Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2407455121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39240971

RESUMO

Succinic acid (SA), a dicarboxylic acid of industrial importance, can be efficiently produced by metabolically engineered Mannheimia succiniciproducens. Although the importance of magnesium (Mg2+) ion on SA production has been evident from our previous studies, the role of Mg2+ ion remains largely unexplored. In this study, we investigated the impact of Mg2+ ion on SA production and developed a hyper-SA producing strain of M. succiniciproducens by reconstructing the Mg2+ ion transport system. To achieve this, optimal alkaline neutralizer comprising Mg2+ ion was developed and the physiological effect of Mg2+ ion was analyzed. Subsequently, the Mg2+ ion transport system was reconstructed by introducing an efficient Mg2+ ion transporter from Salmonella enterica. A high-inoculum fed-batch fermentation of the final engineered strain produced 152.23 ± 0.99 g/L of SA, with a maximum productivity of 39.64 ± 0.69 g/L/h. These findings highlight the importance of Mg2+ ions and transportation system optimization in succinic acid production by M. succiniciproducens.


Assuntos
Fermentação , Magnésio , Mannheimia , Ácido Succínico , Ácido Succínico/metabolismo , Magnésio/metabolismo , Mannheimia/metabolismo , Mannheimia/genética , Engenharia Metabólica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética
2.
Chembiochem ; 25(11): e202400142, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38742957

RESUMO

The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.


Assuntos
Butileno Glicóis , Escherichia coli , Ácido Succínico , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Ácido Succínico/metabolismo , Ácido Succínico/química , Escherichia coli/metabolismo , Escherichia coli/genética , Biocatálise , Álcool Desidrogenase/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Fermentação
3.
BMC Microbiol ; 24(1): 158, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720268

RESUMO

BACKGROUND: The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS: In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS: The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae , Ácido Succínico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação
4.
Biopolymers ; : e23631, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382443

RESUMO

In recent years, hydrogels have found a special place in regenerative medicine for tissue repair, rehabilitation, and drug delivery. To be used in regenerative medicine, hydrogels must have desirable physical, chemical, and biological properties. In this study, a new biomonomer based on hydroxyethyl methacrylate-succinic acid-polyethylene glycol 200 (HEMA-Suc-PEG) was synthesized and characterized. Then, using the synthesized monomers and different ratios of polyethylene glycol diacrylate (PEGDA) as a crosslinker, biocompatible hydrogels were synthesized through thermal and UV curing methods. The mechanical, physical, chemical, and biological properties of the hydrogels and the behavior of endothelial cells, an essential component of the cardiovascular system, were evaluated. The results showed that the hydrogel synthesized with 0.2 g of PEGDA (UV curing) has desirable mechanical and physical properties. Biological tests showed that these hydrogels are not only nontoxic to cells but also enhance cell adhesion. Therefore, the hydrogel containing the synthesized monomer HEMA-Suc-PEG and 0.2 g of PEGDA has the potential to be used in the cardiovascular system.

5.
Int Microbiol ; 27(2): 505-512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37498437

RESUMO

As a consequence of alcoholic fermentation (AF) in wine, several compounds are released by yeasts, and some of them are linked to the general quality and mouthfeel perceptions in wine. However, others, such as succinic acid, act as inhibitors, mainly of malolactic fermentation. Succinic acid is produced by non-Saccharomyces and Saccharomyces yeasts during the initial stages of AF, and the presence of some amino acids such as γ-aminobutyric acid (GABA) and glutamic acid can increase the concentration of succinic acid. However, the influence of these amino acids on succinic acid production has been studied very little to date. In this work, we studied the production of succinic acid by different strains of non-Saccharomyces and Saccharomyces yeasts during AF in synthetic must, and the influence of the addition of GABA or glutamic acid or a combination of both. The results showed that succinic acid can be produced by non-Saccharomyces yeasts with values in the range of 0.2-0.4 g/L. Moreover, the addition of GABA or glutamic acid can increase the concentration of succinic acid produced by some strains to almost 100 mg/L more than the control, while other strains produce less. Consequently, higher succinic acid production by non-Saccharomyces yeast in coinoculated fermentations with S. cerevisiae strains could represent a risk of inhibiting Oenococcus oeni and therefore the MLF.


Assuntos
Oenococcus , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Ácido Glutâmico/metabolismo , Ácido Succínico/metabolismo , Leveduras/metabolismo , Aminoácidos , Ácido gama-Aminobutírico/metabolismo , Oenococcus/metabolismo , Fermentação
6.
Microb Cell Fact ; 23(1): 291, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39443950

RESUMO

BACKGROUND: Succinic acid (SA) is an important bio-based C4 platform chemical with versatile applications, including the production of 1,4-butanediol, tetrahydrofuran, and γ-butyrolactone. The non-conventional yeast Yarrowia lipolytica has garnered substantial interest as a robust cell factory for SA production at low pH. However, the high concentrations of SA, especially under acidic conditions, can impose significant stress on microbial cells, leading to reduced glucose metabolism viability and compromised production performance. Therefore, it is important to develop Y. lipolytica strains with enhanced SA tolerance for industrial-scale SA production. RESULTS: An SA-tolerant Y. lipolytica strain E501 with improved SA production was obtained through adaptive laboratory evolution (ALE). In a 5-L bioreactor, the evolved strain E501 produced 89.62 g/L SA, representing a 7.2% increase over the starting strain Hi-SA2. Genome resequencing and transcriptome analysis identified a mutation in the 26S proteasome regulatory subunit Rpn1, as well as genes involved in transmembrane transport, which may be associated with enhanced SA tolerance. By further fine-tuning the glycolytic pathway flux, the highest SA titer of 112.54 g/L to date at low pH was achieved, with a yield of 0.67 g/g glucose and a productivity of 2.08 g/L/h. CONCLUSION: This study provided a robust engineered Y. lipolytica strain capable of efficiently producing SA at low pH, thereby reducing the cost of industrial SA fermentation.


Assuntos
Glucose , Ácido Succínico , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Glucose/metabolismo , Ácido Succínico/metabolismo , Concentração de Íons de Hidrogênio , Fermentação , Reatores Biológicos , Engenharia Metabólica/métodos
7.
Fish Shellfish Immunol ; 155: 109972, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39423905

RESUMO

The application of artificial micro-diet is an effective way to improve and standardize the quality of aquatic animal larvae. However, the widespread adoption of micro-diet faces a bottleneck due to the limited utilization capacity of the larvae. A 30-day feeding experiment was carried out to investigate the effect of dietary succinic acid (SA) on the growth performance, digestive ability, intestinal development, and immunity of large yellow croaker larvae (initial body weight 11.33 ± 0.57 mg). Four isonitrogenous and isolipidic diets were formulated, incorporating 0.00 %, 0.01 %, 0.02 % and 0.03 % SA separately. The results showed that a diet with 0.02 % SA significantly increased both the final body weight and the specific growth rate of the larvae. Regarding digestive ability, 0.01 % SA supplementation significantly enhanced trypsin activity in both intestinal and pancreatic segments. In addition, 0.01 % SA supplementation notably improved amylase activity in the intestinal segment, while diets with 0.01%-0.02 % SA significantly improved lipase activity in the pancreatic segment. In terms of intestinal development, 0.01 % SA supplementation remarkably boosted the activities of alkaline-phosphatase and leucine-aminopeptidase on brush border membrane in intestine. Furthermore, 0.03 % SA supplementation significantly increased the expression of occludin. In terms of immunity, larvae fed diets with 0.01%-0.02 % SA exhibited significantly higher lysozyme activity compared to the control group. Supplementation with 0.01 % SA also significantly increased both iNOS activity and NO content. In summary, the findings of this study suggested that supplementing 0.02 % SA can improve the growth performance of large yellow croaker larvae by improving digestive enzymes activities, promoting intestinal development, and enhancing nonspecific immunity.

8.
Appl Microbiol Biotechnol ; 108(1): 278, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558151

RESUMO

The production of succinic acid from corn stover is a promising and sustainable route; however, during the pretreatment stage, byproducts such as organic acids, furan-based compounds, and phenolic compounds generated from corn stover inhibit the microbial fermentation process. Selecting strains that are resistant to stress and utilizing nondetoxified corn stover hydrolysate as a feedstock for succinic acid production could be effective. In this study, A. succinogenes CICC11014 was selected as the original strain, and the stress-resistant strain A. succinogenes M4 was obtained by atmospheric and room temperature plasma (ARTP) mutagenesis and further screening. Compared to the original strain, A. succinogenes M4 exhibited a twofold increase in stress resistance and a 113% increase in succinic acid production when hydrolysate was used as the substrate. By conducting whole-genome resequencing of A. succinogenes M4 and comparing it with the original strain, four nonsynonymous gene mutations and two upstream regions with base losses were identified. KEY POINTS: • A high-stress-resistant strain A. succinogenes M4 was obtained by ARTP mutation •  The production of succinic acid increased by 113% • The mutated genes of A. succinogenes M4 were detected and analyzed.


Assuntos
Actinobacillus , Zea mays , Zea mays/química , Ácido Succínico , Melhoramento Vegetal , Fermentação , Mutação
9.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592508

RESUMO

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Assuntos
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilação da Expressão Gênica , Transcriptoma
10.
Biochemistry (Mosc) ; 89(7): 1325-1335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39218028

RESUMO

Effect of succinic acid on the processes of myogenesis was investigated in the study with the cells of C2C12 line. In the concentration range 10-1000 µM, succinic acid stimulated the process of myogenic differentiation, increasing the levels of myogenesis factors MyoD (at all stages of myogenesis) and myogenin (at the stage of terminal differentiation). Presence of the succinate receptors SUCNR1 was revealed in the C2C12 cells using Western blotting, level of which decreased during myogenesis. When succinic acid was added to the cells, the level of intracellular succinate did not change significantly and decreased during myogenic differentiation. Using a specific Gai protein inhibitor, pertussis toxin, it was found that stimulation of myogenesis in the C2C12 cells under the action of succinic acid is realized through SUCNR1-Gai interaction.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Ácido Succínico , Ácido Succínico/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Receptores Acoplados a Proteínas G/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo
11.
Biotechnol Lett ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331306

RESUMO

This investigation probes the role of the electron mediator, neutral red (NR), in the electrosynthesis process, specifically examining its effect on the production of succinic acid by Actinobacillus succinogenes. Our findings reveal that NR, when integrated into the cell membrane, is pivotal for sustaining MEC efficiency. Nevertheless, it is susceptible to both intrinsic and MECs-induced degradation. Notably, during the exponential growth phase of the bacteria, NR is readily incorporated into the cell membrane. However, the supplemental addition of NR fails to significantly enhance the MEC's capacity for succinic acid synthesis, no matter what stage of bacterial growth. And significant depletion of membrane-associated NR is not adequately compensated by the NR present in the fermentation liquid. The ORP feedback-regulated MECs adeptly conserve the NR on the cell membrane, which is essential for maintaining the efficiency of long-term electrosynthesis. The presence of NR on the cell membrane is essential for the functionality of MECs, yet its external replenishment hard. Implementing precise electro-potential regulation strategies can effectively diminish the degradation of NR, thus maintaining the system's efficiency.

12.
Int J Paediatr Dent ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031911

RESUMO

BACKGROUND: There is limited evidence of succinic acid release from amber necklace that justifies its biological plausibility. AIM: This study aimed to evaluate the release of succinic acid from Baltic amber beads in the presence of Staphylococcus epidermidis. DESIGN: The Baltic amber beads from the necklace were stratified according to their weight (average 0.05 g ± 0.067). Subsequently, the beads (n = 8) were submerged in 0.9% buffered saline (Control) or brain-heart infusion culture medium in the presence of a commercial strain of S. epidermidis, a resident skin bacterium incubated at 37°C for 24 h or 7 days. The samples were centrifuged, and the supernatants were analyzed by 1H Nuclear Magnetic Resonance. Multivariate analyses were adopted using the sparse partial least squares discriminant analysis method (p < .05). RESULTS: The group incubated with saline solution showed small release of succinic acid only after 7 days. In the groups with S. epidermidis, the release of succinic acid was observed in the both presence and absence of amber beads, indicating that succinic acid is a product released by bacteria. CONCLUSIONS: It was found that amber beads do not exhibit the ability to release expressive succinic acid, especially in a short period of time, which does not justify their use in infants. The most production of succinic acid is tributed to S. epidermidis.

13.
Molecules ; 29(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39407632

RESUMO

Two ethanol-solvated adipate and succinate salts of carvedilol (CVD), a Biopharmaceutics Classification System class 2 drug, were synthesized by crystallizing ethanol with adipic acid (ADP) and succinic acid (SUA). Proton transfer from ADP and SUA to CVD and the presence of ethanol in the two novel compounds were confirmed using powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and single-crystal X-ray diffraction measurements. The two novel ethanol-solvated salts exhibited enhanced solubility and dissolution rates compared with pure carvedilol in phosphate buffer (pH 6.8). Additionally, the morphologies and attachment energies of the two novel compounds and pure CVD were calculated based on their single-crystal structures, revealing a correlation between attachment energy and dissolution rate.


Assuntos
Adipatos , Carvedilol , Etanol , Solubilidade , Carvedilol/química , Adipatos/química , Etanol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cristalografia por Raios X , Difração de Raios X , Varredura Diferencial de Calorimetria , Ácido Succínico/química , Sais/química , Termogravimetria , Estrutura Molecular , Cristalização , Propanolaminas/química
14.
World J Microbiol Biotechnol ; 40(10): 298, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39128979

RESUMO

Mortierella alpina is popular for lipid production, but the low carbon conversion rate and lipid yield are major obstacles for its economic performance. Here, external addition of organic acids involved in tricarboxylic acid cycle was used to tune carbon flux and improve lipid production. Citrate was determined to be the best organic acid that can be used for enhancing lipid production. By the addition of citrate, the lipid titer and content were approximately 1.24 and 1.34 times higher, respectively. Meanwhile, citrate supplement also promoted the accumulation of succinate, an important value-added platform chemical. Owing to the improved lipid and succinate production through adding citrate, the carbon conversion rate of M. alpina reached up to 52.17%, much higher than that of the control group (14.11%). The addition of citrate could redistribute carbon flux by regulating the expression level of genes related to tricarboxylic acid cycle metabolism. More carbon fluxes flow to lipid and succinate synthesis, which greatly improved the carbon conversion efficiency of M. alpina. This study provides an effective and straightforward strategy with potential economic benefits to improve carbon conversion efficiency in M. alpina.


Assuntos
Carbono , Ciclo do Ácido Cítrico , Ácido Cítrico , Mortierella , Ácido Succínico , Mortierella/metabolismo , Mortierella/genética , Ácido Succínico/metabolismo , Carbono/metabolismo , Ácido Cítrico/metabolismo , Lipídeos/biossíntese , Metabolismo dos Lipídeos , Regulação Fúngica da Expressão Gênica , Fermentação
15.
J Environ Sci (China) ; 143: 164-175, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644014

RESUMO

Utilizing CO2 for bio-succinic acid production is an attractive approach to achieve carbon capture and recycling (CCR) with simultaneous production of a useful platform chemical. Actinobacillus succinogenes and Basfia succiniciproducens were selected and investigated as microbial catalysts. Firstly, the type and concentration of inorganic carbon concentration and glucose concentration were evaluated. 6 g C/L MgCO3 and 24 g C/L glucose were found to be the optimal basic operational conditions, with succinic acid production and carbon yield of over 30 g/L and over 40%, respectively. Then, for maximum gaseous CO2 fixation, carbonate was replaced with CO2 at different ratios. The "less carbonate more CO2" condition of the inorganic carbon source was set as carbonate: CO2 = 1:9 (based on the mass of carbon). This condition presented the highest availability of CO2 by well-balanced chemical reaction equilibrium and phase equilibrium, showing the best performance with regarding CO2 fixation (about 15 mg C/(L·hr)), with suppressed lactic acid accumulation. According to key enzymes analysis, the ratio of phosphoenolpyruvate carboxykinase to lactic dehydrogenase was enhanced at high ratios of gaseous CO2, which could promote glucose conversion through the succinic acid path. To further increase gaseous CO2 fixation and succinic acid production and selectivity, stepwise CO2 addition was evaluated. 50%-65% increase in inorganic carbon utilization was obtained coupled with 20%-30% increase in succinic acid selectivity. This was due to the promotion of the succinic acid branch of the glucose metabolism, while suppressing the pyruvate branch, along with the inhibition on the conversion from glucose to lactic acid.


Assuntos
Dióxido de Carbono , Ácido Succínico , Dióxido de Carbono/metabolismo , Ácido Succínico/metabolismo , Actinobacillus/metabolismo , Glucose/metabolismo
16.
Angew Chem Int Ed Engl ; 63(44): e202411502, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39072890

RESUMO

Plastic pollution, an increasingly serious global problem, can be addressed through the full lifecycle management of plastics, including plastics recycling as one of the most promising approaches. System design, catalyst development, and product separation are the keys in improving the economics of electrocatalytic plastics recycling. Here, a membrane-free co-production system was devised to produce succinic acid (SA) at both anode and cathode respectively by the co-electrolysis of polybutylene succinate (PBS) waste plastics and biomass-derived maleic acid (MA) for the first time. To this end, Cr3+-Ni(OH)2 electrocatalyst featuring much enhanced 1,4-butanediol (BDO) oxidation reaction (BOR) activity has been synthesized and the role of doped Cr has been revealed as an "electron puller" to accelerate the rate-determining step (RDS) in the Ni2+/Ni3+ cycling. Impressively, an extra-high SA production rate of 3.02 g h-1 and ultra-high apparent Faraday efficiency towards SA (FEapparent=181.5 %) have been obtained. A carbon dioxide-assisted sequential precipitation approach has been developed to produce high-purity SA and byproduct NaHCO3 solids. Preliminary techno-economic analysis demonstrates that the reported system is economically profitable and promising for future industrial applications.

17.
Mol Plant Microbe Interact ; 36(2): 95-108, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36366828

RESUMO

The accumulation of cadmium (Cd) in plants is strongly impacted by soil microbes, but its mechanism remains poorly understood. Here, we report the mechanism of reduced Cd accumulation in rice by coculture of Enterobacter and Comamonas species. In pot experiments, inoculation with the coculture decreased Cd content in rice grain and increased the amount of nonbioavailable Cd in Cd-spiked soils. Fluorescence in situ hybridization and scanning electron microscopy detection showed that the coculture colonized in the rhizosphere and rice root vascular tissue and intercellular space. Soil metagenomics data showed that the coculture increased the abundance of sulfate reduction and biofilm formation genes and related bacterial species. Moreover, the coculture increased the content of organic matter, available nitrogen, and potassium and increased the activities of arylsulfatase, ß-galactosidase, phenoloxidase, arylamidase, urease, dehydrogenase, and peroxidase in soils. In subsequent rice transcriptomics assays, we found that the inoculation with coculture activated a hypersensitive response, defense-related induction, and mitogen-activated protein kinase signaling pathway in rice. Heterologous protein expression in yeast confirmed the function of four Cd-binding proteins (HIP28-1, HIP28-4, BCP2, and CID8), a Cd efflux protein (BCP1), and three Cd uptake proteins (COPT4, NRAM5, and HKT6) in rice. Succinic acid and phenylalanine were subsequently proved to inhibit rice divalent Cd [Cd(II)] uptake and activate Cd(II) efflux in rice roots. Thus, we propose a model that the coculture protects rice against Cd stress via Cd immobilization in soils and reducing Cd uptake in rice. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Comamonas , Oryza , Poluentes do Solo , Cádmio/análise , Cádmio/metabolismo , Oryza/metabolismo , Enterobacter/genética , Comamonas/metabolismo , Técnicas de Cocultura , Hibridização in Situ Fluorescente , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
18.
J Autoimmun ; 138: 103048, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216870

RESUMO

Metabolic reprogramming plays a pivotal role in the differentiation and function of immune cells including dendritic cells (DCs). Regulatory DCs can be generated in regional tissue niches like splenic stroma and act as an important part of stromal control of immune response for the maintenance of immune tolerance. However, the metabolic alterations during splenic stroma-driven regulatory DCs differentiation and the metabolic enzyme involved in regulatory DCs function remain poorly understood. By combining metabolomic, transcriptomic, and functional investigations of mature DCs (maDCs) and diffDCs (regulatory DCs differentiated from activated mature DCs through coculturing with splenic stroma), here we identified succinate-CoA ligase subunit beta Suclg2 as a key metabolic enzyme that reprograms the proinflammatory status of mature DCs into a tolerogenic phenotype via preventing NF-κB signaling activation. diffDCs downregulate succinic acid levels and increase the Suclg2 expression along with their differentiation from mature DCs. Suclg2-interference impaired the tolerogenic function of diffDCs in inducing T cell apoptosis and enhanced activation of NF-κB signaling and expression of inflammatory genes CD40, Ccl5, and Il12b in diffDCs. Furthermore, we identified Lactb as a new positive regulator of NF-κB signaling in diffDCs whose succinylation at the lysine 288 residue was inhibited by Suclg2. Our study reveals that the metabolic enzyme Suclg2 is required to maintain the immunoregulatory function of diffDCs, adding mechanistic insights into the metabolic regulation of DC-based immunity and tolerance.


Assuntos
Células Dendríticas , NF-kappa B , Diferenciação Celular , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Tolerância Imunológica , NF-kappa B/metabolismo , Transdução de Sinais , Succinato-CoA Ligases/imunologia , beta-Lactamases/imunologia
19.
Biotechnol Appl Biochem ; 70(3): 1149-1161, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36536601

RESUMO

This study involves the isolation of succinic acid (SA)-producing microorganisms from different samples, including the rumen, sludge, soil, and wastewater. For primary screening, 29 isolates exhibited a zone of clearance around the colony, indicating acid production. For secondary screening using thin-layer chromatography, only two isolates symbolized SA production according to their Rf values. These two isolates were further identified as Bacillus velezensis and Enterococcus gallinarum by phylogenetic analysis using the neighbor-joining method. The high SA concentrations of 50.2 and 66.9 g/L were produced by B. velezensis and E. gallinarum with an SA yield of 0.836 and 1.12 g/g glucose, respectively. The high SA concentration from these newly isolated strains was achieved with a low formation of unwanted acids compared with those from Actinobacillus succinogenes ATCC 55618. Moreover, E. gallinarum was cultured in palm oil mill wastewater (POMW) and molasses, which were cheap substrates. The high SA production of 73.9 g/L with low other acids (the ratio of SA to total acids = 0.917) was achieved using POMW and molasses (80:20) as substrates.


Assuntos
Ácido Succínico , Águas Residuárias , Filogenia , Fermentação , Melaço
20.
Biotechnol Lett ; 45(9): 1133-1145, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37395870

RESUMO

Metabolic engineering has shown that optimizing metabolic pathways' fluxes for industrial purposes requires a methodical approach. Accordingly, in this study, in silico metabolic modeling was utilized to characterize the lesser-known strain Basfia succiniciproducens under different environmental conditions, followed by the use of industrially relevant substrates for succinic acid synthesis. Based on RT-qPCR carried out in flask experiments, we discovered a relatively large difference in the expression levels of ldhA gene compared to glucose in both xylose and glycerol cultures. In bioreactor-scale fermentations, the impact of different gas phases (CO2, CO2/AIR) on biomass yield, substrate consumption, and metabolite profiles was also investigated. In the case of glycerol, the addition of CO2 increased biomass as well as target product formation, while using CO2/AIR gas phase resulted in higher target product yield (0.184 mM⋅mM-1). In case of xylose, using CO2 alone would result in higher succinic acid production (0.277 mM⋅mM-1). The promising rumen bacteria, B. succiniciproducens, has shown to be suitable for succinic acid production from both xylose and glycerol. As a result, our findings present new opportunities for broadening the range of raw materials used in this significant biochemical process. Our study also sheds light on fermentation parameter optimization for this strain, namely that, CO2/AIR supply has a positive effect on target product formation.


Assuntos
Dióxido de Carbono , Ácido Succínico , Animais , Ácido Succínico/metabolismo , Glicerol , Xilose , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA