RsbX were taken up by phagocytic and nonphagocytic cells at a similar frequency to WT bacteria, both in stressed and nonstressed conditions. Finally, the absence of RsbX only marginally affected the ability of bacteria to infect chicken embryos. Our results suggest only a minor role of RsbX in controlling virulence factor expression and infectivity under these conditions.


Assuntos
Listeria monocytogenes , Embrião de Galinha , Animais , Virulência , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fator sigma/genética , Regulação Bacteriana da Expressão Gênica
5.
BMC Microbiol ; 23(1): 17, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653740

RESUMO

BACKGROUND: Sigma factor B (SigB) is the central regulator of the general stress response in Bacillus subtilis and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence. RESULTS: In this study, refined SigB PBMs were derived and different spacer compositions and lengths (N12-N17) were taken into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to > 500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and ΔsigB mutants upon exposure to heat, ethanol, and salt stress. The activity of the PrsbV (I) positive control was induced upon exposure to all three stressors. PytoQ (II) showed SigB-dependent activity only upon exposure to ethanol, whereas PpucI (II) with a N17 spacer and PylaL (III) with a N16 spacer showed mild induction regardless of heat/ethanol/salt stress. PywzA (III) and PyaaI (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved - 10 binding motif. PgtaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved - 10 binding region. The activities of PygaO and PykaA (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific. CONCLUSION: The entire SigB regulatory network is sophisticated and not yet fully understood even for the well-characterized organism B. subtilis 168. Knowledge and information gained in this study can be used in further SigB studies to uncover a complete picture of the role of SigB in B. subtilis and other species.


Assuntos
Bacillales , Bacillus subtilis , Bacillus subtilis/fisiologia , Bacillales/genética , Regulon , Resposta ao Choque Térmico , Etanol/farmacologia , Fator sigma/genética , Fator sigma/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
6.
BMC Microbiol ; 23(1): 37, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36759782

RESUMO

BACKGROUND: The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the two-component RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in the activation of a subset of SigB regulon members. RESULTS: We first investigated the potential role of bc1009 to act as a SigB regulator but ruled out this possibility as the deletion of bc1009 did not affect the expression of sigB and other SigB gene cluster members. The SigB-dependent functions of Bc1009 were further examined in B. cereus ATCC14579 via comparative proteome profiling (backed up by transcriptomics) of wt, Δbc1009 and ΔsigB deletion mutants under heat stress at 42 °C. This revealed 284 proteins displaying SigB-dependent alterations in protein expression levels in heat-stressed cells, including a subgroup of 138 proteins for which alterations were also Bc1009-dependent. Next to proteins with roles in stress defense, newly identified SigB and Bc1009-dependent proteins have roles in cell motility, signal transduction, transcription, cell wall biogenesis, and amino acid transport and metabolism. Analysis of lethal stress survival at 50 °C after pre-adaptation at 42 °C showed intermediate survival efficacy of Δbc1009 cells, highest survival of wt, and lowest survival of ΔsigB cells, respectively. Additional comparative proteome analysis of non-stressed wt and mutant cells at 30 °C revealed 96 proteins with SigB and Bc1009-dependent differences in levels: 51 were also identified under heat stress, and 45 showed significant differential expression at 30 °C. This includes proteins with roles in carbohydrate/ion transport and metabolism. Overlapping functions at 30 °C and 42 °C included proteins involved in motility, and ΔsigB and Δbc1009 cells showed reduced motility compared to wt cells in swimming assays at both temperatures. CONCLUSION: Our results extend the B. cereus SigB regulon to > 300 members, with a novel role of SigB-dependent Bc1009 in the activation of a subregulon of  > 180 members, conceivably via interactions with other transcriptional regulatory networks.


Assuntos
Bacillus cereus , Proteoma , Bacillus cereus/metabolismo , Proteoma/análise , Regulon , Proteínas de Bactérias/metabolismo , Resposta ao Choque Térmico , Fator sigma/genética , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
J Bacteriol ; 204(1): e0048621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694900

RESUMO

The survival of microbial cells under changing environmental conditions requires an efficient reprogramming of transcription, often mediated by alternative sigma factors. The Gram-positive human pathogen Listeria monocytogenes senses and responds to environmental stress mainly through the alternative sigma factor σB (SigB), which controls expression of the general stress response regulon. SigB activation is achieved through a complex series of phosphorylation/dephosphorylation events culminating in the release of SigB from its anti-sigma factor RsbW. At the top of the signal transduction pathway lies a large multiprotein complex known as the stressosome that is believed to act as a sensory hub for stresses. Following signal detection, stressosome proteins become phosphorylated. Resetting of the stressosome is hypothesized to be exerted by a putative phosphatase, RsbX, which presumably removes phosphate groups from stressosome proteins poststress. We addressed the role of the RsbX protein in modulating the activity of the stressosome and consequently regulating SigB activity in L. monocytogenes. We show that RsbX is required to reduce SigB activation levels under nonstress conditions and that it is required for appropriate SigB-mediated stress adaptation. A strain lacking RsbX displayed impaired motility and biofilm formation and also an increased survival at low pH. Our results could suggest that absence of RsbX alters the multiprotein composition of the stressosome without dramatically affecting its phosphorylation status. Overall, the data show that RsbX plays a critical role in modulating the signal transduction pathway by blocking SigB activation under nonstressed conditions. IMPORTANCE Pathogenic bacteria need to sense and respond to stresses to survive harsh environments and also to turn off the response when no longer facing stress. Activity of the stress sigma factor SigB in the human pathogen Listeria monocytogenes is controlled by a hierarchic system having a large stress-sensing multiprotein complex known as the stressosome at the top. Following stress exposure, proteins in the stressosome become phosphorylated, leading to SigB activation. We have studied the role of a putative phosphatase, RsbX, which is hypothesized to dephosphorylate stressosome proteins. RsbX is critical not only to switch off the stress response poststress but also to keep the activity of SigB low at nonstressed conditions to prevent unnecessary gene expression and save energy.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Listeria monocytogenes/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico/fisiologia , Biofilmes , Listeria monocytogenes/genética , Mutação , Fator sigma/genética
8.
Appl Environ Microbiol ; 88(10): e0005122, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35481758

RESUMO

To understand the molecular mechanisms that contribute to the stress responses of the important foodborne pathogen Listeria monocytogenes, we collected 139 strains (meat, n = 25; dairy, n = 10; vegetable, n = 8; seafood, n = 14; mixed food, n = 4; and food processing environments, n = 78), mostly isolated in Ireland, and subjected them to whole-genome sequencing. These strains were compared to 25 Irish clinical isolates and 4 well-studied reference strains. Core genome and pan-genome analysis confirmed a highly clonal and deeply branched population structure. Multilocus sequence typing showed that this collection contained a diverse range of strains from L. monocytogenes lineages I and II. Several groups of isolates with highly similar genome content were traced to single or multiple food business operators, providing evidence of strain persistence or prevalence, respectively. Phenotypic screening assays for tolerance to salt stress and resistance to acid stress revealed variants within several clonal complexes that were phenotypically distinct. Five of these phenotypic outliers were found to carry mutations in the sigB operon, which encodes the stress-inducible sigma factor sigma B. Transcriptional analysis confirmed that three of the strains that carried mutations in sigB, rsbV, or rsbU had reduced SigB activity, as predicted. These strains exhibited increased tolerance to salt stress and displayed decreased resistance to low pH stress. Overall, this study shows that loss-of-function mutations in the sigB operon are comparatively common in field isolates, probably reflecting the cost of the general stress response to reproductive fitness in this pathogen. IMPORTANCE The bacterial foodborne pathogen Listeria monocytogenes frequently contaminates various categories of food products and is able to cause life-threatening infections when ingested by humans. Thus, it is important to control the growth of this bacterium in food by understanding the mechanisms that allow its proliferation under suboptimal conditions. In this study, intraspecies heterogeneity in stress response was observed across a collection consisting of mainly Irish L. monocytogenes isolates. Through comparisons of genome sequence and phenotypes observed, we identified three strains with impairment of the general stress response regulator SigB. Two of these strains are used widely in food challenge studies for evaluating the growth potential of L. monocytogenes. Given that loss of SigB function is associated with atypical phenotypic properties, the use of these strains in food challenge studies should be re-evaluated.


Assuntos
Proteínas de Bactérias , Listeria monocytogenes , Fator sigma , Proteínas de Bactérias/genética , Microbiologia de Alimentos , Listeria monocytogenes/genética , Fenótipo , Filogenia , Fator sigma/genética
9.
Appl Environ Microbiol ; 87(12): e0039721, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811030

RESUMO

Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor. Whether the stressosome is activated during the intracellular infection is unknown. Here, we analyzed the subcellular distribution of stressosome proteins in L. monocytogenes located inside epithelial cells following their immunodetection in membrane and cytosolic fractions prepared from intracellular bacteria. Unlike bacteria in laboratory media, intracellular bacteria have a large proportion of the core stressosome protein RsbR1 associated with the membrane. However, another core protein, RsbS, is undetectable. Despite the absence of RsbS, a SigB-dependent reporter revealed that SigB activity increases gradually from early (1 h) to late (6 h) postinfection times. We also found that RsbR1 paralogues attenuate the intensity of the SigB response and that the miniprotein Prli42, reported to tether the stressosome to the membrane in response to oxidative stress, plays no role in associating RsbR1 to the membrane of intracellular bacteria. Altogether, these data indicate that, once inside host cells, the L. monocytogenes stressosome may adopt a unique configuration to sense stress and to activate SigB in the intracellular eukaryotic niche. IMPORTANCE The response to stress mediated by the alternative sigma factor SigB has been extensively characterized in Bacillus subtilis and Listeria monocytogenes. These bacteria sense stress using a supramacromolecular complex, the stressosome, which triggers a cascade that releases SigB from its anti-sigma factor. Despite the fact that many structural data on the complex are available and analyses have been performed in mutants lacking components of the stressosome or the signaling cascade, the integration of the stress signal and the dynamics of stressosome proteins following environmental changes remain poorly understood. Our study provides data at the protein level on essential stressosome components and SigB activity when L. monocytogenes, normally a saprophytic bacterium, adapts to an intracellular lifestyle. Our results support activation of the stressosome complex in intracellular bacteria. The apparent loss of the stressosome core protein RsbS in intracellular L. monocytogenes also challenges current models, favoring the idea of a unique stressosome architecture responding to intracellular host cues.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Listeria monocytogenes/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Linhagem Celular , Proliferação de Células , Células Eucarióticas , Humanos
10.
Appl Microbiol Biotechnol ; 105(14-15): 5943-5957, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34350477

RESUMO

Bacillus cereus 905, originally isolated from wheat rhizosphere, exhibits strong colonization ability on wheat roots. Our previous studies showed that root colonization is contributed by the ability of the bacterium to efficiently utilize carbon sources and form biofilms and that the sodA2 gene-encoded manganese-containing superoxide dismutase (MnSOD2) plays an indispensable role in the survival of B. cereus 905 in the wheat rhizosphere. In this investigation, we further demonstrated that the ability of B. cereus 905 to resist adverse environmental conditions is partially attributed to activation of the alternative sigma factor σB, encoded by the sigB gene. The sigB mutant experienced a dramatic reduction in survival when cells were exposed to ethanol, acid, heat, and oxidative stress or under glucose starvation. Analysis of the sodA2 gene transcription revealed a partial, σB-dependent induction of the gene during glucose starvation or when treated with paraquat. In addition, the sigB mutant displayed a defect in biofilm formation under stress conditions. Finally, results from the root colonization assay indicated that sigB and sodA2 collectively contribute to B. cereus 905 colonization on wheat roots. Our study suggests a diverse role of SigB in rhizosphere survival and root colonization of B. cereus 905 under stress conditions. KEY POINTS : • SigB confers resistance to environmental stresses in B. cereus 905. • SigB plays a positive role in glucose utilization and biofilm formation in B. cereus. • SigB and SodA2 collectively contribute to colonization on wheat roots by B. cereus.


Assuntos
Bacillus cereus , Glucose , Bacillus cereus/genética , Proteínas de Bactérias/genética , Biofilmes , Fator sigma , Superóxido Dismutase
11.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445550

RESUMO

Within-host adaptation is a typical feature of chronic, persistent Staphylococcus aureus infections. Research projects addressing adaptive changes due to bacterial in-host evolution increase our understanding of the pathogen's strategies to survive and persist for a long time in various hosts such as human and bovine. In this study, we investigated the adaptive processes of S. aureus during chronic, persistent bovine mastitis using a previously isolated isogenic strain pair from a dairy cow with chronic, subclinical mastitis, in which the last variant (host-adapted, Sigma factor SigB-deficient) quickly replaced the initial, dominant variant. The strain pair was cultivated under specific in vitro infection-relevant growth-limiting conditions (iron-depleted RPMI under oxygen limitation). We used a combinatory approach of surfaceomics, molecular spectroscopic fingerprinting and in vitro phenotypic assays. Cellular cytotoxicity assays using red blood cells and bovine mammary epithelial cells (MAC-T) revealed changes towards a more cytotoxic phenotype in the host-adapted isolate with an increased alpha-hemolysin (α-toxin) secretion, suggesting an improved capacity to penetrate and disseminate the udder tissue. Our results foster the hypothesis that within-host evolved SigB-deficiency favours extracellular persistence in S. aureus infections. Here, we provide new insights into one possible adaptive strategy employed by S. aureus during chronic, bovine mastitis, and we emphasise the need to analyse genotype-phenotype associations under different infection-relevant growth conditions.


Assuntos
Adaptação Fisiológica , Hemólise , Adaptação ao Hospedeiro , Glândulas Mamárias Animais/patologia , Mastite Bovina/patologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Animais , Apoptose , Bovinos , Feminino , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Fenótipo
12.
World J Microbiol Biotechnol ; 37(3): 38, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544236

RESUMO

Oxidative stress can have lethal consequences if organisms do not respond and remediate the damage to DNA, proteins and lipids. Bacterial species respond to oxidative stress by activating transcriptional profiles that include biochemical functions to reduce oxidized cellular components, regenerate pools of reducing molecules, and detoxify harmful metabolites. Interestingly, the general stress response in Gram positive bacteria controlled by SigB is induced by oxidative stress from reactive oxygen and electrophilic species. The upregulation of SigB regulated genes during exposure to electrophilic and oxidative compounds suggests SigB contributes directly to the adaptations required for oxidative stress survival. A subset of the functions of SigB regulated genes can be categorized with antioxidant biochemical activities, such as redoxins, reductases and dehydrogenases, including regulation of low molecular weight thiols, yet their exact cellular role is not fully understood. Here, we present an overview of the predicted antioxidant biochemical functions regulated by SigB, with potential for biomedical research given the prevalence of oxidative stress during bacterial infection, as well as during industrial applications of large-scale production of compounds by microbes.


Assuntos
Proteínas de Bactérias/metabolismo , Bactérias Gram-Positivas/fisiologia , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Estresse Fisiológico
13.
J Bacteriol ; 202(9)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32094160

RESUMO

In Listeria monocytogenes, the full details of how stress signals are integrated into the σB regulatory pathway are not yet available. To help shed light on this question, we investigated a collection of transposon mutants that were predicted to have compromised activity of the alternative sigma factor B (σB). These mutants were tested for acid tolerance, a trait that is known to be under σB regulation, and they were found to display increased acid sensitivity, similar to a mutant lacking σB (ΔsigB). The transposon insertions were confirmed by whole-genome sequencing, but in each case, the strains were also found to carry a frameshift mutation in the sigB operon. The changes were predicted to result in premature stop codons, with negative consequences for σB activation, independently of the transposon location. Reduced σB activation in these mutants was confirmed. Growth measurements under conditions similar to those used during the construction of the transposon library revealed that the frameshifted sigB operon alleles conferred a growth advantage at higher temperatures, during late exponential phase. Mixed-culture experiments at 42°C demonstrated that the loss of σB activity allowed mutants to take over a population of parental bacteria. Together, our results suggest that mutations affecting σB activity can arise during laboratory culture because of the growth advantage conferred by these mutations under mild stress conditions. The data highlight the significant cost of stress protection in this foodborne pathogen and emphasize the need for whole-genome sequence analysis of newly constructed strains to confirm the expected genotype.IMPORTANCE In the present study, we investigated a collection of Listeria monocytogenes strains that all carried sigB operon mutations. The mutants all had reduced σB activity and were found to have a growth advantage under conditions of mild heat stress (42°C). In mixed cultures, these mutants outcompeted the wild type when mild heat stress was present but not at an optimal growth temperature. An analysis of 22,340 published L. monocytogenes genome sequences found a high rate of premature stop codons present in genes positively regulating σB activity. Together, these findings suggest that the occurrence of mutations that attenuate σB activity can be favored under conditions of mild stress, probably highlighting the burden on cellular resources that stems from deploying the general stress response.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/fisiologia , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Mutação , Óperon , Fator sigma/genética , Estresse Fisiológico
14.
Microbiology (Reading) ; 166(11): 1088-1094, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33095698

RESUMO

Staphylococcus aureus is a frequent cause of invasive human infections such as bacteraemia and infective endocarditis. These infections frequently relapse or become chronic, suggesting that the pathogen has mechanisms to tolerate the twin threats of therapeutic antibiotics and host immunity. The general stress response of S. aureus is regulated by the alternative sigma factor B (σB) and provides protection from multiple stresses including oxidative, acidic and heat. σB also contributes to virulence, intracellular persistence and chronic infection. However, the protective effect of σB on bacterial survival during exposure to antibiotics or host immune defences is poorly characterized. We found that σB promotes the survival of S. aureus exposed to the antibiotics gentamicin, ciprofloxacin, vancomycin and daptomycin, but not oxacillin or clindamycin. We also found that σB promoted staphylococcal survival in whole human blood, most likely via its contribution to oxidative stress resistance. Therefore, we conclude that the general stress response of S. aureus may contribute to the development of chronic infection by conferring tolerance to both antibiotics and host immune defences.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus/fisiologia , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Atividade Bactericida do Sangue , Teste de Complementação Genética , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Explosão Respiratória , Fator sigma/genética , Fator sigma/metabolismo , Staphylococcus aureus/efeitos dos fármacos
15.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858304

RESUMO

Staphylococcus aureus clinical strains are able to produce at least two distinct types of biofilm matrixes: biofilm matrixes made of the polysaccharide intercellular adhesin (PIA) or poly-N-acetylglucosamine (PNAG), whose synthesis is mediated by the icaADBC locus, and biofilm matrixes built of proteins (polysaccharide independent). σB is a conserved alternative sigma factor that regulates the expression of more than 100 genes in response to changes in environmental conditions. While numerous studies agree that σB is required for polysaccharide-independent biofilms, controversy persists over the role of σB in the regulation of PIA/PNAG-dependent biofilm development. Here, we show that genetically unrelated S. aureus σB-deficient strains produced stronger biofilms under both static and flow conditions and accumulated higher levels of PIA/PNAG exopolysaccharide than their corresponding wild-type strains. The increased accumulation of PIA/PNAG in the σB mutants correlated with a greater accumulation of the IcaC protein showed that it was not due to adjustments in icaADBC operon transcription and/or icaADBC mRNA stability. Overall, our results reveal that in the presence of active σB, the turnover of Ica proteins is accelerated, reducing the synthesis of PIA/PNAG exopolysaccharide and consequently the PIA/PNAG-dependent biofilm formation capacity.IMPORTANCE Due to its multifaceted lifestyle, Staphylococcus aureus needs a complex regulatory network to connect environmental signals with cellular physiology. One particular transcription factor, named σB (SigB), is involved in the general stress response and the expression of virulence factors. For many years, great confusion has existed about the role of σB in the regulation of the biofilm lifestyle in S. aureus Our study demonstrated that σB is not necessary for exopolysaccharide-dependent biofilms and, even more, that S. aureus produces stronger biofilms in the absence of σB The increased accumulation of exopolysaccharide correlates with higher stability of the proteins responsible for its synthesis. The present findings reveal an additional regulatory layer to control biofilm exopolysaccharide synthesis under stress conditions.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/biossíntese , RNA Mensageiro/genética , Fator sigma/genética , Staphylococcus aureus/genética , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Óperon , Polissacarídeos Bacterianos/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Fator sigma/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo , Transcrição Gênica
16.
Microb Pathog ; 128: 112-118, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30583020

RESUMO

Sigma factor B (SigB) controls the expression of Staphylococcus aureus genes including virulence factors and plays a role in the bacterial secretion system through membrane vesicle production. Inhibition of SigB could attenuate SigB dependent virulence and secretion system. The objective of this study was to determine the effects of rhodomyrtone on SigB and virulence factors related to SigB. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of rhodomyrtone against 67 clinical methicillin-resistant S. aureus isolates were 0.25-8 µg/ml, which were similar to those of vancomycin. Using luciferase gene fused to SigB dependent promoters of asp23, five time reduction in SigB activity was observed when the bacteria were treated with rhodomyrtone for 3 h. Rhodomyrtone significantly reduced SigB activity in a concentration dependent manner in exponentially growing cells (P < 0.05). In addition, sigB mutant was more sensitive towards increasing concentrations of rhodomyrtone than the wild type and yabJ-spoVG mutant. Rhodomyrtone at 0.625 µg/ml reduced the growth of sigB mutant by approximately 99%, compared with the yabJ-spoVG mutant and the wild type. Membrane vesicles were significantly reduced in the bacterial cells when treated with 0.5 × MIC rhodomyrtone (P < 0.05). Decreased haemolytic activity was detected within rhodomyrtone-treated membrane vesicles. The results indicated that rhodomyrtone inhibited S. aureus SigB activity during exponentially growing phase and inhibited haemolytic activity within membrane vesicles.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Fator sigma/efeitos dos fármacos , Fator sigma/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Xantonas/farmacologia , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Mutação , Fator sigma/genética , Infecções Estafilocócicas , Staphylococcus aureus/crescimento & desenvolvimento , Vancomicina/farmacologia , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo
17.
Adv Appl Microbiol ; 106: 1-48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798801

RESUMO

The stress activated sigma factor sigma B (σB) plays a pivotal role in allowing the food-borne bacterial pathogen Listeria monocytogenes to modulate its transcriptional landscape in order to survive in a variety of harsh environments both outside and within the host. While we have a comparatively good understanding of the systems under the control of this sigma factor much less is known about how the activity of σB is controlled. In this review, we present a current model describing how this sigma factor is thought to be controlled including an overview of what is known about stress sensing and the early signal transduction events that trigger its activation. We discuss the known regulatory overlaps between σB and other protein and RNA regulators in the cell. Finally, we describe the role of σB in surviving both saprophytic and host-associated stresses. The complexity of the regulation of this sigma factor reflects the significant role that it plays in the persistence of this important pathogen in the natural environment, the food chain as well as within the host during the early stages of an infection. Understanding its regulation will be a critical step in helping to develop rational strategies to prevent its growth and survival in the food destined for human consumption and in the prevention of listeriosis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Fator sigma/metabolismo , Animais , Proteínas de Bactérias/genética , Alimentos/virologia , Cadeia Alimentar , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Fator sigma/genética
18.
J Basic Microbiol ; 59(8): 834-845, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31210376

RESUMO

A bacterium's ability to thrive in the presence of multiple environmental stressors simultaneously determines its resilience. We showed that activation of the SigB-controlled general stress response by mild environmental or energy stress provided significant cross-protection to subsequent lethal oxidative, disulfide and nitrosative stress in Bacillus subtilis. SigB activation is mediated via the stressosome and RsbP, the main conduits of environmental and energy stress, respectively. Cells exposed to mild environmental stress while lacking the major stressosome components RsbT or RsbRA were highly sensitive to subsequent oxidative stress, whereas rsbRB, rsbRC, rsbRD, and ytvA null mutants showed a spectrum of sensitivity, confirming their redundant roles and suggesting they could modulate the signals generated by environmental or oxidative stress. By contrast, cells encountering stationary phase stress required RsbP but not RsbT to survive subsequent oxidative stress. Interestingly, optimum cross-protection against nitrosative stress caused by sodium nitropruside required SigB but not the known regulators, RsbT and RsbP, suggesting an additional and as yet uncharacterized route of SigB activation independent of the known regulators. Together, these results provide mechanistic information on how B. subtilis promotes enhanced resistance against lethal oxidative stress during mild environmental and energy stress conditions.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Estresse Oxidativo/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Fator sigma/metabolismo , Transdução de Sinais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Viabilidade Microbiana , Estresse Nitrosativo/fisiologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fator sigma/genética , Transdução de Sinais/genética
19.
J Bacteriol ; 200(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712876

RESUMO

In Staphylococcus aureus, the global transcriptional regulator CodY modulates the expression of hundreds of genes in response to the availability of GTP and the branched-chain amino acids isoleucine, leucine, and valine (ILV). CodY DNA-binding activity is high when GTP and ILV are abundant. When GTP and ILV are limited, CodY's affinity for DNA drops, altering expression of CodY-regulated targets. In this work, we investigated the impact of guanine nucleotides (GNs) on S. aureus physiology and CodY activity by constructing a guaA null mutant (ΔguaA strain). De novo biosynthesis of guanine monophosphate is abolished due to the guaA mutation; thus, the mutant cells require exogenous guanosine for growth. We also found that CodY activity was reduced when we knocked out guaA, activating the Agr two-component system and increasing secreted protease activity. Notably, in a rich, complex medium, we detected an increase in alternative sigma factor B activity in the ΔguaA mutant, which results in a 5-fold increase in production of the antioxidant pigment staphyloxanthin. Under biologically relevant flow conditions, ΔguaA cells failed to form robust biofilms when limited for guanine or guanosine. Transcriptome sequencing (RNA-Seq) analysis of the S. aureus transcriptome during growth in guanosine-limited chemostats revealed substantial CodY-dependent and -independent alterations of gene expression profiles. Importantly, these changes increase production of proteases and δ-toxin, suggesting that S. aureus exhibits a more invasive lifestyle when limited for guanosine. Further, gene products upregulated under GN limitation, including those necessary for lipoic acid biosynthesis and sugar transport, may prove to be useful drug targets for treating Gram-positive infections.IMPORTANCEStaphylococcus aureus infections impose a serious economic burden on health care facilities and patients because of the emergence of strains resistant to last-line antibiotics. Understanding the physiological processes governing fitness and virulence of S. aureus in response to environmental cues is critical for developing efficient diagnostics and treatments. De novo purine biosynthesis is essential for both fitness and virulence in S. aureus since inhibiting production cripples S. aureus's ability to cause infection. Here, we corroborate these findings and show that blocking guanine nucleotide synthesis severely affects S. aureus fitness by altering metabolic and virulence gene expression. Characterizing pathways and gene products upregulated in response to guanine limitation can aid in the development of novel adjuvant strategies to combat S. aureus infections.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Guanina/administração & dosagem , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Biofilmes , Genótipo , Guanina/metabolismo , Guanina/farmacologia , Guanosina/administração & dosagem , Guanosina/metabolismo , RNA Bacteriano , Proteínas Repressoras/genética , Análise de Sequência de RNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Transcriptoma , Fatores de Virulência
20.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632092

RESUMO

Lipoteichoic acid (LTA) in Staphylococcus aureus is a poly-glycerophosphate polymer anchored to the outer surface of the cell membrane. LTA has numerous roles in cell envelope physiology, including regulating cell autolysis, coordinating cell division, and adapting to environmental growth conditions. LTA is often further modified with substituents, including d-alanine and glycosyl groups, to alter cellular function. While the genetic determinants of d-alanylation have been largely defined, the route of LTA glycosylation and its role in cell envelope physiology have remained unknown, in part due to the low levels of basal LTA glycosylation in S. aureus We demonstrate here that S. aureus utilizes a membrane-associated three-component glycosylation system composed of an undecaprenol (Und) N-acetylglucosamine (GlcNAc) charging enzyme (CsbB; SAOUHSC_00713), a putative flippase to transport loaded substrate to the outside surface of the cell (GtcA; SAOUHSC_02722), and finally an LTA-specific glycosyltransferase that adds α-GlcNAc moieties to LTA (YfhO; SAOUHSC_01213). We demonstrate that this system is specific for LTA with no cross recognition of the structurally similar polyribitol phosphate containing wall teichoic acids. We show that while wild-type S. aureus LTA has only a trace of GlcNAcylated LTA under normal growth conditions, amounts are raised upon either overexpressing CsbB, reducing endogenous d-alanylation activity, expressing the cell envelope stress responsive alternative sigma factor SigB, or by exposure to environmental stress-inducing culture conditions, including growth media containing high levels of sodium chloride.IMPORTANCE The role of glycosylation in the structure and function of Staphylococcus aureus lipoteichoic acid (LTA) is largely unknown. By defining key components of the LTA three-component glycosylation pathway and uncovering stress-induced regulation by the alternative sigma factor SigB, the role of N-acetylglucosamine tailoring during adaptation to environmental stresses can now be elucidated. As the dlt and glycosylation pathways compete for the same sites on LTA and induction of glycosylation results in decreased d-alanylation, the interplay between the two modification systems holds implications for resistance to antibiotics and antimicrobial peptides.


Assuntos
Glicosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Cloreto de Sódio/metabolismo , Staphylococcus aureus/enzimologia , Ácidos Teicoicos/metabolismo , Acetilglucosamina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicosilação , Glicosiltransferases/genética , Lipopolissacarídeos/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/química , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA