RESUMO
Glioblastoma (GBM) is the most common type of malignant primary brain tumor in adults. It is a uniformly fatal disease (median overall survival 16 months) even with aggressive resection and an adjuvant temozolomide-based chemoradiation regimen. Age remains an independent risk factor for a poor prognosis. Several factors contribute to the dismal outcomes in the elderly population with GBM, including poor baseline health status, differences in underlying genomic alterations, and variability in the surgical and medical management of this subpopulation. The latter arises from a lack of adequate representation of elderly patients in clinical trials, resulting in limited data on the response of this subpopulation to standard treatment. Results from retrospective and some prospective studies have indicated that resection of only contrast-enhancing lesions and administration of hypofractionated radiotherapy in combination with temozolomide are effective strategies for optimizing survival while maintaining baseline quality of life in elderly GBM patients; however, survival remains dismal relative to that in a younger cohort. Here, the authors present historical context for the current strategies used for the multimodal management (surgical and medical) of elderly patients with GBM. Furthermore, they provide insights into elderly GBM patient-specific genomic signatures such as isocitrate dehydrogenase 1/2 (IDH1/2) wildtype status, telomerase reverse transcriptase promoter (TERTp) mutations, and somatic copy number alterations including CDK4/MDM2 coamplification, which are becoming better understood and could be utilized in a clinical trial design and patient stratification to guide the development of more effective adjuvant therapies specifically for elderly GBM patients.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Idoso , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Tomada de Decisão Clínica , Genômica , Glioblastoma/genética , Glioblastoma/cirurgia , Humanos , Prognóstico , Estudos Prospectivos , Qualidade de Vida , Estudos RetrospectivosRESUMO
OBJECTIVE Glioblastoma (GBM) is an aggressive brain malignancy with a short overall patient survival, yet there remains significant heterogeneity in outcomes. Although access to health care has previously been linked to impact on prognosis in several malignancies, this question remains incompletely answered in GBM. METHODS This study was a retrospective analysis of 354 newly diagnosed patients with GBM who underwent first resection at the authors' institution (2007-2015). RESULTS Of the 354 patients (median age 61 years, and 37.6% were females), 32 (9.0%) had no insurance, whereas 322 (91.0%) had insurance, of whom 131 (40.7%) had Medicare, 45 (14%) had Medicaid, and 146 (45.3%) had private insurance. On average, insured patients survived almost 2-fold longer (p < 0.0001) than those who were uninsured, whereas differences between specific insurance types did not influence survival. The adjusted hazard ratio (HR) for death was higher in uninsured patients (HR 2.27 [95% CI 1.49-3.33], p = 0.0003). Age, mean household income, tumor size at diagnosis, and extent of resection did not differ between insured and uninsured patients, but there was a disparity in primary care physician (PCP) status-none of the uninsured patients had PCPs, whereas 72% of insured patients had PCPs. Postoperative adjuvant treatment rates with temozolomide (TMZ) and radiation therapy (XRT) were significantly less in uninsured (TMZ in 56.3%, XRT in 56.3%) than in insured (TMZ in 75.2%, XRT in 79.2%; p = 0.02 and p = 0.003) patients. Insured patients receiving both agents had better prognosis than uninsured patients receiving the same treatment (9.1 vs 16.34 months; p = 0.025), suggesting that the survival effect in insured patients could only partly be explained by higher treatment rates. Moreover, having a PCP increased survival among the insured cohort (10.7 vs 16.1 months, HR 1.65 [95% CI 1.27-2.15]; p = 0.0001), which could be explained by significant differences in tumor diameter at initial diagnosis between patients with and without PCPs (4.3 vs 4.8 cm, p = 0.003), and a higher rate of clinical trial enrollment, suggesting a critical role of PCPs for a timelier diagnosis of GBM and proactive cancer care management. CONCLUSIONS Access to health care is a strong determinant of prognosis in newly diagnosed patients with GBM. Any type of insurance coverage and having a PCP improved prognosis in this patient cohort. Higher rates of treatment with TMZ plus XRT, clinical trial enrollment, fewer comorbidities, and early diagnosis may explain survival disparities. Lack of health insurance or a PCP are major challenges within the health care system, which, if improved upon, could favorably impact the prognosis of patients with GBM.
Assuntos
Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Acessibilidade aos Serviços de Saúde/tendências , Disparidades em Assistência à Saúde/tendências , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/economia , Neoplasias Encefálicas/terapia , Feminino , Glioblastoma/economia , Glioblastoma/terapia , Acessibilidade aos Serviços de Saúde/economia , Disparidades em Assistência à Saúde/economia , Humanos , Masculino , Pessoas sem Cobertura de Seguro de Saúde , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto JovemRESUMO
Magnetic resonance-guided focused ultrasound (MRgFUS) has been used extensively to ablate brain tissue in movement disorders, such as essential tremor. At a lower energy, MRgFUS can disrupt the blood-brain barrier (BBB) to allow passage of drugs. This focal disruption of the BBB can target systemic medications to specific portions of the brain, such as for brain tumors. Current methods to bypass the BBB are invasive, as the BBB is relatively impermeable to systemically delivered antineoplastic agents. Multiple healthy and brain tumor animal models have suggested that MRgFUS disrupts the BBB and focally increases the concentration of systemically delivered antitumor chemotherapy, immunotherapy, and gene therapy. In animal tumor models, combining MRgFUS with systemic drug delivery increases median survival times and delays tumor progression. Liposomes, modified microbubbles, and magnetic nanoparticles, combined with MRgFUS, more effectively deliver chemotherapy to brain tumors. MRgFUS has great potential to enhance brain tumor drug delivery, while limiting treatment toxicity to the healthy brain.
Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Ultrassonografia de Intervenção/métodos , Animais , Antineoplásicos/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Humanos , Microbolhas , Nanopartículas/administração & dosagem , Nanopartículas/metabolismoRESUMO
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is used to identify the motor cortex prior to surgery. Yet, there has, until now, been no published evidence on the economic impact of nTMS. This study aims to analyze the cost-effectiveness of nTMS, evaluating the incremental costs of nTMS motor mapping per additional quality-adjusted life year (QALY). By doing so, this study also provides a model allowing for future analysis of general cost-effectiveness of new neuro-oncological treatment options. METHODS The authors used a microsimulation model based on their cohort population sampled for 1000 patients over the time horizon of 2 years. A health care provider perspective was used to assemble direct costs of total treatment. Transition probabilities and health utilities were based on published literature. Effects were stated in QALYs and established for health state subgroups. RESULTS In all scenarios, preoperative mapping was considered cost-effective with a willingness-to-pay threshold < 3*per capita GDP (gross domestic product). The incremental cost-effectiveness ratio (ICER) of nTMS versus no nTMS was 45,086 Euros/QALY. Sensitivity analyses showed robust results with a high impact of total treatment costs and utility of progression-free survival. Comparing the incremental costs caused by nTMS implementation only, the ICER decreased to 1967 Euros/QALY. CONCLUSIONS Motor mapping prior to surgery provides a cost-effective tool to improve the clinical outcome and overall survival of high-grade glioma patients in a resource-limited setting. Moreover, the model used in this study can be used in the future to analyze new treatment options in neuro-oncology in terms of their general cost-effectiveness.
Assuntos
Mapeamento Encefálico/economia , Neoplasias Encefálicas/economia , Análise Custo-Benefício , Glioma/economia , Córtex Motor/fisiologia , Cuidados Pré-Operatórios/economia , Estimulação Magnética Transcraniana/economia , Adulto , Idoso , Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Estudos de Coortes , Análise Custo-Benefício/métodos , Feminino , Glioma/diagnóstico , Glioma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores/economia , Gradação de Tumores/métodos , Neuronavegação/economia , Neuronavegação/métodos , Cuidados Pré-Operatórios/métodos , Estimulação Magnética Transcraniana/métodosRESUMO
OBJECTIVE Stereotactic laser ablation (SLA) is typically performed in the setting of intraoperative MRI or in a staged manner in which probe insertion is performed in the operating room and thermal ablation takes place in an MRI suite. METHODS The authors describe their experience, in which SLA for glioblastoma (GBM) treatment was performed entirely within a conventional MRI suite using the SmartFrame stereotactic device. RESULTS All 10 patients with GBM (2 with isocitrate dehydrogenase 1 mutation [mIDH1] and 8 with wild-type IDH1 [wtIDH1]) were followed for > 6 months. One of these patients underwent 2 independent SLAs approximately 12 months apart. Biopsies were performed prior to SLA for all patients. There were no perioperative morbidities, wound infections, or unplanned 30-day readmissions. The average time for a 3-trajectory SLA (n = 3) was 436 ± 102 minutes; for a 2-trajectory SLA (n = 4) was 321 ± 85 minutes; and for a single-trajectory SLA (n = 4) was 254 ± 28 minutes. No tumor recurrence occurred within the blue isotherm line ablation zone, although 2 patients experienced recurrence immediately adjacent to the blue isotherm ablation line. Overall survival for the patient cohort averaged 356 days, with the 2 patients who had mIDH1 GBMs exhibiting the longest survival (811 and 654 days). CONCLUSIONS Multitrajectory SLA for treatment of GBM can be safely performed using the SmartFrame stereotactic device in a conventional MRI suite.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Terapia a Laser/métodos , Imageamento por Ressonância Magnética , Adulto , Idoso , Estudos de Coortes , Feminino , Glioblastoma/genética , Humanos , Imageamento Tridimensional , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Técnicas Estereotáxicas , Resultado do TratamentoRESUMO
OBJECTIVE Glioblastoma (GBM) is the most common and deadly malignant primary brain tumor. Better surgical therapies are needed for newly diagnosed GBMs that are difficult to resect and for GBMs that recur despite standard therapies. The authors reviewed their institutional experience of using laser interstitial thermal therapy (LITT) for the treatment of newly diagnosed or recurrent GBMs. METHODS This study reports on the pre-LITT characteristics and post-LITT outcomes of 8 patients with newly diagnosed GBMs and 13 patients with recurrent GBM who underwent LITT. RESULTS Compared with the group with recurrent GBMs, the patients with newly diagnosed GBMs who underwent LITT tended to be older (60.8 vs 48.9 years), harbored larger tumors (22.4 vs 14.6 cm3), and a greater proportion had IDH wild-type GBMs. In the newly diagnosed GBM group, the median progression-free survival and the median survival after the procedure were 2 months and 8 months, respectively, and no patient demonstrated radiographic shrinkage of the tumor on follow-up imaging. In the 13 patients with recurrent GBM, 5 demonstrated a response to LITT, with radiographic shrinkage of the tumor following ablation. The median progression-free survival was 5 months, and the median survival was greater than 7 months. CONCLUSIONS In carefully selected patients with recurrent GBM, LITT may be an effective alternative to surgery as a salvage treatment. Its role in the treatment of newly diagnosed unresectable GBMs is not established yet and requires further study.
Assuntos
Neoplasias Encefálicas/cirurgia , Glioblastoma/terapia , Terapia a Laser/métodos , Recidiva Local de Neoplasia/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Intervalo Livre de Doença , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Avaliação de Estado de Karnofsky , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Estudos RetrospectivosRESUMO
Glioblastoma (GBM) is the most common primary brain tumor and carries a grave prognosis. Despite years of research investigating potentially new therapies for GBM, the median survival rate of individuals with this disease has remained fairly stagnant. Delivery of drugs to the tumor site is hampered by various barriers posed by the GBM pathological process and by the complex physiology of the blood-brain and blood-cerebrospinal fluid barriers. These anatomical and physiological barriers serve as a natural protection for the brain and preserve brain homeostasis, but they also have significantly limited the reach of intraparenchymal treatments in patients with GBM. In this article, the authors review the functional capabilities of the physical and physiological barriers that impede chemotherapy for GBM, with a specific focus on the pathological alterations of the blood-brain barrier (BBB) in this disease. They also provide an overview of current and future methods for circumventing these barriers in therapeutic interventions. Although ongoing research has yielded some potential options for future GBM therapies, delivery of chemotherapy medications across the BBB remains elusive and has limited the efficacy of these medications.
Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Sistemas de Liberação de Medicamentos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , HumanosRESUMO
OBJECT: Chloroquine (CQ) is a quinoline-based drug widely used for the prevention and treatment of malaria. More recent studies have provided evidence that this drug may also harbor antitumor properties, whereby CQ possesses the ability to accumulate in lysosomes and blocks the cellular process of autophagy. Therefore, the authors of this study set out to investigate whether CQ analogs, in particular clinically established antimalaria drugs, would also be able to exert antitumor properties, with a specific focus on glioma cells. METHODS: Toward this goal, the authors treated different glioma cell lines with quinine (QN), quinacrine (QNX), mefloquine (MFQ), and hydroxychloroquine (HCQ) and investigated endoplasmic reticulum (ER) stress-induced cell death, autophagy, and cell death. RESULTS: All agents blocked cellular autophagy and exerted cytotoxic effects on drug-sensitive and drug-resistant glioma cells with varying degrees of potency (QNX > MFQ > HCQ > CQ > QN). Furthermore, all quinoline-based drugs killed glioma cells that were highly resistant to temozolomide (TMZ), the current standard of care for patients with glioma. The cytotoxic mechanism involved the induction of apoptosis and ER stress, as indicated by poly(ADP-ribose) polymerase (PARP) cleavage and CHOP/GADD153. The induction of ER stress and resulting apoptosis could be confirmed in the in vivo setting, in which tumor tissues from animals treated with quinoline-based drugs showed increased expression of CHOP/GADD153, along with elevated TUNEL staining, a measure of apoptosis. CONCLUSIONS: Thus, the antimalarial compounds investigated in this study hold promise as a novel class of autophagy inhibitors for the treatment of newly diagnosed TMZ-sensitive and recurrent TMZ-resistant gliomas.
Assuntos
Antimaláricos/uso terapêutico , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Quinolinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Nus , Poli(ADP-Ribose) Polimerases/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Recurrence in glioblastoma is nearly universal, and its prognosis remains dismal despite significant advances in treatment over the past decade. Glioblastoma demonstrates considerable intratumoral phenotypic and molecular heterogeneity and contains a population of cancer stem cells that contributes to tumor propagation, maintenance, and treatment resistance. Cancer stem cells are functionally defined by their ability to self-renew and to differentiate, and they constitute the diverse hierarchy of cells composing a tumor. When xenografted into an appropriate host, they are capable of tumorigenesis. Given the critical role of cancer stem cells in the pathogenesis of glioblastoma, research into their molecular and phenotypic characteristics is a therapeutic priority. In this review, the authors discuss the evolution of the cancer stem cell model of tumorigenesis and describe the specific role of cancer stem cells in the pathogenesis of glioblastoma and their molecular and microenvironmental characteristics. They also discuss recent clinical investigations into targeted therapies against cancer stem cells in the treatment of glioblastoma.
Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/fisiologia , Humanos , Recidiva Local de Neoplasia , Nicho de Células-Tronco/fisiologiaRESUMO
OBJECT: In a recent clinical trial, patients with newly diagnosed glioblastoma multiforme benefited from chloroquine (CQ) in combination with conventional therapy (resection, temozolomide [TMZ], and radiation therapy). In the present study, the authors report the mechanism by which CQ enhances the therapeutic efficacy of TMZ to aid future studies aimed at improving this therapeutic regimen. METHODS: Using in vitro and in vivo experiments, the authors determined the mechanism by which CQ enhances TMZ cytotoxicity. They focused on the inhibition-of-autophagy mechanism of CQ by knockdown of the autophagy-associated proteins or treatment with autophagy inhibitors. This mechanism was tested using an in vivo model with subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ. RESULTS: Knockdown of the autophagy-associated proteins (GRP78 and Beclin) or treatment with the autophagy inhibitor, 3-methyl adenine (3-MA), blocked autophagosome formation and reduced CQ cytotoxicity, suggesting that autophagosome accumulation precedes CQ-induced cell death. In contrast, blocking autophagosome formation with knockdown of GRP78 or treatment with 3-MA enhanced TMZ cytotoxicity, suggesting that the autophagy pathway protects from TMZ-induced cytotoxicity. CQ in combination with TMZ significantly increased the amounts of LC3B-II (a marker for autophagosome levels), CHOP/GADD-153, and cleaved PARP (a marker for apoptosis) over those with untreated or individual drug-treated glioma cells. These molecular mechanisms seemed to take place in vivo as well. Subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ displayed higher levels of CHOP/GADD-153 than did untreated or individual drug-treated tumors. CONCLUSIONS: Taken together, these results demonstrate that CQ blocks autophagy and triggers endoplasmic reticulum stress, thereby increasing the chemosensitivity of glioma cells to TMZ.
Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Antirreumáticos/efeitos adversos , Autofagia/efeitos dos fármacos , Cloroquina/efeitos adversos , Cloroquina/farmacologia , Dacarbazina/análogos & derivados , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dacarbazina/efeitos adversos , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Temozolomida , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transfecção , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECT: The objective of this study was to report the authors' experience with the long-term administration of temozolomide (TMZ; > 6 cycles, up to 101) in patients with newly diagnosed glioblastoma and to analyze its feasibility and safety as well as its impact on survival. The authors also compared data obtained from the group of patients undergoing long-term TMZ treatment with data from patients treated with a standard TMZ protocol. METHODS: A retrospective analysis was conducted of 37 patients who underwent operations for glioblastoma between 2004 and 2012. Volumetric analysis of postoperative Gd-enhanced MR images, obtained within 48 hours, confirmed tumor gross-total resection (GTR) in all but 2 patients. All patients received the first cycle of TMZ at a dosage of 150 mg/m(2) starting on the second or third postsurgical day. Afterward, patients received concomitant radiochemotherapy according to the Stupp protocol. With regard to adjuvant TMZ therapy, the 19 patients in Group A, aged 30-72 years (mean 56.1 years), received 150 mg/m(2) for 5 days every 28 days for more than 6 cycles (range 7-101 cycles). The 18 patients in Group B, aged 46-82 years (mean 64.8 years), received the same dose, but for no more than 6 cycles. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status was analyzed for both groups and correlated with overall survival (OS) and progression-free survival (PFS). The impact of age, sex, Karnofsky Performance Scale score, and Ki 67 staining were also considered. RESULTS: All patients but 1 in Group A survived at least 18 months (range 18-101 months), and patients in Group B survived no more than 17 months (range 2-17 months). The long-term survivors (Group A), defined as patients who survived at least 12 months after diagnosis, were 51.3% of the total (19/37). Kaplan-Meier curve analysis showed that patients treated with more than 6 TMZ cycles had OS and PFS that was significantly longer than patients receiving standard treatment (median OS 28 months vs 8 months, respectively; p = 0.0001; median PFS 20 months vs 4 months, respectively; p = 0.0002). By univariate and multivariate Cox proportional hazard regression analysis, MGMT methylation status and number of TMZ cycles appeared to be survival prognostic factors in patients with glioblastoma. After controlling for MGMT status, highly significant differences related to OS and PFS between patients with standard and long-term TMZ treatment were still detected. Furthermore, in Group A and B, the statistical correlation of MGMT status to the number of TMZ cycles showed a significant difference only in Group A patients, suggesting that MGMT promoter methylation was predictive of response for long-term TMZ treatment. Prolonged therapy did not confer hematological toxicity or opportunistic infections in either patient group. CONCLUSIONS: This study describes the longest experience so far reported with TMZ in patients with newly diagnosed glioblastomas, with as many as 101 cycles, who were treated using GTR. Statistically significant data confirm that median survival correlates with MGMT promoter methylation status as well as with the number of TMZ cycles administered. Long-term TMZ therapy appears feasible and safe.
Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Corticosteroides/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Feminino , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Avaliação de Estado de Karnofsky , Antígeno Ki-67/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Sulfitos/uso terapêutico , Temozolomida , Fatores de Tempo , Proteínas Supressoras de Tumor/genéticaRESUMO
BACKGROUND: Providing the standard of care to patients with glioblastoma (GBM) during the novel coronavirus of 2019 (COVID-19) pandemic is a challenge, particularly if a patient tests positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further difficulties occur in eloquent cortex tumors because awake speech mapping can theoretically aerosolize viral particles and expose staff. Moreover, microscopic neurosurgery has become difficult because the use of airborne-level personal protective equipment (PPE) crowds the space between the surgeon and the eyepiece. However, delivering substandard care will inevitably lead to disease progression and poor outcomes. OBSERVATIONS: A 60-year-old man with a left insular and frontal operculum GBM was found to be COVID-19 positive. Treatment was postponed pending a negative SARS-CoV-2 result, but in the interim, he developed intratumoral hemorrhage with progressive expressive aphasia. Because the tumor was causing dominant hemisphere language symptomatology, an awake craniotomy was the recommended surgical approach. With the use of airborne-level PPE and a surgical drape to protect the surgeon from the direction of potential aerosolization, near-total gross resection was achieved. LESSONS: Delaying the treatment of patients with GBM who test positive for COVID-19 will lead to further neurological deterioration. Optimal and timely treatment such as awake speech mapping for COVID-19-positive patients with GBM can be provided safely.
RESUMO
OBJECTIVE: Glioblastoma (GBM) carries a high economic burden for patients and caregivers, much of which is associated with initial surgery. The authors investigated the impact of insurance status on the inpatient hospital costs of surgery for patients with GBM. METHODS: The authors conducted a retrospective review of patients with GBM (2010-2015) undergoing their first resection at the University of California, San Francisco, and corresponding inpatient hospital costs. RESULTS: Of 227 patients with GBM (median age 62 years, 37.9% females), 31 (13.7%) had Medicaid, 94 (41.4%) had Medicare, and 102 (44.9%) had private insurance. Medicaid patients had 30% higher overall hospital costs for surgery compared to non-Medicaid patients ($50,285 vs $38,779, p = 0.01). Medicaid patients had higher intensive care unit (ICU; p < 0.01), operating room (p < 0.03), imaging (p < 0.001), room and board (p < 0001), and pharmacy (p < 0.02) costs versus non-Medicaid patients. Medicaid patients had significantly longer overall and ICU lengths of stay (6.9 and 2.6 days) versus Medicare (4.0 and 1.5 days) and privately insured patients (3.9 and 1.8 days, p < 0.01). Medicaid patients had similar comorbidity rates to Medicare patients (67.8% vs 68.1%), and both groups had higher comorbidity rates than privately insured patients (37.3%, p < 0.0001). Only 67.7% of Medicaid patients had primary care providers (PCPs) versus 91.5% of Medicare and 86.3% of privately insured patients (p = 0.009) at the time of presentation. Tumor diameter at diagnosis was largest for Medicaid (4.7 cm) versus Medicare (4.1 cm) and privately insured patients (4.2 cm, p = 0.03). Preoperative (70 vs 90, p = 0.02) and postoperative (80 vs 90, p = 0.03) Karnofsky Performance Scale (KPS) scores were lowest for Medicaid versus non-Medicaid patients, while in subgroup analysis, postoperative KPS score was lowest for Medicaid patients (80, vs 90 for Medicare and 90 for private insurance; p = 0.03). Medicaid patients had significantly shorter median overall survival (10.7 months vs 12.8 months for Medicare and 15.8 months for private insurance; p = 0.02). Quality-adjusted life year (QALY) scores were 0.66 and 1.05 for Medicaid and non-Medicaid patients, respectively (p = 0.036). The incremental cost per QALY was $29,963 lower for the non-Medicaid cohort. CONCLUSIONS: Patients with GBMs and Medicaid have higher surgical costs, longer lengths of stay, poorer survival, and lower QALY scores. This study indicates that these patients lack PCPs, have more comorbidities, and present later in the disease course with larger tumors; these factors may drive the poorer postoperative function and greater consumption of hospital resources that were identified. Given limited resources and rising healthcare costs, factors such as access to PCPs, equitable adjuvant therapy, and early screening/diagnosis of disease need to be improved in order to improve prognosis and reduce hospital costs for patients with GBM.
RESUMO
OBJECTIVE: Glioblastoma (GBM) is the most aggressive type of brain tumor with a high rate of tumor recurrence, and it often develops resistance over time to current standard of care chemotherapy. Its highly invasive nature plays an essential role in tumor progression and recurrence. Glioma stem cells (GSCs) are a subpopulation of glioma cells highly resistant to treatments and are considered responsible for tumor recurrence. METHODS: Patient-derived populations of GSCs were analyzed by western blot, MTT, and cytoplasmic calcium labeling to determine the cytotoxicity of NEO100. High-performance liquid chromatography was used to evaluate the levels of NEO100 in the cell culture supernatants. The effects of the compound on GSC motility were studied using Boyden chamber migration, 3D spheroid migration and invasion assays, and an mRNA expression PCR array. A RhoA activation assay, western blot, and immunofluorescence techniques were employed to confirm the signaling pathways involved. Intracranial implantation of GSCs in athymic mice was used to evaluate the effects of NEO100 in vivo on tumor progression and overall survival. RESULTS: Here, the authors show how NEO100, a highly purified good manufacturing practices-quality form of perillyl alcohol, is cytotoxic for different subtypes of GSCs, regardless of the mechanisms of DNA repair present. At doses similar to the IC50 (half maximal inhibitory concentration) values, NEO100 induces ER stress and activates apoptotic pathways in all GSC populations tested. At subcytotoxic doses in the micromolar range, NEO100 blocks migration and invasion of GSCs. These results correlate with a decrease in calpain-1 expression and an increase in RhoA activation, leading to enhanced contractility of the GSCs. In addition, NEO100 blocks the activation of the kinases Src, p42/44 MAPK, Akt, and Stat3, all related to cell proliferation and migration. Intranasal administration of NEO100 in mice with GSC-derived intracranial tumors led to a decrease in tumor progression and a 32% increase in overall survival. Immunostaining studies showed that NEO100 induces apoptosis and reduces GSC invasion in vivo. CONCLUSIONS: NEO100 could have significant value targeting GSCs and could be used for GBM therapy as either monotherapy or a coadjuvant therapy during temozolomide rest cycles.
RESUMO
OBJECTIVE: The level of evidence for adjuvant treatment of diffuse WHO grade II glioma (low-grade glioma, LGG) is low. In so-called "high-risk" patients most centers currently apply an early aggressive adjuvant treatment after surgery. The aim of this assessment was to compare progression-free survival (PFS) and overall survival (OS) in patients receiving radiation therapy (RT) alone, chemotherapy (CT) alone, or a combined/consecutive RT+CT, with patients receiving no primary adjuvant treatment after surgery. METHODS: Based on a retrospective multicenter cohort of 288 patients (≥ 18 years old) with diffuse WHO grade II gliomas, a subgroup analysis of patients with a confirmed isocitrate dehydrogenase (IDH) mutation was performed. The influence of primary adjuvant treatment after surgery on PFS and OS was assessed using Kaplan-Meier estimates and multivariate Cox regression models, including age (≥ 40 years), complete tumor resection (CTR), recurrent surgery, and astrocytoma versus oligodendroglioma. RESULTS: One hundred forty-four patients matched the inclusion criteria. Forty patients (27.8%) received adjuvant treatment. The median follow-up duration was 6 years (95% confidence interval 4.8-6.3 years). The median overall PFS was 3.9 years and OS 16.1 years. PFS and OS were significantly longer without adjuvant treatment (p = 0.003). A significant difference in favor of no adjuvant therapy was observed even in high-risk patients (age ≥ 40 years or residual tumor, 3.9 vs 3.1 years, p = 0.025). In the multivariate model (controlled for age, CTR, oligodendroglial diagnosis, and recurrent surgery), patients who received no adjuvant therapy showed a significantly positive influence on PFS (p = 0.030) and OS (p = 0.009) compared to any other adjuvant treatment regimen. This effect was most pronounced if RT+CT was applied (p = 0.004, hazard ratio [HR] 2.7 for PFS, and p = 0.001, HR 20.2 for OS). CTR was independently associated with longer PFS (p = 0.019). Age ≥ 40 years, histopathological diagnosis, and recurrence did not achieve statistical significance. CONCLUSIONS: In this series of IDH-mutated LGGs, adjuvant treatment with RT, CT with temozolomide (TMZ), or the combination of both showed no significant advantage in terms of PFS and OS. Even in high-risk patients, the authors observed a similar significantly negative impact of adjuvant treatment on PFS and OS. These results underscore the importance of a CTR in LGG. Whether patients ≥ 40 years old should receive adjuvant treatment despite a CTR should be a matter of debate. A potential tumor dedifferentiation by administration of early TMZ, RT, or RT+CT in IDH-mutated LGG should be considered. However, these data are limited by the retrospective study design and the potentially heterogeneous indication for adjuvant treatment.
RESUMO
Astroblastoma is a rare tumor that is thought to occur exclusively in the cerebrum. To the authors' knowledge, no cases of spinal cord astroblastoma have been reported. A 20-year-old woman presented with numbness in her legs. MRI demonstrated a 2-cm intramedullary enhancing lesion in the spinal cord at the T-1 level. The patient declined to undergo resection of the tumor because she was able to walk unassisted; however, she returned for surgery 1 month later because she had developed paraplegia with bladder and rectal dysfunction, and MRI showed enlargement of the tumor. Intraoperatively, the border between the tumor and normal tissue was poorly defined. Biopsy samples were obtained for histopathological examinations, and a diagnosis of astroblastoma with a Ki-67 index of 5% was made. Considering the rapid tumor growth on MRI and remarkable deterioration in her symptoms, the patient was treated with a combination of radiation therapy, temozolomide (TMZ), and bevacizumab. After completion of the combined treatment, she was able to move her toes, and oral TMZ and bevacizumab injections were continued. Six months later, definite tumor shrinkage was identified on MRI, and the patient was able to stand up from a wheelchair without assistance and walk by herself. No therapeutic regimens for residual astroblastoma are established; however, in this case the authors' therapeutic strategy was successful in treating the spinal cord astroblastoma.
Assuntos
Neoplasias Neuroepiteliomatosas/diagnóstico , Neoplasias Neuroepiteliomatosas/terapia , Neoplasias da Medula Espinal/diagnóstico , Neoplasias da Medula Espinal/terapia , Terapia Combinada , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Neuroepiteliomatosas/patologia , Recuperação de Função Fisiológica , Neoplasias da Medula Espinal/patologia , Adulto JovemRESUMO
OBJECTIVE Currently, the standard treatment protocol for patients with newly diagnosed glioblastoma (GBM) includes surgery, radiotherapy, and concomitant and adjuvant temozolomide (TMZ). Various prognostic biomarkers for GBM have been described, including survivin expression. The aim of this study was to determine whether the subcellular localization of survivin correlates with GBM prognosis in patients who received the standard treatment protocol. METHODS The authors retrospectively examined the subcellular localization of survivin (nuclear, cytoplasmic, or both) using immunohistochemistry in 50 patients with GBM who had received the standard treatment. The relationship between survivin localization and overall survival (OS) was assessed with uni- and multivariate analyses including other clinicopathological factors (age, sex, Karnofsky Performance Scale [KPS] score, extent of resection, the use of second-line bevacizumab, O6-methylguanine-DNA methyltransferase [MGMT] status, and MIB-1 labeling index). RESULTS Log-rank tests revealed that patient age, KPS score, extent of resection, MGMT status, and survivin localization (p < 0.0001) significantly correlated with OS. Multivariate analysis indicated that patient age, MGMT status, and survivin localization significantly correlated with OS. Patients with nuclear localization of survivin had a significantly shorter OS than those in whom survivin expression was exclusively cytoplasmic (median OS 19.5 vs 31.7 months, respectively, HR 5.690, 95% CI 2.068-17.612, p = 0.0006). There was no significant difference in OS between patents whose survivin expression was exclusively nuclear or nuclear/cytoplasmic. CONCLUSIONS Nuclear expression of survivin is a factor for a poor prognosis in GBM patients. Subcellular localization of survivin can help to predict OS in GBM patients treated with the standard protocol.
Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Neurônios/metabolismo , Radioterapia , Survivina/metabolismo , Temozolomida/uso terapêutico , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/radioterapia , Núcleo Celular/metabolismo , Quimioterapia Adjuvante , Terapia Combinada , Citoplasma/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/radioterapia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do TratamentoRESUMO
OBJECTIVE Glioblastoma is the most common primary central nervous system tumor in adults. These tumors are highly invasive and infiltrative and result in tumor recurrence as well as an extremely poor patient prognosis. The current standard of care involves surgery, radiotherapy, and chemotherapy. However, previous studies have suggested that glioblastoma cells that survive treatment are potentially more invasive. The goal of this study was to investigate whether this increased phenotype in surviving cells is facilitated by actin-rich, membrane-based structures known as invadopodia. METHODS A number of commercially available cell lines and glioblastoma cell lines obtained from patients were initially screened for the protein expression levels of invadopodia regulators. Gelatin-based zymography was also used to establish their secretory protease profile. The effects of radiation and temozolomide treatment on the glioblastoma cells were then investigated with cell viability, Western blotting, gelatin-based zymography, and invadopodia matrix degradation assays. RESULTS The authors' results show that the glioma cells used in this study express a number of invadopodia regulators, secrete MMP-2, and form functional matrix-degrading invadopodia. Cells that were treated with radiotherapy and temozolomide were observed to show an increase primarily in the activation of MMP-2. Importantly, this also resulted in a significant enhancement in the invadopodia-facilitated matrix-degrading ability of the cells, along with an increase in the percentage of cells with invadopodia after radiation and temozolomide treatment. CONCLUSIONS The data from this study suggest that the increased invasive phenotype that has been previously observed in glioma cells posttreatment is mediated by invadopodia. The authors propose that if the formation or activity of these structures can be disrupted, they could potentially serve as a viable target for developing novel adjuvant therapeutic strategies that can be used in conjunction with the current treatment protocols in combatting the invasive phenotype of this deadly disease.
Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Podossomos/efeitos dos fármacos , Podossomos/efeitos da radiação , Temozolomida/farmacologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Terapia Combinada , Relação Dose-Resposta a Droga , Glioblastoma/terapia , Humanos , Invasividade Neoplásica/patologia , Fenótipo , Dosagem RadioterapêuticaRESUMO
OBJECTIVE: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a prognostic factor in adults with glioblastoma (GBM); it also yields information that is useful for clinical decision-making in elderly GBM patients. While pyrosequencing is the gold standard for the evaluation of the methylation status of MGMT, methylation-sensitive polymerase chain reaction (MS-PCR) assay continues to be used widely. Although MS-PCR results exhibited a good correlation with the prognosis of patients with GBM treated under the Stupp protocol, interpretation of the bands is based on subjective judgment, and the assay cannot be used to analyze heterogeneously methylated samples. We assessed whether methylation-sensitive high-resolution melting (MS-HRM) is an alternative to MS-PCR. METHODS: The authors prepared 3 primer sets that covered CpG 7289 for MS-HRM analysis to determine the methylation levels of 6 human glioma cell lines. The results were validated by bisulfite sequencing of cloned alleles. The authors also subjected surgical samples from 75 GBM patients treated with temozolomide (TMZ) to MS-HRM to assess the MGMT methylation status and compared the findings with MS-PCR results using receiver operating characteristic (ROC), univariate, and multivariate analyses. RESULTS: There was a strong correlation between the methylation levels of the 6 glioma cell lines evaluated by MSHRM and by bisulfite sequencing; with primers 1 and 2, the correlation was significant (r = 0.959 and r = 0.960, respectively, p < 0.01). Based on log-rank analysis, MS-HRM was significantly better than MS-PCR for predicting progressionfree survival (PFS) and overall survival (OS) based on the methylation status of the MGMT promoter (PFS predicted by MS-HRM and MS-PCR = 0.00023 and 0.0035, respectively; OS = 0.00019 and 0.00028, respectively). ROC analysis showed that the area under the curve was larger with MS-HRM than with MS-PCR (PFS: 0.723 vs 0.635; OS: 0.716 vs 0.695). Based on multivariate Cox regression analysis, MS-HRM was significantly better than MS-PCR for predicting the treatment outcome (MS-HRM vs MS-PCR: PFS, p = 0.001 vs 0.207; OS, p = 0.013 vs 0.135). CONCLUSIONS: The authors' findings show that MS-HRM is superior to MS-PCR for the detection of MGMT promoter methylation. They suggest MS-HRM as an alternative to MS-PCR for assessing the prognosis of patients with GBM.
Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/genética , Desnaturação de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Primers do DNA , Feminino , Glioblastoma/cirurgia , Glioblastoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Curva ROC , Temozolomida/uso terapêutico , Resultado do TratamentoRESUMO
OBJECTIVE Treatment for glioblastoma (GBM) remains largely unsuccessful, even with aggressive combined treatment via surgery, radiotherapy, and chemotherapy. Tumor treating fields (TTFs) are low-intensity, intermediate-frequency, alternating electric fields that have antiproliferative properties in vitro and in vivo. The authors provide an up-to-date review of the mechanism of action as well as preclinical and clinical data on TTFs. METHODS A systematic review of the literature was performed using the terms "tumor treating fields," "alternating electric fields," "glioblastoma," "Optune," "NovoTTF-100A," and "Novocure." RESULTS Preclinical and clinical data have demonstrated the potential efficacy of TTFs for treatment of GBM, leading to several pilot studies, clinical trials, and, in 2011, FDA approval for its use as salvage therapy for recurrent GBM and, in 2015, approval for newly diagnosed GBM. CONCLUSIONS Current evidence supports the use of TTFs as an efficacious, antimitotic treatment with minimal toxicity in patients with newly diagnosed and recurrent GBM. Additional studies are needed to further optimize patient selection, determine cost-effectiveness, and assess the full impact on quality of life.