Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.041
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(5): 1188-1197.e9, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27523609

RESUMO

Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end.


Assuntos
Telomerase/metabolismo , Telômero/enzimologia , Transporte Ativo do Núcleo Celular , Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Linhagem Celular , Núcleo Celular/enzimologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corpos Enovelados/enzimologia , Endonucleases , Edição de Genes , Genoma Humano , Células HeLa , Humanos , Imageamento Tridimensional , Domínios Proteicos , Fase S , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Complexo Shelterina , Telomerase/química , Telômero/química , Homeostase do Telômero , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo
2.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270249

RESUMO

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Assuntos
Glioblastoma , Telomerase , Animais , Camundongos , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Fumaratos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Mutação , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas
3.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641551

RESUMO

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Apoptose/genética , DNA/metabolismo , Dano ao DNA/genética , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Disceratose Congênita/patologia , Mutação , Estresse Oxidativo/genética , RNA/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
4.
Am J Hum Genet ; 109(12): 2196-2209, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459980

RESUMO

The TERT/CLPTM1L risk locus on chromosome 5p15.33 is a pleiotropic cancer risk locus in which multiple independent risk alleles have been identified, across well over ten cancer types. We previously conducted a genome-wide association study in uveal melanoma (UM), which uncovered a role for the TERT/CLPTM1L risk locus in this intraocular tumor and identified multiple highly correlated risk alleles. Aiming to unravel the biological mechanisms in UM of this locus, which contains a domain enriched in active chromatin marks and enhancer elements, we demonstrated the allele-specific enhancer activity of this risk region using reporter assays. In UM, we identified the functional variant rs452384, of which the C risk allele is associated with higher gene expression, increased CLPTM1L expression in UM tumors, and a longer telomere length in peripheral blood mononuclear cells. Electrophoretic mobility shift assays and quantitative mass spectrometry identified NKX2.4 as an rs452384-T-specific binding protein, whereas GATA4 preferentially interacted with rs452384-C. Knockdown of NKX2.4 but not GATA4 resulted in increased TERT and CLPTM1L expression. In summary, the UM risk conferred by the 5p locus is at least partly due to rs452384, for which NKX2.4 presents strong differential binding activity and regulates CLPTM1L and TERT expression. Altogether, our work unraveled some of the complex regulatory mechanisms at the 5p15.33 susceptibility region in UM, and this might also shed light on shared mechanisms with other tumor types affected by this susceptibility region.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Uveais , Humanos , Alelos , Leucócitos Mononucleares , Neoplasias Uveais/genética
5.
J Pathol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329419

RESUMO

Telomerase reverse transcriptase (TERT) gene aberration is detectable in >80% of cases with hepatocellular carcinoma (HCC). TERT reactivation is essential for cellular immortalization because it stabilizes telomere length, although the role of TERT in hepatocarcinogenesis remains unelucidated. To elucidate the significance of aberrant TERT expression in hepatocytes in inflammation-associated hepatocarcinogenesis, we generated Alb-Cre;TertTg mice, which overexpress TERT in the liver and examined their phenotype during chronic inflammation. Based on transcriptome data from the liver tissue of Alb-Cre;TertTg mice, we examined the role of TERT in hepatocarcinogenesis in vitro. We also evaluated the relationship between TERT and cell-cycle-related molecules, including p21, in HCC samples. The liver tumor development rate was increased by TERT overexpression during chronic inflammation, especially in the absence of p53 function. Gene set enrichment analysis of liver tissues revealed that gene sets related to TNF-NFκB signaling, cell cycle, and apoptosis were upregulated in Alb-Cre;TertTg liver. A luciferase reporter assay and immunoprecipitation revealed that TERT interacted with NFκB p65 and enhanced NFKB1 promoter activity. On the other hand, TERT formed protein complexes with p21, cyclin A2, and cyclin E and promoted ubiquitin-mediated degradation of p21, specifically in the G1 phase. In the clinical HCC samples, TERT was highly expressed but p21 was conversely downregulated, and TERT expression was associated with the upregulation of molecules related to the cell cycle. Taken together, the aberrant upregulation of TERT increased NFKB1 promoter activity and promoted cell cycle progression via p21 ubiquitination, leading to hepatocarcinogenesis. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027447

RESUMO

Cancer-specific hTERT promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) hTERT promoters may open up avenues for development of inhibitors which specially block hTERT expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut-hTERT promoters, we generated several isogenic reporter cells driven by endogenous hTERT loci. Genome-wide CRISPR-Cas9 and small interfering RNA screens using these isogenic reporter lines identified specific regulators of Mut-hTERT promoters. We validate and characterize one of these hits, namely, MED12, a kinase subunit of mediator complex. We demonstrate that MED12 specifically drives expression of hTERT from the Mut-hTERT promoter by mediating long-range chromatin interaction between the proximal Mut-hTERT promoter and T-INT1 distal regulatory region 260 kb upstream. Several hits identified in our screens could serve as potential therapeutic targets, inhibition of which may specifically block Mut-hTERT promoter driven telomerase reactivation in cancers.


Assuntos
Mutação , Regiões Promotoras Genéticas , Telomerase/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cromatina , Proteínas de Ligação a DNA , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Complexo Mediador/genética , Complexo Mediador/metabolismo , Neoplasias/genética , Sequências Reguladoras de Ácido Nucleico , Telomerase/metabolismo , Fatores de Transcrição , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 119(20): e2121499119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537048

RESUMO

As the global elderly population grows, it is socioeconomically and medically critical to provide diverse and effective means of mitigating the impact of aging on human health. Previous studies showed that the adeno-associated virus (AAV) vector induced overexpression of certain proteins, which can suppress or reverse the effects of aging in animal models. In our study, we sought to determine whether the high-capacity cytomegalovirus vector (CMV) can be an effective and safe gene delivery method for two such protective factors: telomerase reverse transcriptase (TERT) and follistatin (FST). We found that the mouse cytomegalovirus (MCMV) carrying exogenous TERT or FST (MCMVTERT or MCMVFST) extended median lifespan by 41.4% and 32.5%, respectively. We report CMV being used successfully as both an intranasal and injectable gene therapy system to extend longevity. Specifically, this treatment significantly improved glucose tolerance, physical performance, as well as preventing body mass loss and alopecia. Further, telomere shortening associated with aging was ameliorated by TERT and mitochondrial structure deterioration was halted in both treatments. Intranasal and injectable preparations performed equally well in safely and efficiently delivering gene therapy to multiple organs, with long-lasting benefits and without carcinogenicity or unwanted side effects. Translating this research to humans could have significant benefits associated with quality of life and an increased health span.


Assuntos
Infecções por Citomegalovirus , Terapia Genética , Expectativa de Vida , Telomerase , Administração por Inalação , Animais , Folistatina/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/genética , Injeções Intraperitoneais , Camundongos , Modelos Animais , Neoplasias , Telomerase/genética , Telomerase/metabolismo
8.
Genes Chromosomes Cancer ; 63(7): e23260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031441

RESUMO

Neuroblastoma (NB) is a heterogeneous childhood cancer with a slightly higher incidence in boys than girls, with the reason for this gender disparity unknown. Given the growing evidence for the involvement of loss of the Y chromosome (LoY) in male diseases including cancer, we investigated Y chromosome status in NB. Male NB tumor samples from a Swedish cohort, analyzed using Cytoscan HD SNP-microarray, were selected. Seventy NB tumors were analyzed for aneuploidy of the Y chromosome, and these data were correlated with other genetic, biological, and clinical parameters. LoY was found in 21% of the male NB tumors and it was almost exclusively found in those with high-risk genomic profiles. Furthermore, LoY was associated with increased age at diagnosis and enriched in tumors with 11q-deletion and activated telomere maintenance mechanisms. In contrast, tumors with an MYCN-amplified genomic profile retained their Y chromosome. The understanding of LoY in cancer is limited, making it difficult to conclude whether LoY is a driving event in NB or function of increased genomic instability. Gene expression analysis of Y chromosome genes in male NB tumors showed low expression of certain genes correlating with worse overall survival. KDM5D, encoding a histone demethylase stands out as an interesting candidate for further studies. LoY has been shown to impact the epigenomic layer of autosomal loci in nonreproductive tissues, and KDM5D has been reported as downregulated and/or associated with poor survival in different malignancies. Further studies are needed to explore the mechanisms and functional consequences of LoY in NB.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 11 , Cromossomos Humanos Y , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Masculino , Cromossomos Humanos Y/genética , Cromossomos Humanos Par 11/genética , Lactente , Pré-Escolar , Feminino , Homeostase do Telômero/genética , Criança , Histona Desmetilases/genética , Telômero/genética , Proteína Proto-Oncogênica N-Myc/genética , Suécia/epidemiologia
9.
Genes Chromosomes Cancer ; 63(1): e23210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870859

RESUMO

COL1A1::PDGFB fusion uterine sarcoma is a rare uterine mesenchymal tumor with some clinicopathological features that overlap with those of soft tissue dermatofibrosarcoma protuberans. However, the varied clinicopathologic and genetic characteristics have not been fully revealed, which may be a potential pitfall for diagnosis. Here, we present a case of COL1A1::PDGFB fusion-positive uterine sarcoma in a 49-years-old female. Histologically, the tumor from the initial marginal excision predominantly exhibited high-grade fibrosarcomatous and myxofibrosarcoma-like appearances, while a low-grade focal area displaying storiform growth was identified in the residual tumor after subsequently extended resection. Immunohistochemically, the high-grade components mainly exhibited focal positivity for CD34 and mutated-type p53 immunoreactivity, whereas the low-grade component showed diffuse positivity for CD34 and wild-type p53 staining. The COL1A1::PDGFB fusion was confirmed by fluorescence in situ hybridization and next-generation sequencing. In addition, the TERT-124 C > T mutation was further identified in this lesion's fibrosarcomatous and classic storiform components. To the best of our knowledge, this is the first described case of COL1A1::PDGFB fusion uterine sarcoma with a TERT promoter mutation, which might be a novel genetic finding associated with tumorigenesis of this rare tumor.


Assuntos
Dermatofibrossarcoma , Fibrossarcoma , Neoplasias Pélvicas , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Telomerase , Neoplasias Uterinas , Feminino , Humanos , Pessoa de Meia-Idade , Dermatofibrossarcoma/genética , Fibrossarcoma/genética , Hibridização in Situ Fluorescente , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-sis/genética , Neoplasias Cutâneas/genética , Telomerase/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/cirurgia
10.
Artigo em Inglês | MEDLINE | ID: mdl-39269467

RESUMO

Impaired alveolar epithelial regeneration in patients with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) is attributed to telomere dysfunction in type II alveolar epithelial cells (A2Cs). Genetic susceptibility, aging, and toxicant exposures, including tobacco smoke (TS), contribute to telomere dysfunction in A2Cs. Here we investigated whether improvement of telomere function plays a role in CSP7-mediated protection of A2Cs against ongoing senescence and apoptosis during bleomycin (BLM)-induced pulmonary fibrosis (PF) as well as alveolar injury caused by chronic TS exposure. We found a significant telomere shortening in A2Cs isolated from IPF and COPD lungs in line with other studies. These cells showed increased p53 in addition to its post-translational modification with induction of activated caspase-3 and ß-galactosidase, suggesting a p53-mediated loss of A2C renewal. Further, we found increased expression of SIAH-1, a p53-inducible E3 ubiquitin ligase known to down-regulate telomere repeats binding factor 2 (TRF2). Consistent with the loss of TRF2 and upregulation of TRF1, telomerase reverse transcriptase (TERT) was downregulated in A2Cs. A2Cs from fibrotic lungs of mice either repeatedly instilled with BLM or isolated from chronic TS exposure-induced lung injury model showed reduced telomere length along with induction of p53, PAI-1, SIAH1 and TRF1 as well as loss of TRF2 and TERT, which were reversed in wild-type mice after treatment with CSP7. Interestingly, PAI-1-/- mice, or those lacking microRNA-34a expression in A2Cs, resisted telomere dysfunction, while uPA-/- mice failed to respond to CSP7 treatment, suggesting p53-microRNA-34a feed-forward induction and p53-uPA pathway contributes to telomere dysfunction.

11.
J Proteome Res ; 23(8): 3124-3140, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39052308

RESUMO

A multimetabo-lipid-prote-omics workflow was developed to characterize the molecular interplay within proximal (PC) and distal (DC) colonic epithelium of healthy mice. This multiomics data set lays the foundation to better understand the two tissue types and can be used to study, for example, colon-related diseases like colorectal cancer or inflammatory bowel disease. First, the methyl tert-butyl ether extraction method was optimized, so that from a single tissue biopsy >350 reference-matched metabolites, >1850 reference-matched lipids, and >4500 proteins were detected by using targeted and untargeted metabolomics, untargeted lipidomics, and proteomics. Next, each omics-data set was analyzed individually and then merged with the additional omics disciplines to generate a deep understanding of the underlying complex regulatory network within the colon. Our data demonstrates, for example, differences in mucin formation, detected on substrate level as well as on enzyme level, and altered lipid metabolism by the detection of phospholipases hydrolyzing sphingomyelins to ceramides. In conclusion, the combination of the three mass spectrometry-based omics techniques can better entangle the functional and regional differences between PC and DC tissue compared to each single omics technique.


Assuntos
Colo , Mucosa Intestinal , Metabolismo dos Lipídeos , Lipidômica , Metabolômica , Proteômica , Animais , Colo/metabolismo , Camundongos , Metabolômica/métodos , Proteômica/métodos , Mucosa Intestinal/metabolismo , Lipidômica/métodos , Fluxo de Trabalho , Lipídeos/análise , Camundongos Endogâmicos C57BL , Espectrometria de Massas/métodos , Éteres Metílicos
12.
J Cell Mol Med ; 28(7): e18150, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494866

RESUMO

The anti-apoptotic proteins, Bcl-2 and Survivin, are consistently overexpressed in numerous human malignancies, notably in colorectal cancer. 2,4-Di-tert-butylphenol (2,4-DTBP) is a naturally occurring phenolic compound known for its diverse biological activities, including anti-cancer properties. The mechanism behind 2,4-DTBP-induced inhibition of cell proliferation and apoptosis in human colorectal cancer cells, specifically regarding Bcl-2 and Survivin, remains to be elucidated. In this study, we employed both in silico and in vitro methodologies to underpin this interaction at the molecular level. Molecular docking demonstrated a substantial binding affinity of 2,4-DTBP towards Bcl-2 (ΔG = -9.8 kcal/mol) and Survivin (ΔG = -5.6 kcal/mol), suggesting a potential inhibitory effect. Further, molecular dynamic simulations complemented by MM-GBSA calculations confirmed the significant binding of 2,4-DTBP with Bcl-2 (dGbind = -54.85 ± 6.79 kcal/mol) and Survivin (dGbind = -32.36 ± 1.29 kcal/mol). In vitro assays using HCT116 colorectal cancer cells revealed that 2,4-DTBP inhibited proliferation and promoted apoptosis in both a dose- and time-dependent manner. Fluorescence imaging and scanning electron microscopy illustrated the classical features associated with apoptosis upon 2,4-DTBP exposure. Cell cycle analysis through flow cytometry highlighted a G1 phase arrest and apoptosis assay demonstrated increased apoptotic cell population. Notably, western blotting results indicated a decreased expression of Bcl-2 and Survivin post-treatment. Considering the cytoprotective roles of Bcl-2 and Survivin through the inhibition of mitochondrial dysfunction, our findings of disrupted mitochondrial bioenergetics, characterized by reduced ATP production and oxygen consumption, further accentuate the functional impairment of these proteins. Overall, the integration of in silico and in vitro data suggests that 2,4-DTBP holds promise as a therapeutic agent targeting Bcl-2 and Survivin in colorectal cancer.


Assuntos
Neoplasias Colorretais , Fenóis , Humanos , Survivina , Simulação de Acoplamento Molecular , Proliferação de Células
13.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816532

RESUMO

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Telomerase , Telômero , Transativadores , tRNA Metiltransferases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Mutação , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transativadores/genética , Transativadores/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
14.
Lab Invest ; : 102146, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357799

RESUMO

Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm which can arise at any anatomic site and is characterized by recurrent NAB2::STAT6 fusions and metastatic progression in 10-30%. The cell of origin has not been identified. Despite some progress in understanding the contribution of heterogeneous fusion types and secondary mutations to SFT biology, epigenetic alterations in extrameningeal SFT remain largely unexplored, and most sarcoma research to date has focused on the use of methylation profiling for tumor classification. We interrogated genome-wide DNA methylation in 79 SFTs to identify informative epigenetic changes. RNA-seq data from targeted panels and data from the Cancer Genome Atlas (TCGA) were used for orthogonal validation of selected findings. In unsupervised clustering analysis, the top 500 most variable CpGs segregated SFTs by primary anatomic site. Differentially methylated genes (DMGs) associated with primary SFT site included EGFR, TBX15, multiple HOX genes and their cofactors EBF1, EBF3, and PBX1, as well as RUNX1 and MEIS1. Of the 20 DMGs that were interrogated on the RNA-seq panel, twelve were significantly differentially expressed according to site. However, with the exception of TBX15, most of these also showed differential expression according to NAB2::STAT6 fusion type, suggesting that the fusion oncogene contributes to transcriptional regulation of these genes. Transcriptomic data confirmed an inverse correlation between gene methylation and the expression of TBX15 in both SFT and TCGA sarcomas. TBX15 also showed differential mRNA expression and 5' UTR methylation between tumors located in different anatomic sites in TCGA data. In all analyses, TBX15 methylation and mRNA expression retained the strongest association with tissue of origin in SFT and other sarcomas, suggesting a possible marker to distinguish metastatic tumors from new primaries without genomic profiling. Epigenetic signatures may further help to identify SFT progenitor cells at different anatomic sites.

15.
Curr Issues Mol Biol ; 46(4): 2845-2855, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38666908

RESUMO

The TERT (Telomerase Reverse Transcriptase) gene promoter mutation is one of the most prevalent mutations in urothelial bladder tumors and this mutation is related to bladder tumor progression. Our purpose was to evaluate the presence of this mutation in a population of patients who were first diagnosed at age ≤ 40 years and to examine its relationship with tumor characteristics and progression. A molecular study was performed to detect the two most prevalent mutations in the TERT promoter (C228T and C250T). The study included 29 patients, with a mean follow-up of 152 months. There were no statistically significant differences in the clinical or tumor characteristics according to the presence or absence of the mutation. Although the mutation group showed poorer recurrence-free survival (RFS), there was no statistically significant difference and there was no difference in progression-free survival by group (p > 0.05). The pTERT mutations in bladder tumor cells occurred less frequently in younger patients than in older patients, a finding that could indicate different mechanisms of carcinogenesis. The trend towards lower RFS in patients with mutated pTERT needs to be confirmed by further studies, given the small number of patients included in these studies due to the low incidence of bladder tumors in this age group.

16.
Curr Issues Mol Biol ; 46(2): 1467-1484, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38392213

RESUMO

The orbital manifestation of a solitary fibrous tumor (SFT) is exceptionally rare and poses specific challenges in diagnosis and treatment. Its rather exceptional behavior among all SFTs comprises a high tendency towards local recurrence, but it rarely culminates in metastatic disease. This raises the question of prognostic factors in orbital SFTs (oSFTs). Telomerase reverse transcriptase (TERT)-promoter mutations have previously been linked to an unfavorable prognosis in SFTs of other locations. We analyzed the prevalence of TERT promoter mutations of SFTs in the orbital compartment. We performed a retrospective, descriptive clinico-histopathological analysis of nine cases of oSFTs between the years of 2017 and 2021. A TERT promoter mutation was present in one case, which was classified with intermediate metastatic risk. Local recurrence or progress occurred in six cases after primary resection; no distant metastases were reported. Multimodal imaging repeatedly showed particular morphologic patterns, including tubular vascular structures and ADC reduction. The prevalence of the TERT promoter mutation in oSFT was 11%, which is similar to the prevalence of extra-meningeal SFTs of the head and neck and lower than that in other extra-meningeal compartments. In the present study, the TERT promoter mutation in oSFT manifested in a case with an unfavorable prognosis, comprising aggressive local tumor growth, local recurrence, and eye loss.

17.
Kidney Int ; 105(5): 980-996, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423182

RESUMO

Collapsing focal segmental glomerulosclerosis (FSGS), also known as collapsing glomerulopathy (CG), is the most aggressive variant of FSGS and is characterized by a rapid progression to kidney failure. Understanding CG pathogenesis represents a key step for the development of targeted therapies. Previous work implicated the telomerase protein component TERT in CG pathogenesis, as transgenic TERT expression in adult mice resulted in a CG resembling that seen in human primary CG and HIV-associated nephropathy (HIVAN). Here, we used the telomerase-induced mouse model of CG (i-TERTci mice) to identify mechanisms to inhibit CG pathogenesis. Inactivation of WIP1 phosphatase, a p53 target acting in a negative feedback loop, blocked disease initiation in i-TERTci mice. Repression of disease initiation upon WIP1 deficiency was associated with senescence enhancement and required transforming growth factor-ß functions. The efficacy of a pharmacologic treatment to reduce disease severity in both i-TERTci mice and in a mouse model of HIVAN (Tg26 mice) was then assessed. Pharmacologic inhibition of WIP1 enzymatic activity in either the telomerase mice with CG or in the Tg26 mice promoted partial remission of proteinuria and ameliorated kidney histopathologic features. Histological as well as high-throughput sequencing methods further showed that selective inhibition of WIP1 does not promote kidney fibrosis or inflammation. Thus, our findings suggest that targeting WIP1 may be an effective therapeutic strategy for patients with CG.


Assuntos
Nefropatia Associada a AIDS , Glomerulosclerose Segmentar e Focal , Insuficiência Renal , Telomerase , Adulto , Humanos , Camundongos , Animais , Glomerulosclerose Segmentar e Focal/patologia , Telomerase/uso terapêutico , Nefropatia Associada a AIDS/patologia , Proteinúria , Insuficiência Renal/complicações , Modelos Animais de Doenças
18.
Am J Hum Genet ; 108(2): 284-294, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421400

RESUMO

Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in >80% of affected individuals by acquisition of the KIT D816V mutation. To explore the hypothesis that inherited variation predisposes to mastocytosis, we performed a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without heterogeneity between cohorts: rs4616402 (pmeta = 1.37 × 10-15, OR = 1.52), rs4662380 (pmeta = 2.11 × 10-12, OR = 1.46), and rs13077541 (pmeta = 2.10 × 10-9, OR = 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with the expression of CEBPA (peQTL = 2.3 × 10-14), a gene encoding a transcription factor known to play a critical role in myelopoiesis. The role of the other two SNPs is less clear: rs4662380 is associated with expression of the long non-coding RNA gene TEX41 (peQTL = 2.55 × 10-11), whereas rs13077541 is associated with the expression of TBL1XR1, which encodes transducin (ß)-like 1 X-linked receptor 1 (peQTL = 5.70 × 10-8). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presentation (p = 0.009; beta = 4.41; n = 422). Additional focused analysis identified suggestive associations between mastocytosis and genetic variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V positive mastocytosis and provide novel avenues for functional investigation.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mastocitose/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-kit/genética , Sistema y+ de Transporte de Aminoácidos/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA Intergênico , Feminino , Humanos , Interleucina-13/genética , Íntrons , Masculino , RNA Longo não Codificante/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Telomerase/genética , Triptases/genética
19.
Br J Haematol ; 204(3): 1086-1095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926112

RESUMO

By whole exome sequencing, we identified a homozygous c.2086 C→T (p.R696C) TERT mutation in patients who present with a spectrum of variable bone marrow failure (BMF), raccoon eyes, dystrophic nails, rib anomalies, fragility fractures (FFs), high IgE level, extremely short telomere lengths (TLs), and skewed numbers of cytotoxic T cells with B and NK cytopenia. Haploinsufficiency in the other family members resulted in short TL and osteopenia. These patients also had the lowest bone mineral density Z-score compared to other BMF-patients. Danazol/zoledronic acid improved the outcomes of BMF and FFs. This causative TERT variant has been observed in one family afflicted with dyskeratosis congenita (DC), and thus, we also define a second report and new phenotype related to the variant which should be suspected in severe cases of DC with co-existent BMF, FFs, high IgE level and rib anomalies.


Assuntos
Disceratose Congênita , Pancitopenia , Fraturas das Costelas , Telomerase , Humanos , Telômero , Mutação , Disceratose Congênita/genética , Imunoglobulina E/genética , Telomerase/genética
20.
Oncologist ; 29(1): 8-14, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37462445

RESUMO

BACKGROUND: Telomerase reverse transcriptase (TERT) gene promoter mutations have been explored, as biomarkers of improved survival for patients with cancer receiving immune checkpoint inhibitors. We sought to investigate their prevalence by race and sex across different cancer types to inform patient selection in clinical trials. RESULTS: In this observational study, 31 925 patients with cancer underwent next-generation sequencing of their tumors with 88% (27 970) patients self-reported being Whites, 7.1% (2273) Asians, and 5.3% (1682) Blacks. Examining the distribution of TERT promoter mutations by race, White patients with melanoma harbored more TERT promoter mutations than Asian and Black patients (OR = 25.83; 95%CI, 6.84-217.42; P < .001). In contrast, Asian patients with head and neck cancer (HNC) harbored more TERT promoter mutations compared to White patients (OR = 2.47; 95%CI, 1.39-4.37; P = .004). In addition, the distribution of TERT promoter mutations differed by sex. Males were enriched for TERT gene promoter mutations compared to females with melanoma (OR = 1.82; 95%CI, 1.53-2.16; P < .001), cancer of unknown primary (OR = 1.96; 95%CI, 1.43-2.69; P < .001), hepatobiliary (OR = 3.89; 95%CI, 2.65-5.69; P < .001), and thyroid cancers (OR = 1.42; 95%CI, 1.10-1.84; P = .0087), while females were more enriched for TERT promoter mutations compared to males for HNC (OR = 0.56; 95%CI, 0.39-0.81; P = .0021). CONCLUSIONS: The prevalence of TERT gene promoter mutations varies among patients with cancer based on race and sex. These findings inform our understanding of cancer biology and can assist in the design of future clinical trials that leverage drugs targeting TERT promoter dependencies.


Assuntos
Neoplasias de Cabeça e Pescoço , Melanoma , Telomerase , Neoplasias da Glândula Tireoide , Masculino , Feminino , Humanos , Melanoma/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias de Cabeça e Pescoço/genética , Regiões Promotoras Genéticas/genética , Mutação , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA