Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Br J Nutr ; 119(4): 368-380, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498345

RESUMO

The incidence of obesity and its metabolic complications are rapidly increasing and become a major public health issue. This trend is associated with an increase in the prevalence of non-alcoholic fatty liver disease (NAFLD), insulin resistance and diabetes. The sequence of events leading to NAFLD progression and mitochondrial dysfunction and their interrelation remains to be elucidated. This study aimed to explore the installation and progression of NAFLD and its association with the liver mitochondrial structure and activity changes in rats fed an obesogenic diet up to 20 weeks. Male Wistar rats were fed either a standard or high-fat-high-fructose (HFHFR) diet and killed on 4, 8, 12, 16 and 20 weeks of diet intake. Rats fed the HFHFR diet developed mildly overweight, associated with increased adipose tissue weight, hepatic steatosis, hyperglycaemia and hyperinsulinaemia after 8 weeks of HFHFR diet. Hepatic steatosis and many biochemical modifications plateaued at 8-12 weeks of HFHFR diet with slight amelioration afterwards. Interestingly, several biochemical and physiological parameters of mitochondrial function, as well as its phospholipid composition, in particular cardiolipin content, were tightly related to hepatic steatosis installation. These results showed once again the interrelation between hepatic steatosis development and mitochondrial activity alterations without being able to say whether the mitochondrial alterations preceded or followed the installation/progression of hepatic steatosis. Because both hepatic steatosis and mitochondrial alterations occurred as early as 4 weeks of diet, future studies should consider these four 1st weeks to reveal the exact interconnection between these major consequences of obesogenic diet intake.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Frutose/administração & dosagem , Frutose/efeitos adversos , Mitocôndrias Hepáticas/patologia , Tecido Adiposo/crescimento & desenvolvimento , Análise de Variância , Animais , Respiração Celular , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/efeitos adversos , Intolerância à Glucose/diagnóstico , Hiperglicemia/etiologia , Hiperinsulinismo/etiologia , Lipídeos/análise , Fígado/química , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/fisiologia , Sobrepeso/etiologia , Fosfolipídeos/química , Fosfolipídeos/classificação , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
2.
Br J Nutr ; 117(1): 12-20, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28091351

RESUMO

The present study aimed to investigate the effects of maternal dietary butyrate supplementation on energy metabolism and mitochondrial biogenesis in offspring skeletal muscle and the possible mediating mechanisms. Virgin female rats were randomly assigned to either control or butyrate diets (1 % butyrate sodium) throughout gestation and lactation. At the end of lactation (21 d), the offspring were killed by exsanguination from the abdominal aorta under anaesthesia. The results showed that maternal butyrate supplementation throughout gestation and lactation did not affect offspring body weight. However, the protein expressions of G-protein-coupled receptors (GPR) 43 and 41 were significantly enhanced in offspring skeletal muscle of the maternal butyrate-supplemented group. The ATP content, most of mitochondrial DNA-encoded gene expressions, the cytochrome c oxidase subunit 1 and 4 protein contents and the mitochondrial DNA copy number were significantly higher in the butyrate group than in the control group. Meanwhile, the protein expressions of type 1 myosin heavy chain, mitochondrial transcription factor A, PPAR-coactivator-1α (PGC-1α) and uncoupling protein 3 were significantly increased in the gastrocnemius muscle of the treatment group compared with the control group. These results indicate for the first time that maternal butyrate supplementation during the gestation and lactation periods influenced energy metabolism and mitochondrial biogenesis through the GPR and PGC-1α pathways in offspring skeletal muscle at weaning.


Assuntos
Butiratos/farmacologia , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Ração Animal/análise , Animais , Butiratos/administração & dosagem , DNA Mitocondrial/genética , Dieta , Suplementos Nutricionais , Feminino , Lactação , Mitocôndrias Musculares/genética , Gravidez , Ratos , Ratos Sprague-Dawley
3.
Br J Nutr ; 115(9): 1521-30, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26960981

RESUMO

We previously reported that medium-chain TAG (MCT) could alleviate hepatic oxidative damage in weanling piglets with intra-uterine growth retardation (IUGR). There is a relationship between oxidative status and energy metabolism, a process involved in substrate availability and glucose flux. Therefore, the aim of this study was to investigate the effects of IUGR and MCT on hepatic energy metabolism and mitochondrial function in weanling piglets. Twenty-four IUGR piglets and twenty-four normal-birth-weight (NBW) piglets were fed a diet of either soyabean oil (SO) or MCT from 21 d of postnatal age to 49 d of postnatal age. Then, the piglets' biochemical parameters and gene expressions related to energy metabolism and mitochondrial function were determined (n 4). Compared with NBW, IUGR decreased the ATP contents and succinate oxidation rates in the liver of piglets, and reduced hepatic mitochondrial citrate synthase (CS) activity (P<0·05). IUGR piglets exhibited reductions in hepatic mitochondrial DNA (mtDNA) contents and gene expressions related to mitochondrial biogenesis compared with NBW piglets (P<0·05). The MCT diet increased plasma ghrelin concentration and hepatic CS and succinate dehydrogenase activities, but decreased hepatic pyruvate kinase activity compared with the SO diet (P<0·05). The MCT-fed piglets showed improved mtDNA contents and PPARγ coactivator-1α expression in the liver (P<0·05). The MCT diet alleviated decreased mRNA abundance of the hepatic PPARα induced by IUGR (P<0·05). It can therefore be postulated that MCT may have beneficial effects in improving energy metabolism and mitochondrial function in weanling piglets.


Assuntos
Peso ao Nascer , Metabolismo Energético/efeitos dos fármacos , Retardo do Crescimento Fetal/metabolismo , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Triglicerídeos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , DNA Mitocondrial/metabolismo , Dieta , Gorduras na Dieta/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Mitocondriais , Grelina/sangue , Fígado/enzimologia , Fígado/metabolismo , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo , Valores de Referência , Suínos , Desmame
4.
Biochim Biophys Acta ; 1842(2): 175-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24215713

RESUMO

BACKGROUND: Loss of quadriceps muscle oxidative phenotype (OXPHEN) is an evident and debilitating feature of chronic obstructive pulmonary disease (COPD). We recently demonstrated involvement of the inflammatory classical NF-κB pathway in inflammation-induced impairments in muscle OXPHEN. The exact underlying mechanisms however are unclear. Interestingly, IκB kinase α (IKK-α: a key kinase in the alternative NF-κB pathway) was recently identified as a novel positive regulator of skeletal muscle OXPHEN. We hypothesised that inflammation-induced classical NF-κB activation contributes to loss of muscle OXPHEN in COPD by reducing IKK-α expression. METHODS: Classical NF-κB signalling was activated (molecularly or by tumour necrosis factor α: TNF-α) in cultured myotubes and the impact on muscle OXPHEN and IKK-α levels was investigated. Moreover, the alternative NF-κB pathway was modulated to investigate the impact on muscle OXPHEN in absence or presence of an inflammatory stimulus. As a proof of concept, quadriceps muscle biopsies of COPD patients and healthy controls were analysed for expression levels of IKK-α, OXPHEN markers and TNF-α. RESULTS: IKK-α knock-down in cultured myotubes decreased expression of OXPHEN markers and key OXPHEN regulators. Moreover, classical NF-κB activation (both by TNF-α and IKK-ß over-expression) reduced IKK-α levels and IKK-α over-expression prevented TNF-α-induced impairments in muscle OXPHEN. Importantly, muscle IKK-α protein abundance and OXPHEN was reduced in COPD patients compared to controls, which was more pronounced in patients with increased muscle TNF-α mRNA levels. CONCLUSION: Classical NF-κB activation impairs skeletal muscle OXPHEN by reducing IKK-α expression. TNF-α-induced reductions in muscle IKK-α may accelerate muscle OXPHEN deterioration in COPD.


Assuntos
Quinase I-kappa B/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Idoso , Animais , Western Blotting , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , NF-kappa B/genética , Oxirredução/efeitos dos fármacos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiopatologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Phytomedicine ; 98: 153919, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104757

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatocyte injury, is an obesity-induced metabolic dysregulation with few available therapeutic options. Enhancement of the mitochondrial function was considered as an effective treatment for NALFD. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on metabolic syndrome disease such as hyperlipidemia, coronary artery disease and cardiovascular diseases. The seed oil of Rosa roxburghii Tratt (ORRT) was of high quality in terms of its high amount of unsaturated fatty acids. However, the effects of ORRT on NALFD have not been reported so far. PURPOSE: The study aimed to evaluate the protective effects and molecular mechanism of ORRT for the treatment of NAFLD in vivo and in vitro. METHODS: The beneficial effects, especially improving the mitochondrial function, and the potential mechanism of ORRT on NAFLD were studied both in vivo and in vitro. Lipid levels were determined by triglyceride (TG), total cholesterol (TC), and Oil Red O staining. Oxidative stress and inflammation were assessed by detecting antioxidant enzyme activity, MDA content, and ELISA assay. Blood TG, TC, HDL-c and LDL-c levels were measured in HFD mice. Western blot analyses were used to determine the levels of the protein involved in fatty acid oxidation, oxidative metabolism, and mitochondria biogenesis and function. The mitochondrial membrane potential level was measured by JC-1 staining to teste the effect of ORRT on mitochondrial function in vitro. GW6471 (inhibitor of PPARα) was used to confirm the relationship between PPARα and PGC-1α. RESULTS: ORRT significantly restrained NAFLD progression by attenuating lipid accumulation, oxidative stress and inflammatory response. Furthermore, ORRT upregulated thermogenesis-related gene expressions, such as uncoupling protein 1 (UCP1) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that the expression of key genes involved in fatty acid oxidation (e.g., CPT-1α, ACADL, PPARα) and in mitochondrial biogenesis and function (e.g., TFAM, NRF1, PGC-1α, and COX IV) was significantly increased. Together with the observed MMP improvement, these findings suggested that ORRT activated the mitochondrial oxidative pathway. Additionally, GW6471 inhibited the ORRT on promoting the expression of PGC-1α, CPT-1α, and ACADL. In conclusion, ORRT possessed the potential to prevent lipid accumulation via the PPARα/PGC-1α signaling pathway, which could be developed as a natural health-promoting oil against NAFLD.

6.
Acta Pharm Sin B ; 12(1): 50-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127372

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.

7.
Acta Pharm Sin B ; 11(3): 599-608, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777670

RESUMO

Redox-altered plasticity refers to redox-dependent reversible changes in synaptic plasticity via altering functions of key proteins, such as N-methyl-d-aspartate receptor (NMDAR). Age-related cognitive disorders includes Alzheimer's disease (AD), vascular dementia (VD), and age-associated memory impairment (AAMI). Based on the critical role of NMDAR-dependent long-term potentiation (LTP) in memory, the increase of reactive oxygen species in cognitive disorders, and the sensitivity of NMDAR to the redox status, converging lines have suggested the redox-altered NMDAR-dependent plasticity might underlie the synaptic dysfunctions associated with cognitive disorders. In this review, we summarize the involvement of redox-altered plasticity in cognitive disorders by presenting the available evidence. According to reports from our laboratory and other groups, this "redox-altered plasticity" is more similar to functional changes rather than organic injuries, and strategies targeting redox-altered plasticity using pharmacological agents might reverse synaptic dysfunctions and memory abnormalities in the early stage of cognitive disorders. Targeting redox modifications for NMDARs may serve as a novel therapeutic strategy for memory deficits.

8.
Acta Pharm Sin B ; 9(2): 220-236, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30976490

RESUMO

Obesity is increasing in an alarming rate worldwide, which causes higher risks of some diseases, such as type 2 diabetes, cardiovascular diseases, and cancer. Current therapeutic approaches, either pancreatic lipase inhibitors or appetite suppressors, are generally of limited effectiveness. Brown adipose tissue (BAT) and beige cells dissipate fatty acids as heat to maintain body temperature, termed non-shivering thermogenesis; the activity and mass of BAT and beige cells are negatively correlated with overweight and obesity. The existence of BAT and beige cells in human adults provides an effective weight reduction therapy, a process likely to be amenable to pharmacological intervention. Herein, we combed through the physiology of thermogenesis and the role of BAT and beige cells in combating with obesity. We summarized the thermogenic regulators identified in the past decades, targeting G protein-coupled receptors, transient receptor potential channels, nuclear receptors and miscellaneous pathways. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of thermogenesis in energy homeostasis to the representative thermogenic regulators for treating obesity. Thermogenic regulators might have a large potential for further investigations to be developed as lead compounds in fighting obesity.

9.
Toxicol Rep ; 5: 598-607, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854630

RESUMO

The purpose of this study was to investigate the effects of capsaicinoids (CAPs) on lipid metabolism, inflammation, antioxidant status and the changes in gene products involved in these metabolic functions in exercised rats. A total of 28 male Wistar albino rats were randomly divided into four groups (n = 7) (i) No exercise and no CAPs, (ii) No exercise + CAPs (iii) Regular exercise, (iv) Regular exercise + CAPs. Rats were administered as 0.2 mg capsaicinoids from 10 mg/kg BW/day Capsimax® daily for 8 weeks. A significant decrease in lactate and malondialdehyde (MDA) levels and increase in activities of antioxidant enzymes were observed in the combination of regular exercise and CAPs group (P < 0.0001). Regular exercise + CAPs treated rats had greater nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) levels in muscle than regular exercise and no exercise rats (P < 0.001). Nevertheless, regular exercise + CAPs treated had lower nuclear factor kappa B (NF-κB) and IL-10 levels in muscle than regular exercise and control rats (P < 0.001). Muscle sterol regulatory element-binding protein 1c (SREBP-1c), liver X receptors (LXR), ATP citrate lyase (ACLY) and fatty acid synthase (FAS) levels in the regular exercise + CAPs group were lower than all groups (P < 0.05). However, muscle PPAR-γ level was higher in the regular exercise and CAPs alone than the no exercise rats. These results suggest CAPs with regular exercise may enhance lipid metabolism by regulation of gene products involved in lipid and antioxidant metabolism including SREBP-1c, PPAR-γ, and Nrf2 pathways in rats.

10.
Transl Res ; 202: 52-68, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165038

RESUMO

Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.


Assuntos
Imunidade Inata , Mitocôndrias/metabolismo , Transdução de Sinais , Alarminas/metabolismo , Animais , DNA Mitocondrial/genética , Humanos , Modelos Biológicos
11.
J Tradit Complement Med ; 7(1): 1-8, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28053881

RESUMO

Obesity is an increasingly prevalent and preventable morbidity with multiple behavioral, surgical and pharmacological interventions currently available. Commercial dietary supplements are often advertised to stimulate metabolism and cause rapid weight and/or fat loss, although few well-controlled studies have demonstrated such effects. We describe a commercially available dietary supplement (purportedly containing caffeine, catechins, and other metabolic stimulators) on resting metabolic rate in humans, and on metabolism, mitochondrial content, and related gene expression in vitro. Human males ingested either a placebo or commercially available supplement (RF) in a randomized double-blind placebo-controlled cross-over fashion. Metabolic rate, respiratory exchange ratio, and blood pressure were measured hourly for 3 h post-ingestion. To investigate molecular effects, human rhabdomyosarcoma cells (RD) and mouse myocytes (C2C12) were treated with various doses of RF for various durations. RF enhanced energy expenditure and systolic blood pressure in human males without altering substrate utilization. In myocytes, RF enhanced metabolism, metabolic gene expression, and mitochondrial content suggesting RF may target common energetic pathways which control mitochondrial biogenesis. RF appears to increase metabolism immediately following ingestion, although it is unclear if RF provides benefits beyond those provided by caffeine alone. Additional research is needed to examine safety and efficacy for human weight loss.

12.
Cell Cycle ; 14(1): 86-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25483072

RESUMO

Cancer stem cells (CSCs) represent a subpopulation of tumor cells endowed with self-renewal capacity and are considered as an underlying cause of tumor recurrence and metastasis. The metabolic signatures of CSCs and the mechanisms involved in the regulation of their stem cell-like properties still remain elusive. We utilized nasopharyngeal carcinoma (NPC) CSCs as a model to dissect their metabolic signatures and found that CSCs underwent metabolic shift and mitochondrial resetting distinguished from their differentiated counterparts. In metabolic shift, CSCs showed a greater reliance on glycolysis for energy supply compared with the parental cells. In mitochondrial resetting, the quantity and function of mitochondria of CSCs were modulated by the biogenesis of the organelles, and the round-shaped mitochondria were distributed in a peri-nuclear manner similar to those seen in the stem cells. In addition, we blocked the glycolytic pathway, increased the ROS levels, and depolarized mitochondrial membranes of CSCs, respectively, and examined the effects of these metabolic factors on CSC properties. Intriguingly, the properties of CSCs were curbed when we redirected the quintessential metabolic reprogramming, which indicates that the plasticity of energy metabolism regulated the balance between acquisition and loss of the stemness status. Taken together, we suggest that metabolic reprogramming is critical for CSCs to sustain self-renewal, deter from differentiation and enhance the antioxidant defense mechanism. Characterization of metabolic reprogramming governing CSC properties is paramount to the design of novel therapeutic strategies through metabolic intervention of CSCs.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antioxidantes/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Hexoquinase/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
13.
Adipocyte ; 4(2): 129-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167416

RESUMO

A diet enriched with citrulline (CIT) reduces white adipose tissue (WAT) mass. We recently showed that CIT stimulated ß-oxidation in rat WAT explants from young (2-4 months) but not old (25 months) rats. Here we show that both in old rats and high-fat-diet-fed young rats, uncoupling protein one (UCP1) mRNA and protein expressions were weaker than those in young control rats. Selectively in WAT from young rats, a 24h CIT treatment up-regulated expressions of UCP1, peroxisome proliferator-activated receptor-α (PPARα), PPARγ-coactivator-1-α and mitochondrial-transcription-factor-A whereas it down-regulated PPARγ2 gene expression, whatever the diet. These results suggest that CIT induces a new metabolic status in WAT, with increased ß-oxidation and uncoupling of respiratory chain, resulting in energy expenditure that favors fat mass reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA