Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Genes Dev ; 35(1-2): 1-21, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361389

RESUMO

In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , Telômero/metabolismo , Telômero/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Instabilidade Cromossômica , Reparo do DNA , Células-Tronco Embrionárias , Humanos , Modelos Biológicos , Células-Tronco Pluripotentes , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
2.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764137

RESUMO

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Assuntos
Proteína 2 de Ligação a Repetições Teloméricas , Tripeptidil-Peptidase 1 , Animais , Mamíferos/genética , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
3.
Trends Genet ; 39(1): 59-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404192

RESUMO

Although the impact of telomeres on physiology stands well established, a question remains: how do telomeres impact cellular functions at a molecular level? This is because current understanding limits the influence of telomeres to adjacent subtelomeric regions despite the wide-ranging impact of telomeres. Emerging work in two distinct aspects offers opportunities to bridge this gap. First, telomere-binding factors were found with non-telomeric functions. Second, locally induced DNA secondary structures called G-quadruplexes are notably abundant in telomeres, and gene regulatory regions genome wide. Many telomeric factors bind to G-quadruplexes for non-telomeric functions. Here we discuss a more general model of how telomeres impact the non-telomeric genome - through factors that associate at telomeres and genome wide - and influence cell-intrinsic functions, particularly aging, cancer, and pluripotency.


Assuntos
Quadruplex G , Telômero , Telômero/genética , Telômero/metabolismo , DNA/metabolismo , Heterocromatina
4.
Mol Cell ; 70(3): 395-407.e4, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727616

RESUMO

Telomeres and telomere-binding proteins form complex secondary nucleoprotein structures that are critical for genome integrity but can present serious challenges during telomere DNA replication. It remains unclear how telomere replication stress is resolved during S phase. Here, we show that the BUB3-BUB1 complex, a component in spindle assembly checkpoint, binds to telomeres during S phase and promotes telomere DNA replication. Loss of the BUB3-BUB1 complex results in telomere replication defects, including fragile and shortened telomeres. We also demonstrate that the telomere-binding ability of BUB3 and kinase activity of BUB1 are indispensable to BUB3-BUB1 function at telomeres. TRF2 targets BUB1-BUB3 to telomeres, and BUB1 can directly phosphorylate TRF1 and promote TRF1 recruitment of BLM helicase to overcome replication stress. Our findings have uncovered previously unknown roles for the BUB3-BUB1 complex in S phase and shed light on how proteins from diverse pathways function coordinately to ensure proper telomere replication and maintenance.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Serina-Treonina Quinases/genética , Telômero/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA Helicases/genética , Células HEK293 , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Fase S/genética , Fuso Acromático/genética , Proteínas de Ligação a Telômeros/genética
5.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727617

RESUMO

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Assuntos
Replicação do DNA/genética , Genoma/genética , Heterocromatina/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral , Centrômero/genética , Cromatina/genética , DNA Helicases/genética , Quadruplex G , Células HeLa , Humanos , Fase S/genética
6.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30033372

RESUMO

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA por Junção de Extremidades , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitose , Domínios Proteicos , Telômero/ultraestrutura , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-39269467

RESUMO

Impaired alveolar epithelial regeneration in patients with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) is attributed to telomere dysfunction in type II alveolar epithelial cells (A2Cs). Genetic susceptibility, aging, and toxicant exposures, including tobacco smoke (TS), contribute to telomere dysfunction in A2Cs. Here we investigated whether improvement of telomere function plays a role in CSP7-mediated protection of A2Cs against ongoing senescence and apoptosis during bleomycin (BLM)-induced pulmonary fibrosis (PF) as well as alveolar injury caused by chronic TS exposure. We found a significant telomere shortening in A2Cs isolated from IPF and COPD lungs in line with other studies. These cells showed increased p53 in addition to its post-translational modification with induction of activated caspase-3 and ß-galactosidase, suggesting a p53-mediated loss of A2C renewal. Further, we found increased expression of SIAH-1, a p53-inducible E3 ubiquitin ligase known to down-regulate telomere repeats binding factor 2 (TRF2). Consistent with the loss of TRF2 and upregulation of TRF1, telomerase reverse transcriptase (TERT) was downregulated in A2Cs. A2Cs from fibrotic lungs of mice either repeatedly instilled with BLM or isolated from chronic TS exposure-induced lung injury model showed reduced telomere length along with induction of p53, PAI-1, SIAH1 and TRF1 as well as loss of TRF2 and TERT, which were reversed in wild-type mice after treatment with CSP7. Interestingly, PAI-1-/- mice, or those lacking microRNA-34a expression in A2Cs, resisted telomere dysfunction, while uPA-/- mice failed to respond to CSP7 treatment, suggesting p53-microRNA-34a feed-forward induction and p53-uPA pathway contributes to telomere dysfunction.

8.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660868

RESUMO

We investigated the role of telomerase and telomere repeat-binding factor 2 (TRF2 or TERF2) in T-cell dysfunction in chronic viral infection. We found that the expression and activity of telomerase in CD4+ T (CD4T) cells from patients with hepatitis C virus (HCV) infections or people living with HIV (PLWH) were intact, but TRF2 expression was significantly inhibited at the post-transcriptional level, suggesting that TRF2 inhibition is responsible for the CD4T cell dysfunction observed during chronic viral infection. Silencing TRF2 expression in CD4T cells derived from healthy subjects induced telomeric DNA damage and CD4T cell dysfunction without affecting telomerase activity or translocation - similar to what we observed in CD4T cells from HCV patients and PLWH. These findings indicate that premature T-cell aging and dysfunction during chronic HCV or HIV infection are primarily caused by chronic immune stimulation and T-cell overactivation and/or proliferation that induce telomeric DNA damage due to TRF2 inhibition, rather than telomerase disruption. This study suggests that restoring TRF2 presents a novel approach to prevent telomeric DNA damage and premature T-cell aging, thus rejuvenating T-cell functions during chronic viral infection.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Telomerase , Proteína 2 de Ligação a Repetições Teloméricas , Linfócitos T CD4-Positivos/imunologia , Dano ao DNA , Infecções por HIV/genética , Infecções por HIV/imunologia , Hepacivirus , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
9.
J Anim Ecol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509838

RESUMO

Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12-day-old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day-old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.

10.
Acta Pharmacol Sin ; 45(6): 1276-1286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438580

RESUMO

Telomere repeat binding factor 2 (TRF2), a critical element of the shelterin complex, plays a vital role in the maintenance of genome integrity. TRF2 overexpression is found in a wide range of malignant cancers, whereas its down-regulation could cause cell death. Despite its potential role, the selectively small-molecule inhibitors of TRF2 and its therapeutic effects on liver cancer remain largely unknown. Our clinical data combined with bioinformatic analysis demonstrated that TRF2 is overexpressed in liver cancer and that high expression is associated with poor prognosis. Flavokavain B derivative FKB04 potently inhibited TRF2 expression in liver cancer cells while having limited effects on the other five shelterin subunits. Moreover, FKB04 treatment induced telomere shortening and increased the amounts of telomere-free ends, leading to the destruction of T-loop structure. Consequently, FKB04 promoted liver cancer cell senescence without modulating apoptosis levels. In corroboration with these findings, FKB04 inhibited tumor cell growth by promoting telomeric TRF2 deficiency-induced telomere shortening in a mouse xenograft tumor model, with no obvious side effects. These results demonstrate that TRF2 is a potential therapeutic target for liver cancer and suggest that FKB04 may be a selective small-molecule inhibitor of TRF2, showing promise in the treatment of liver cancer.


Assuntos
Senescência Celular , Neoplasias Hepáticas , Encurtamento do Telômero , Proteína 2 de Ligação a Repetições Teloméricas , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Encurtamento do Telômero/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26774283

RESUMO

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pareamento de Bases , DNA/metabolismo , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Células HeLa , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química
12.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31000523

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.


Assuntos
Glicocálix/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Evasão Tumoral/fisiologia , Animais , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glicocálix/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Células NIH 3T3 , Neoplasias/genética , Neoplasias/mortalidade , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Evasão Tumoral/genética
13.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762556

RESUMO

Telomeres play pivotal roles in processes closely related to somatic senescence and aging, making them a compelling target for interventions aimed at combating aging and age-related pathologies. Ginsenoside, a natural compound, has emerged as a potential remedy for promoting healthy aging, yet how it protects telomeres remains incompletely understood. Here, we show that treatment of F1 can effectively restore the level of TRF2, thereby preserving telomere integrity. This restoration leads to inhibition of the DNA damage response and improvements in mitochondrial function and, ultimately, delays in cellular senescence. Conversely, depletion of TRF2 causes mitochondrial dysfunction, accompanied by increased oxidative stress, autophagy inhibition, insufficient energy metabolism, and the onset of cellular senescence. These observations underscore the critical role of TRF2 in maintaining telomere integrity and direct association with the initiation of cellular senescence. We conduct a further analysis, suggesting F1 could bind in proximity to the TRF2 heterodimer interface, potentially enhancing dimerization stability. These findings suggest that F1 may be a promising natural remedy for anti-aging, and restoring TRF2 could potentially prevent telomere-dependent diseases commonly associated with the aging process.


Assuntos
Ginsenosídeos , Humanos , Ginsenosídeos/farmacologia , Senescência Celular , Preservação Biológica , Síndrome
14.
Genes Dev ; 28(19): 2071-6, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274724

RESUMO

The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as "system factors" that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria.


Assuntos
Evolução Biológica , Padronização Corporal/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica/genética , Animais , Humanos , Filogenia , Regiões Promotoras Genéticas/genética
15.
Genes Dev ; 28(19): 2163-74, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25223897

RESUMO

Transcription of protein-coding genes is highly dependent on the RNA polymerase II core promoter. Core promoters, generally defined as the regions that direct transcription initiation, consist of functional core promoter motifs (such as the TATA-box, initiator [Inr], and downstream core promoter element [DPE]) that confer specific properties to the core promoter. The known basal transcription factors that support TATA-dependent transcription are insufficient for in vitro transcription of DPE-dependent promoters. In search of a transcription factor that supports DPE-dependent transcription, we used a biochemical complementation approach and identified the Drosophila TBP (TATA-box-binding protein)-related factor 2 (TRF2) as an enriched factor in the fractions that support DPE-dependent transcription. We demonstrate that the short TRF2 isoform preferentially activates DPE-dependent promoters. DNA microarray analysis reveals the enrichment of DPE promoters among short TRF2 up-regulated genes. Using primer extension analysis and reporter assays, we show the importance of the DPE in transcriptional regulation of TRF2 target genes. It was previously shown that, unlike TBP, TRF2 fails to bind DNA containing TATA-boxes. Using microfluidic affinity analysis, we discovered that short TRF2-bound DNA oligos are enriched for Inr and DPE motifs. Taken together, our findings highlight the role of short TRF2 as a preferential core promoter regulator.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Drosophila/genética , Ligação Proteica , TATA Box , Proteína 2 de Ligação a Repetições Teloméricas/genética
16.
Genes Dev ; 28(14): 1550-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958592

RESUMO

The TCT core promoter element is present in most ribosomal protein (RP) genes in Drosophila and humans. Here we show that TBP (TATA box-binding protein)-related factor TRF2, but not TBP, is required for transcription of the TCT-dependent RP genes. In cells, TCT-dependent transcription, but not TATA-dependent transcription, increases or decreases upon overexpression or depletion of TRF2. In vitro, purified TRF2 activates TCT but not TATA promoters. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) experiments revealed the preferential localization of TRF2 at TCT versus TATA promoters. Hence, a specialized TRF2-based RNA polymerase II system functions in the synthesis of RPs and complements the RNA polymerase I and III systems.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transcrição Gênica/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Expressão Gênica , Regiões Promotoras Genéticas , Transporte Proteico , TATA Box/genética , Proteína de Ligação a TATA-Box/metabolismo
17.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142374

RESUMO

RNA-protein interactions drive key cellular pathways such as protein translation, nuclear organization and genome stability maintenance. The human telomeric protein TRF2 binds to the long noncoding RNA TERRA through independent domains, including its N-terminal B domain. We previously demonstrated that TRF2 B domain binding to TERRA supports invasion of TERRA into telomeric double stranded DNA, leading to the formation of telomeric RNA:DNA hybrids. The other telomeric protein TRF1, which also binds to TERRA, suppresses this TRF2-associated activity by preventing TERRA-B domain interactions. Herein, we show that the binding of both TRF1 and TRF2 to TERRA depends on the ability of the latter to form G-quadruplex structures. Moreover, a cluster of arginines within the B domain is largely responsible for its binding to TERRA. On the other side, a patch of glutamates within the N-terminal A domain of TRF1 mainly accounts for the inhibition of TERRA-B domain complex formation. Finally, mouse TRF2 B domain binds to TERRA, similarly to its human counterpart, while mouse TRF1 A domain lacks the inhibitory activity. Our data shed further light on the complex crosstalk between telomeric proteins and RNAs and suggest a lack of functional conservation in mouse.


Assuntos
RNA Longo não Codificante , Proteína 1 de Ligação a Repetições Teloméricas , Proteína 2 de Ligação a Repetições Teloméricas , Animais , DNA/química , Glutamatos , Humanos , Camundongos , RNA Longo não Codificante/genética , Telômero/genética , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
18.
Adv Exp Med Biol ; 1275: 71-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539012

RESUMO

Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.


Assuntos
Telômero , Proteína 2 de Ligação a Repetições Teloméricas , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
19.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804854

RESUMO

Telomere-binding factor 2 (TRF2) is part of the shelterin protein complex found at chromosome ends. Lamin A/C interacts with TRF2 and influences telomere position. TRF2 has an intrinsically disordered region between the ordered dimerization and DNA-binding domains. This domain is referred to as the long linker region of TRF2, or udTRF2. We suggest that udTRF2 might be involved in the interaction between TRF2 and lamins. The recombinant protein corresponding to the udTRF2 region along with polyclonal antibodies against this region were used in co-immunoprecipitation with purified lamina and nuclear extracts. Co-immunoprecipitation followed by Western blots and mass spectrometry indicated that udTRF2 interacts with lamins, preferably lamins A/C. The interaction did not involve any lamin-associated proteins, was not dependent on the post-translation modification of lamins, nor did it require their higher-order assembly. Besides lamins, a number of other udTRF2-interacting proteins were identified by mass spectrometry, including several heterogeneous nuclear ribonucleoproteins (hnRNP A2/B1, hnRNPA1, hnRNP A3, hnRNP K, hnRNP L, hnRNP M), splicing factors (SFPQ, NONO, SRSF1, and others), helicases (DDX5, DHX9, and Eif4a3l1), topoisomerase I, and heat shock protein 71, amongst others. Some of the identified interactors are known to be involved in telomere biology; the roles of the others remain to be investigated. Thus, the long linker region of TRF2 (udTRF2) is a regulatory domain responsible for the association between TRF2 and lamins and is involved in interactions with other proteins.


Assuntos
Laminas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sítios de Ligação , Células Cultivadas , Humanos , Ligação Proteica , Proteína 2 de Ligação a Repetições Teloméricas/química
20.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576063

RESUMO

Telomere repeat binding factor 2 (TRF2) has a well-known function at the telomeres, which acts to protect the telomere end from being recognized as a DNA break or from unwanted recombination. This protection mechanism prevents DNA instability from mutation and subsequent severe diseases caused by the changes in DNA, such as cancer. Since TRF2 actively inhibits the DNA damage response factors from recognizing the telomere end as a DNA break, many more studies have also shown its interactions outside of the telomeres. However, very little has been discovered on the mechanisms involved in these interactions. This review aims to discuss the known function of TRF2 and its interaction with the DNA damage response (DDR) factors at both telomeric and non-telomeric regions. In this review, we will summarize recent progress and findings on the interactions between TRF2 and DDR factors at telomeres and outside of telomeres.


Assuntos
Dano ao DNA , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Humanos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA