Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.147
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(14): 3671-3689.e23, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866017

RESUMO

Ongoing, early-stage clinical trials illustrate the translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, an unresolved challenge is the extensive cell death following transplantation. Here, we performed a pooled CRISPR-Cas9 screen to enhance postmitotic dopamine neuron survival in vivo. We identified p53-mediated apoptotic cell death as a major contributor to dopamine neuron loss and uncovered a causal link of tumor necrosis factor alpha (TNF-α)-nuclear factor κB (NF-κB) signaling in limiting cell survival. As a translationally relevant strategy to purify postmitotic dopamine neurons, we identified cell surface markers that enable purification without the need for genetic reporters. Combining cell sorting and treatment with adalimumab, a clinically approved TNF-α inhibitor, enabled efficient engraftment of postmitotic dopamine neurons with extensive reinnervation and functional recovery in a preclinical PD mouse model. Thus, transient TNF-α inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic hPSC-derived dopamine neurons in PD.


Assuntos
Sobrevivência Celular , Neurônios Dopaminérgicos , NF-kappa B , Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53 , Neurônios Dopaminérgicos/metabolismo , Animais , Humanos , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais , Doença de Parkinson/metabolismo , Células-Tronco Pluripotentes/metabolismo , Apoptose , Modelos Animais de Doenças , Sistemas CRISPR-Cas
2.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059776

RESUMO

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Assuntos
Carcinoma/genética , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Proteoma/genética , Transcriptoma , Acetilação , Animais , Antígenos de Neoplasias/genética , Carcinoma/imunologia , Carcinoma/patologia , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/genética , Retroalimentação Fisiológica , Feminino , Instabilidade Genômica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Repetições de Microssatélites , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Transdução de Sinais
3.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340339

RESUMO

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Assuntos
Envelhecimento/patologia , Antibióticos Antineoplásicos/efeitos adversos , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/efeitos adversos , Envelhecimento/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Senescência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Feminino , Fibroblastos/citologia , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Rim/efeitos dos fármacos , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Camundongos , Síndromes de Tricotiodistrofia/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo
4.
Cell ; 169(7): 1327-1341.e23, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622513

RESUMO

Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole-exome sequencing and DNA copy number analyses, and we analyzed 196 HCC cases by DNA methylation, RNA, miRNA, and proteomic expression also. DNA sequencing and mutation analysis identified significantly mutated genes, including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or downregulation by hypermethylation in genes likely to result in HCC metabolic reprogramming (ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.


Assuntos
Carcinoma Hepatocelular/genética , Genômica , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/virologia , Metilação de DNA , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Hepáticas/virologia , MicroRNAs/genética , Mutação
5.
Genes Dev ; 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35981754

RESUMO

Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.

6.
Genes Dev ; 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902118

RESUMO

The PBRM1 subunit of the PBAF (SWI/SNF) chromatin remodeling complex is mutated in ∼40% of clear cell renal cancers. PBRM1 loss has been implicated in responses to immunotherapy in renal cancer, but the mechanism is unclear. DNA damage-induced inflammatory signaling is an important factor determining immunotherapy response. This response is kept in check by the G2/M checkpoint, which prevents progression through mitosis with unrepaired damage. We found that in the absence of PBRM1, p53-dependent p21 up-regulation is delayed after DNA damage, leading to defective transcriptional repression by the DREAM complex and premature entry into mitosis. Consequently, DNA damage-induced inflammatory signaling pathways are activated by cytosolic DNA. Notably, p53 is infrequently mutated in renal cancer, so PBRM1 mutational status is critical to G2/M checkpoint maintenance. Moreover, we found that the ability of PBRM1 deficiency to predict response to immunotherapy correlates with expression of the cytosolic DNA-sensing pathway in clinical samples. These findings have implications for therapeutic responses in renal cancer.

7.
EMBO J ; 43(19): 4406-4436, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160273

RESUMO

Investigating how transcription factors control complex cellular processes requires tools that enable responses to be visualised at the single-cell level and their cell fate to be followed over time. For example, the tumour suppressor p53 (also called TP53 in humans and TRP53 in mice) can initiate diverse cellular responses by transcriptional activation of its target genes: Puma to induce apoptotic cell death and p21 to induce cell cycle arrest/cell senescence. However, it is not known how these processes are regulated and initiated in different cell types. Also, the context-dependent interaction partners and binding loci of p53 remain largely elusive. To be able to examine these questions, we here developed knock-in mice expressing triple-FLAG-tagged p53 to facilitate p53 pull-down and two p53 response reporter mice, knocking tdTomato and GFP into the Puma/Bbc3 and p21 gene loci, respectively. By crossing these reporter mice into a p53-deficient background, we show that the new reporters reliably inform on p53-dependent and p53-independent initiation of both apoptotic or cell cycle arrest/senescence programs, respectively, in vitro and in vivo.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos , Apoptose/genética , Técnicas de Introdução de Genes , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Senescência Celular/genética , Genes Reporter , Humanos , Proteínas Supressoras de Tumor
8.
EMBO J ; 42(7): e112358, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762421

RESUMO

The recognition of polyadenylation signals (PAS) in eukaryotic pre-mRNAs is usually coupled to transcription termination, occurring while pre-mRNA is chromatin-bound. However, for some pre-mRNAs, this 3'-end processing occurs post-transcriptionally, i.e., through a co-transcriptional cleavage (CoTC) event downstream of the PAS, leading to chromatin release and subsequent PAS cleavage in the nucleoplasm. While DNA-damaging agents trigger the shutdown of co-transcriptional chromatin-associated 3'-end processing, specific compensatory mechanisms exist to ensure efficient 3'-end processing for certain pre-mRNAs, including those that encode proteins involved in the DNA damage response, such as the tumor suppressor p53. We show that cleavage at the p53 polyadenylation site occurs in part post-transcriptionally following a co-transcriptional cleavage event. Cells with an engineered deletion of the p53 CoTC site exhibit impaired p53 3'-end processing, decreased mRNA and protein levels of p53 and its transcriptional target p21, and altered cell cycle progression upon UV-induced DNA damage. Using a transcriptome-wide analysis of PAS cleavage, we identify additional pre-mRNAs whose PAS cleavage is maintained in response to UV irradiation and occurring post-transcriptionally. These findings indicate that CoTC-type cleavage of pre-mRNAs, followed by PAS cleavage in the nucleoplasm, allows certain pre-mRNAs to escape 3'-end processing inhibition in response to UV-induced DNA damage.


Assuntos
Poliadenilação , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Cromatina
9.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39140857

RESUMO

Somatic variation is a major type of genetic variation contributing to human diseases including cancer. Of the vast quantities of somatic variants identified, the functional impact of many somatic variants, in particular the missense variants, remains unclear. Lack of the functional information prevents the translation of rich variation data into clinical applications. We previously developed a method named Ramachandran Plot-Molecular Dynamics Simulations (RP-MDS), aiming to predict the function of germline missense variants based on their effects on protein structure stability, and successfully applied to predict the deleteriousness of unclassified germline missense variants in multiple cancer genes. We hypothesized that regardless of their different genetic origins, somatic missense variants and germline missense variants could have similar effects on the stability of their affected protein structure. As such, the RP-MDS method designed for germline missense variants should also be applicable to predict the function of somatic missense variants. In the current study, we tested our hypothesis by using the somatic missense variants in TP53 as a model. Of the 397 somatic missense variants analyzed, RP-MDS predicted that 195 (49.1%) variants were deleterious as they significantly disturbed p53 structure. The results were largely validated by using a p53-p21 promoter-green fluorescent protein (GFP) reporter gene assay. Our study demonstrated that deleterious somatic missense variants can be identified by referring to their effects on protein structural stability.


Assuntos
Mutação de Sentido Incorreto , Estabilidade Proteica , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Simulação de Dinâmica Molecular , Neoplasias/genética , Conformação Proteica
10.
J Biol Chem ; 300(3): 105707, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309505

RESUMO

Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.


Assuntos
Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Neoplasias Hepáticas , Proteínas Nucleares , Fatores de Transcrição , Proteases Específicas de Ubiquitina , Humanos , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genes Supressores de Tumor , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
11.
Annu Rev Genomics Hum Genet ; 23: 331-361, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044908

RESUMO

A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.


Assuntos
Genes Supressores de Tumor , Mosaicismo , Humanos , Mutação , Fenótipo , Prevalência
12.
EMBO J ; 40(1): e106118, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33226141

RESUMO

Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53-mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53-mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non-centrosomal protein SMC5 is also TP53-dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.


Assuntos
Centrossomo/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Mitose/genética , Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/genética , Animais , Apoptose/genética , Encéfalo/patologia , Morte Celular/genética , Proliferação de Células/genética , Células Cultivadas , Camundongos , Camundongos Knockout , Mutação/genética , Transdução de Sinais/genética
13.
Am J Hum Genet ; 109(10): 1777-1788, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206742

RESUMO

Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Adulto , Idoso de 80 Anos ou mais , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Humanos , Herança Multifatorial/genética , Penetrância , Adulto Jovem
14.
J Pathol ; 262(2): 147-160, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38010733

RESUMO

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Adolescente , Humanos , Genes p53 , Osteossarcoma/genética , Osteossarcoma/patologia , Mutação , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Regiões Promotoras Genéticas/genética , Fusão Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Pathol ; 263(2): 131-134, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38482738

RESUMO

Gene disruption from double-strand DNA breaks within introns is a mechanism of inactivating the tumor suppressor TP53. This occurs more frequently in osteosarcoma and biliary adenocarcinoma compared with other cancer types. The patterns of intron breakpoints within TP53 do not correlate with prevalence, intron length, or overall genome-wide levels of rearrangements. Therefore, these breakpoints appear to be selected for reasons other than to disrupt TP53. A recent article published by Saba et al in The Journal of Pathology illustrates a benefit to having breakpoints within intron 1 using high-quality matched genomic and transcriptomic osteosarcoma sequencing data as well as in vitro validation. The authors describe how the rearrangement results in relocation of the TP53 promoter region to regions upstream of genes that encode members of cartilage, growth plate development, osteoclast formation, and other TP53-related pathways. The upregulation of these genes by the TP53 promoter are gain-of-function events that are likely to promote tumor development and growth. Therefore, this article presents a potential new paradigm in which a single mutation would result in both the loss of a tumor suppressor and the gain of an oncogenic program. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Íntrons , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53 , Humanos , Regiões Promotoras Genéticas/genética , Proteína Supressora de Tumor p53/genética , Íntrons/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Mutação
16.
J Pathol ; 264(2): 125-128, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39046056

RESUMO

Systemic therapy options for urothelial carcinoma have expanded in recent years, with both immunotherapy and cytotoxic chemotherapy being widely available. However, we lack biomarkers to select which drug is likely to work best in individual patients. A new article in this journal by Jin, Xu, Su, et al reports that disruptive versus non-disruptive TP53 mutations may guide these personalised therapy choices. Intriguingly, patients with disruptive TP53 tumour mutations had poor overall survival versus those with non-disruptive TP53 mutations or wild type TP53 but responded particularly well to immunotherapy. Of relevance, an increased tumour mutational burden and increased effector CD8+ T-cell infiltration was seen in tumours with disruptive mutations. The impact of different TP53 mutations on prognosis and therapy choices appears to be tumour- and therapy-type specific, with no clear consensus on overall tumour phenotype according to type of mutation. Nonetheless, profiling of specific types of TP53 mutation is increasingly clinically feasible with targeted sequencing or immunohistochemistry. There is an urgent need for additional studies in urothelial cancer clarifying how the type of TP53 mutation present within a tumour can best be used as a predictive biomarker. Further important remaining questions include the impact of TP53 mutations on other clinically important aspects of the tumour microenvironment, including cancer-associated fibroblasts. Furthermore, the impact of gain-of-function mutations in TP53 and other related genes signalling upstream or downstream of TP53 is of wide interest. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Biomarcadores Tumorais , Mutação , Proteína Supressora de Tumor p53 , Neoplasias da Bexiga Urinária , Humanos , Proteína Supressora de Tumor p53/genética , Biomarcadores Tumorais/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Microambiente Tumoral/genética , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Urotélio/patologia , Imunoterapia/métodos
17.
J Pathol ; 264(3): 243-249, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39225049

RESUMO

Histiocytic neoplasms (HNs) in adults have been reported to be associated with a high prevalence of coexisting haematological and solid malignancies. While a proportion of coexisting HNs and haematological malignancies share identical genetic alterations, the genetic association between HNs and solid malignancies has scarcely been reported. We report a case of Rosai-Dorfman disease (RDD) complicated by coexisting clear cell sarcoma (CCS). RDD is a rare HN. CCS is an ultrarare soft tissue sarcoma with a poor prognosis. Mutation analysis with whole-exome sequencing revealed six shared somatic alterations including NRAS p.G12S and TP53 c.559+1G>A in both the RDD and CCS tissue. This is the first evidence of a clonal relationship between RDD and solid malignancies using mutational analysis. We hypothesise that neural crest cells, which originate in CCS, are likely the common cells of origin for RDD and CCS. This case helps to unravel the underlying clinicopathological mechanisms of increased association of solid malignancies in HNs. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Histiocitose Sinusal , Mutação , Sarcoma de Células Claras , Humanos , Histiocitose Sinusal/patologia , Histiocitose Sinusal/genética , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/patologia , Masculino , Análise Mutacional de DNA , Pessoa de Meia-Idade , Feminino , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/patologia , Sequenciamento do Exoma , Proteína Supressora de Tumor p53/genética , Proteínas de Membrana , GTP Fosfo-Hidrolases
18.
J Pathol ; 263(2): 139-149, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380548

RESUMO

TP53 mutation is one of the most common genetic alterations in urothelial carcinoma (UrCa), and heterogeneity of TP53 mutants leads to heterogeneous clinical outcomes. This study aimed to investigate the clinical relevance of specific TP53 mutations in UrCa. In this study, a total of eight cohorts were enrolled, along with matched clinical annotation. TP53 mutations were classified as disruptive and nondisruptive according to the degree of disturbance of p53 protein function and structure. We evaluated the clinical significance of TP53 mutations in our local datasets and publicly available datasets. The co-occurring events of TP53 mutations in UrCa, along with their therapeutic indications, functional effects, and the tumor immune microenvironment, were also investigated. TP53 mutations were identified in 49.7% of the UrCa patients. Within this group, 25.1% of patients carried TP53Disruptive mutations, a genetic alteration correlated with a significantly poorer overall survival (OS) when compared to individuals with TP53Nondisruptive mutations and those with wild-type TP53. Significantly, patients with TP53Disruptive mutations exhibit an increased probability of responding favorably to PD-1/PD-L1 blockade and chemoimmunotherapy. Meanwhile, there was no noteworthy distinction in OS among patients with varying TP53 mutation status who underwent chemotherapy. Samples with TP53Disruptive mutations showed an enriched APOBEC- and POLE-related mutational signature, as well as an elevated tumor mutation burden. The sensitivity to immunotherapy in tumors carrying TP53Disruptive mutation may be attributed to the inflamed tumor microenvironment characterized by increased CD8+T cell infiltration and interferon-gamma signaling activation. In conclusion, UrCa patients with TP53Disruptive mutations have shown reduced survival rates, yet they may respond well to PD-1/PD-L1 blockade therapy and chemoimmunotherapy. By distinguishing specific TP53 mutations, we can improve risk stratification and offer personalized genomics-guided therapy to UrCa patients. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Mutação , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Neoplasias da Bexiga Urinária , Humanos , Proteína Supressora de Tumor p53/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/imunologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/mortalidade , Biomarcadores Tumorais/genética , Masculino , Feminino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , Pessoa de Meia-Idade
19.
J Pathol ; 263(3): 386-395, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38801208

RESUMO

While increased DNA damage is a well-described feature of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), it is unclear whether all lineages and all regions of the marrow are homogeneously affected. In this study, we performed immunohistochemistry on formalin-fixed, paraffin-embedded whole-section bone marrow biopsies using a well-established antibody to detect pH2A.X (phosphorylated histone variant H2A.X) that recognizes DNA double-strand breaks. Focusing on TP53-mutated and complex karyotype MDS/AML, we find a greater pH2A.X+ DNA damage burden compared to TP53 wild-type neoplastic cases and non-neoplastic controls. To understand how double-strand breaks vary between lineages and spatially in TP53-mutated specimens, we applied a low-multiplex immunofluorescence staining and spatial analysis protocol to visualize pH2A.X+ cells with p53 protein staining and lineage markers. pH2A.X marked predominantly mid- to late-stage erythroids, whereas early erythroids and CD34+ blasts were relatively spared. In a prototypical example, these pH2A.X+ erythroids were organized locally as distinct colonies, and each colony displayed pH2A.X+ puncta at a synchronous level. This highly coordinated immunophenotypic expression was also seen for p53 protein staining and among presumed early myeloid colonies. Neighborhood clustering analysis showed distinct marrow regions differentially enriched in pH2A.X+/p53+ erythroid or myeloid colonies, indicating spatial heterogeneity of DNA-damage response and p53 protein expression. The lineage and architectural context within which DNA damage phenotype and oncogenic protein are expressed is relevant to current therapeutic developments that leverage macrophage phagocytosis to remove leukemic cells in part due to irreparable DNA damage. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Mutação , Síndromes Mielodisplásicas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Pessoa de Meia-Idade , Dano ao DNA , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Idoso , Feminino , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Histonas/genética , Medula Óssea/patologia , Medula Óssea/metabolismo , Idoso de 80 Anos ou mais , Imuno-Histoquímica
20.
Mol Ther ; 32(10): 3618-3628, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39066480

RESUMO

Multiple pathogenic single-nucleotide polymorphisms (SNPs) have been identified as contributing factors in the aggravation of cancer prognosis and emergence of drug resistance in various cancers. Here, we targeted mutated EGFR and TP53 oncogenes harboring single-nucleotide missense mutations (EGFR-T790M and TP53-R273H) that are associated with gefitinib resistance. Co-delivery of adenine base editor (ABE) and EGFR- and TP53-SNP specific single-guide RNA via adenovirus (Ad) resulted in precise correction of the oncogenic mutations with high accuracy and efficiency in vitro and in vivo. Importantly, compared with a control group treated only with gefitinib, an EGFR inhibitor, co-treatment with Ad/ABE targeting SNPs in TP53 and EGFR in combination with gefitinib increased drug sensitivity and suppressed abnormal tumor growth more efficiently. Taken together, these results indicate that ABE-mediated correction of dual oncogenic SNPs can be an effective strategy for the treatment of drug-resistant cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Gefitinibe , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Edição de Genes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA