Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 44(6): e2200045, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35419854

RESUMO

Mechanical pain sensing, adipogenesis, and STING-dependent innate immunity seem three distinct biological processes without substantial relationships. Intriguingly, TMEM120A, a transmembrane protein, has been shown to detect mechanical pain stimuli as a mechanosensitive channel, contribute to adipocyte differentiation/function by regulating genome organization and promote STING trafficking to active cellular innate immune response. However, the role of TMEM120A as a mechanosensitive channel was challenged by recent studies which cannot reproduce data supporting its role in mechanosensing. Furthermore, the molecular mechanism by which TMEM120A contributes to adipocyte differentiation/function and promotes STING trafficking remains elusive. In this review, we discuss these multiple proposed functions of TMEM120A and hypothesize the molecular mechanism underlying TMEM120A's role in fatty acid metabolism and STING signaling.


Assuntos
Antivirais , Proteínas de Membrana , Humanos , Imunidade Inata , Proteínas de Membrana/metabolismo , Dor , Transdução de Sinais
2.
J Physiol ; 601(1): 83-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420836

RESUMO

Autosomal dominant polycystic kidney disease is caused by mutations in the membrane receptor PKD1 or the cation channel PKD2. TACAN (also termed TMEM120A), recently reported as an ion channel in neurons for mechanosensing and pain sensing, is also distributed in diverse non-neuronal tissues, such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in a complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes, we found that TACAN inhibits the channel activity of PKD2 gain-of-function mutant F604P. TACAN fragments containing the first and last transmembrane domains interacted with the PKD2 C- and N-terminal fragments, respectively. The TACAN N-terminus acted as a blocking peptide, and TACAN inhibited the function of PKD2 by the binding of PKD2 with TACAN. By patch clamping in mammalian cells, we found that TACAN inhibits both the single-channel conductance and the open probability of PKD2 and mutant F604P. PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. Furthermore, we found that TACAN aggravates PKD2-dependent tail curvature and pronephric cysts in larval zebrafish. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechanosensitivity of the PKD2-TACAN channel complex. KEY POINTS: TACAN inhibits the function of PKD2 in vitro and in vivo. TACAN N-terminal S1-containing fragment T160X interacts with the PKD2 C-terminal fragment N580-L700, and its C-terminal S6-containing fragment L296-D343 interacts with the PKD2 N-terminal A594X. TACAN inhibits the function of the PKD2 channel by physical interaction. The complex of PKD2 with TACAN, but not PKD2 alone, confers mechanosensitivity.


Assuntos
Rim Policístico Autossômico Dominante , Peixe-Zebra , Animais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais Iônicos/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim/metabolismo , Mamíferos/metabolismo
3.
Channels (Austin) ; 17(1): 2237306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37523628

RESUMO

TMEM120A (TACAN) is an enigmatic protein with several seemingly unconnected functions. It was proposed to be an ion channel involved in sensing mechanical stimuli, and knockdown/knockout experiments have implicated that TMEM120A may be necessary for sensing mechanical pain. TMEM120A's ion channel function has subsequently been challenged, as attempts to replicate electrophysiological experiments have largely been unsuccessful. Several cryo-EM structures revealed TMEM120A is structurally homologous to a lipid modifying enzyme called Elongation of Very Long Chain Fatty Acids 7 (ELOVL7). Although TMEM120A's channel function is debated, it still seems to affect mechanosensation by inhibiting PIEZO2 channels and by modifying tactile pain responses in animal models. TMEM120A was also shown to inhibit polycystin-2 (PKD2) channels through direct physical interaction. Additionally, TMEM120A has been implicated in adipocyte regulation and in innate immune response against Zika virus. The way TMEM120A is proposed to alter each of these processes ranges from regulating gene expression, acting as a lipid modifying enzyme, and controlling subcellular localization of other proteins through direct binding. Here, we examine TMEM120A's structure and proposed functions in diverse physiological contexts.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Metabolismo dos Lipídeos , Canais Iônicos/metabolismo , Dor/genética , Tato/genética , Lipídeos , Zika virus/metabolismo
4.
Arch Oral Biol ; 143: 105530, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36088852

RESUMO

OBJECTIVE: Acute pulpitis is one of the common causes of tooth pain. TACAN (Tmem120a) is a newly identified ion channel that senses mechanical pain. In this experiment, we studied the expression of the TACAN ion channel in the trigeminal ganglia in a rat model of pulpitis to explore the correlation between the expression of this ion channel and inflammatory pain. DESIGN: Lipopolysaccharide was used to induce acute pulpitis in rats, and pulpitis was assessed histologically. The facial pain threshold of the rats was measured by the von Frey test. TACAN mRNA expression in rat dental pulp and the trigeminal nerve was measured by qPCR, and TACAN protein expression in the trigeminal ganglia was evaluated by western blot analysis and immunofluorescence. Antisense oligonucleotides were used to reduce TACAN protein expression in the trigeminal ganglia, and the change in the pain threshold in the rats with acute pulpitis was determined. RESULTS: The results showed that the TACAN transcript level in rat pulp tissue increased under inflammatory conditions, and we proved that pulpitis increased TACAN protein expression in the rat ipsilateral trigeminal ganglia. The facial pain threshold was decreased in rats with pulpitis. A short-term decrease in TACAN protein expression could improve the pain threshold. CONCLUSIONS: With the development of pulpitis after bacterial infection, the upregulation of TACAN expression in the trigeminal ganglia promoted pain sensitivity. A short-term reduction in TACAN expression relieved pain. Therefore, this study indicated that TACAN is a potential target channel for new analgesics.


Assuntos
Pulpite , Gânglio Trigeminal , Animais , Ratos , Dor Facial , Canais Iônicos/metabolismo , Lipopolissacarídeos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Pulpite/metabolismo , RNA Mensageiro/metabolismo , Odontalgia , Gânglio Trigeminal/metabolismo , Regulação para Cima
5.
Neuroscience ; 502: 52-67, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985504

RESUMO

Mechanical allodynia impinges on the life quality of patients. Hen Egg Lysozyme (HEL) is a substance extracted from eggs that is commonly used to inhibit bacterial activity. The role of HEL in regulating and treating pain is unclear. Here, we find that HEL selectively attenuates static mechanical allodynia of mice induced by complete Freund's adjuvant (CFA), spinal nerve ligation (SNL) and chemotherapeutic agent. RNA-seq screening reveals that CFA significantly reduces the expression of Parkin in dorsal root ganglion (DRG) neurons of mice, while pre-administration of HEL increases the expression of Parkin and remits the static mechanical allodynia induced by Parkin-siRNA. Moreover, HEL increases the interaction between nuclear respiratory factor 1 (NRF1) and histone acetyltransferase P300 and then enhances the NRF1 mediated histone acetylation in prkn promoter region in DRGs of mice. Further, Parkin interacts with mechanotransducing ion channel TACAN (Tmem120a) and knockdown of Parkin significantly increases the membrane trafficking of TACAN in sensory neurons of mice. While pre-administration of HEL inhibits the increased membrane trafficking of TACAN in sensory neurons of mice induced by Parkin-siRNA. In addition, pre-given of HEL also significantly attenuates the static mechanical allodynia induced by overexpression of TACAN in mice, and the effect of HEL can be blocked by Parkin-siRNA. This indicates that HEL increases the expression of Parkin through epigenetic mechanisms and then decreases TACAN membrane trafficking in sensory neurons to relieve static mechanical hypersensitivity. Therefore, we reveal a novel function of HEL, which is a potential substance for the treatment of static mechanical pain.


Assuntos
Hiperalgesia , Fator 1 Nuclear Respiratório , Animais , Camundongos , Adjuvante de Freund , Histona Acetiltransferases/uso terapêutico , Histonas , Canais Iônicos , Dor/tratamento farmacológico , RNA Interferente Pequeno , Células Receptoras Sensoriais , Ubiquitina-Proteína Ligases/genética
6.
Elife ; 102021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374645

RESUMO

TMEM120A, also named as TACAN, is a novel membrane protein highly conserved in vertebrates and was recently proposed to be a mechanosensitive channel involved in sensing mechanical pain. Here we present the single-particle cryogenic electron microscopy (cryo-EM) structure of human TMEM120A, which forms a tightly packed dimer with extensive interactions mediated by the N-terminal coiled coil domain (CCD), the C-terminal transmembrane domain (TMD), and the re-entrant loop between the two domains. The TMD of each TMEM120A subunit contains six transmembrane helices (TMs) and has no clear structural feature of a channel protein. Instead, the six TMs form an α-barrel with a deep pocket where a coenzyme A (CoA) molecule is bound. Intriguingly, some structural features of TMEM120A resemble those of elongase for very long-chain fatty acids (ELOVL) despite the low sequence homology between them, pointing to the possibility that TMEM120A may function as an enzyme for fatty acid metabolism, rather than a mechanosensitive channel.


Assuntos
Coenzima A/metabolismo , Elongases de Ácidos Graxos/química , Ácidos Graxos/química , Canais Iônicos/química , Canais Iônicos/metabolismo , Proteínas de Transporte , Fenômenos Eletrofisiológicos , Ácidos Graxos/classificação , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Canais Iônicos/genética , Metabolismo dos Lipídeos , Proteínas de Membrana , Membranas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA