Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Physiol Genomics ; 56(1): 65-73, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955133

RESUMO

Recently, we have identified a recessive mutation, an abnormal coat appearance in the BXH6 strain, a member of the HXB/BXH set of recombinant inbred (RI) strains. The RI strains were derived from the spontaneously hypertensive rat (SHR) and Brown Norway rat (BN-Lx) progenitors. Whole genome sequencing of the mutant rats identified the 195875980 G/A mutation in the tuftelin 1 (Tuft1) gene on chromosome 2, which resulted in a premature stop codon. Compared with wild-type BXH6 rats, BXH6-Tuft1 mutant rats exhibited lower body weight due to reduced visceral fat and ectopic fat accumulation in the liver and heart. Reduced adiposity was associated with decreased serum glucose and insulin and increased insulin-stimulated glycogenesis in skeletal muscle. In addition, mutant rats had lower serum monocyte chemoattractant protein-1 and leptin levels, indicative of reduced inflammation. Analysis of the liver proteome identified differentially expressed proteins from fatty acid metabolism and ß-oxidation, peroxisomes, carbohydrate metabolism, inflammation, and proteasome pathways. These results provide evidence for the important role of the Tuft1 gene in the regulation of lipid and glucose metabolism and suggest underlying molecular mechanisms.NEW & NOTEWORTHY A new spontaneous mutation, abnormal hair appearance in the rat, has been identified as a nonfunctional tuftelin 1 (Tuft1) gene. The pleiotropic effects of this mutation regulate glucose and lipid metabolism. Analysis of the liver proteome revealed possible molecular mechanisms for the metabolic effects of the Tuft1 gene.


Assuntos
Códon sem Sentido , Glucose , Ratos , Animais , Glucose/metabolismo , Códon sem Sentido/genética , Metabolismo dos Lipídeos/genética , Proteoma/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos BN , Insulina/metabolismo , Inflamação
2.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 148-154, 2024 Feb 20.
Artigo em Zh | MEDLINE | ID: mdl-38514264

RESUMO

Objective: To analyze and evaluate the expressions and clinical value of tuftelin (TUFT1) and Krüppel-like factor 5 (KLF5) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) tissues. Method: KLF5 mRNA and TUFT1 mRNA transcriptional status in cancer and non-cancer groups were compared according to the Cancer Genome Atlas (TCGA) database. The differences and prognostic value between the groups were analyzed. Postoperative liver cancer and its paired pericancerous tissues, with the approval of the ethics committee, were collected to build tissue chips. The expression of KLF5 and TUFT1 and their intracellular localization were verified by immunohistochemistry. Tissue expression and clinicopathological characteristics were analyzed by immunoblotting. SPSS software was used to analyze the relationship between SPSS and patient prognosis. Results: The transcription level of TUFT1 or KLF5 mRNA was significantly higher in the HCC group than the non-cancer group (P < 0.001), according to TCGA data. Immunohistochemistry and Western blotting examination confirmed the overexpression of TUFT1 and KLF5 in human HCC tissues, which were mainly localized in the cytoplasm and cell membrane. The positivity rates of TUFT1 and KLF5 were 87.1% ( χ(2) = 18.563, P < 0.001) and 95.2% ( χ(2) = 96.435, P < 0.001) in HCC tissues, and both were significantly higher than those in the adjacent group. The expression intensity was higher in stage III-IV than stage I-II of the International Union Against Cancer standard (P < 0.01). The clinicopathological features showed that the abnormalities of the two were significantly related to HBV infection, tumor size, extrahepatic metastasis, TNM stage, and ascites. Univariate analysis was related to tumor size, HBV infection, and survival. Multivariate analysis was an independent prognostic factor for patients with HCC. Conclusion: TUFT1 and KLF5 may both be novel markers possessing clinical value in the diagnosis and prognosis of HBV-related HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas do Esmalte Dentário , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatite B/complicações , Hepatite B/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/patologia , Prognóstico , RNA Mensageiro , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
3.
Cancer Sci ; 114(2): 533-545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36380570

RESUMO

Tuftelin (TUFT1) is highly expressed in various tumor types and promotes tumor growth and metastasis by activating AKT and other core signaling pathways. However, the effects of post-translational modifications of TUFT1 on its oncogenic function remain unexplored. In this study, we found that TUFT1 was SUMOylated at K79. SUMOylation deficiency significantly impaired the ability of TUFT1 to promote the proliferation, migration, and invasion of gastric cancer (GC) cells by blocking AKT/mTOR signaling pathway activation. SUMOylation of TUFT1 is mediated by the E3 SUMO ligase tripartite motif-containing protein 27 (TRIM27), and these two proteins regulate the malignant behavior of GC cells and AKT activation in the same pathway. TUFT1 binds to TRIM27 through its N-terminus, and decreased binding affinity of TUFT1 to TRIM27 significantly impairs its oncogenic effect. In addition, data collected from GC clinical samples indicated that the combined detection of TUFT1 and TRIM27 expression reflected tumor malignancy and patient survival with higher precision. In addition, we proved that SUMOylated TUFT1 is not only an upstream signal for AKT activation but also directly activates mTOR by forming a complex with Rab GTPase activating protein 1, which further inhibits Rab GTPases and promotes the perinuclear accumulation of mTORC1. Altogether, these data indicate that SUMOylated TUFT1 is the active form that affects GC progression through the AKT/mTOR signaling pathway and might be a promising therapeutic target or biomarker for GC progression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sumoilação , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular
4.
Respir Res ; 24(1): 318, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105232

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) with unknown etiology, characterized by sustained damage repair of epithelial cells and abnormal activation of fibroblasts, the underlying mechanism of the disease remains elusive. METHODS: To evaluate the role of Tuftelin1 (TUFT1) in IPF and elucidate its molecular mechanism. We investigated the level of TUFT1 in the IPF and bleomycin-induced mouse models and explored the influence of TUFT1 deficiency on pulmonary fibrosis. Additionally, we explored the effect of TUFT1 on the cytoskeleton and illustrated the relationship between stress fiber and pulmonary fibrosis. RESULTS: Our results demonstrated a significant upregulation of TUFT1 in IPF and the bleomycin (BLM)-induced fibrosis model. Disruption of TUFT1 exerted inhibitory effects on pulmonary fibrosis in both in vivo and in vitro. TUFT1 facilitated the assembly of microfilaments in A549 and MRC-5 cells, with a pronounced association between TUFT1 and Neuronal Wiskott-Aldrich syndrome protein (N-WASP) observed during microfilament formation. TUFT1 can promote the phosphorylation of tyrosine residue 256 (Y256) of the N-WASP (pY256N-WASP). Furthermore, TUFT1 promoted transforming growth factor-ß1 (TGF-ß1) induced fibroblast activation by increasing nuclear translocation of pY256N-WASP in fibroblasts, while wiskostatin (Wis), an N-WASP inhibitor, suppressed these processes. CONCLUSIONS: Our findings suggested that TUFT1 plays a critical role in pulmonary fibrosis via its influence on stress fiber, and blockade of TUFT1 effectively reduces pro-fibrotic phenotypes. Pharmacological targeting of the TUFT1-N-WASP axis may represent a promising therapeutic approach for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Animais , Camundongos , Bleomicina/toxicidade , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Camundongos Endogâmicos C57BL , Fibras de Estresse/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
5.
Cell Biochem Funct ; 41(7): 788-800, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37470499

RESUMO

Currently, many challenges are associated with hepatocellular carcinoma (HCC) as the failure of early diagnosis, and the lack of effective therapy. This study aimed to investigate the possible role of tuftelin 1 (TUFT 1) in the early diagnosis of HCC and evaluate the potential contribution of the TUFT 1/Ca+2 /phosphinositol 3 kinase (PI3K) pathway in dantrolene sodium (Dan) therapeutic outcomes. The study was performed on two sets of rats, the staging (30 rats) and treatment sets (80 rats). HCC was induced by a single dose of diethylnitrosamine (DENA). The hepatic content of TUFT 1 protein was assayed via western blot and immunohistochemistry (IHC), while PI3K, vascular endothelial growth factor (VEGF), Cyclin D1, and matrix-metalloproteinase-9 (MMP-9) contents were assessed using enzyme-linked immunosorbent assay. Hepatic and serum calcium were measured colorimetrically. Furthermore, the nuclear proliferation marker, (Ki-67), (Kiel [Ki] where the antibody was produced in the University Department of Pathology and the original clone number is 67)-expression was assessed by IHC. TUFT 1/Ca+2 /PI3K signaling pathway was progressively activated in the 3 studied stages of HCC with subsequent upregulation of angiogenesis, cell cycle, and metastasis. More interestingly, Dan led to TUFT 1/Ca+2 /PI3K pathway disruption by diminution of the hepatic contents of TUFT 1, calcium, PI3K, VEGF, Cyclin D1, and MMP-9 in a dose-dependent pattern. TUFT 1 can serve as a theranostic biomarker in HCC. Moreover, Dan exerted an antineoplastic effect against HCC via the interruption of TUFT 1/Ca+2 /PI3K pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratos , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ciclina D1 , Fosfatidilinositol 3-Quinases/metabolismo , Medicina de Precisão , Cálcio , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diagnóstico Precoce , Proliferação de Células , Linhagem Celular Tumoral
6.
Exp Cell Res ; 396(2): 112331, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058834

RESUMO

Triple negative breast cancer (TNBC) is a subtype of breast cancer with poorest survival outcome and is prone to metastasis. TUFT1 and the long non-coding RNA (lncRNA), DANCR, play vital roles in metastasis and progression of various cancers. However, the correlation between TUFT1 and DANCR in TNBC and their downstream molecular mechanisms are still undetermined. We demonstrated that upregulation of TUFT1 in TNBC was related to a worse survival in TNBC patients. The TNBC cells invasiveness was augmented by TUFT1 in a dose-dependent manner, while inhibiting TUFT1 repressed the invasiveness. Particularly, the expression of TUFT1 was positively correlated with the expression of DANCR in TNBC tissues. In addition, TUFT1 increased DANCR expression, while silencing DANCR ameliorated the invasiveness of TNBC cells induced by TUFT1. As demonstrated, TUFT1 interacted with miR-874-3p. Subsequently, qRT-PCR together with luciferase reporter further demonstrated that DANCR acted as competing endogenous (ceRNA) for miR-874-3p, thereby regulating the de-repression of SOX2 and advancing epithelial-mesenchymal transition (EMT) in TNBC. The present research shows that TUFT1 promotes the malignant development in TNBC via enhancing the expression of DANCR. The upregulation of DANCR may contribute to the progression and tumor invasiveness of TNBC, considering that DANCR functions as a miR-874-3p sponge, thus modulating SOX2 positively. Collectively, the present study explored the molecular mechanism underlying TUFT1 in TNBC, raising a TUFT1-mediated therapy for the treatment of patients with TNBC.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Progressão da Doença , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima/genética , Sequência de Bases , Carcinogênese/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Análise de Sobrevida , Resultado do Tratamento
7.
J Biochem Mol Toxicol ; 34(7): e22490, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32115852

RESUMO

The aim of our study was to explore the roles of miR-671-5p in mediating biological processes of osteosarcoma (OS) cells and clinical implications. On the basis of the OS samples acquired from the GEO database, the expression difference and overall survival analyses of miR-671-5p and TUFT1 were determined. The expression of MiR-671-5p was verified using OS cell lines. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound-healing, and Transwell assays were respectively carried out to probe whether miR-671-5p regulated OS cell vitality, migration, and invasion. The expression of miR-671-5p was downregulated in OS tissues and cell lines. High expression of MiR-671-5p blocked OS cell growth, migration, and invasion. TUFT1 was predicted and validated as the target of miR-671-5p in OS cells using in silico analysis and luciferase reporter assays. Forced expression of TUFT1 reversed the suppressive influence of miR-671-5p on cell viability, migration, and invasion of OS cells. Moreover, the low expression of miR-671-5p and the high expression of TUFT1 led to poor prognosis. Taken together, targeting miR-671-5p/TUFT1 may be a promising strategy for treating OS.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteínas do Esmalte Dentário/metabolismo , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas do Esmalte Dentário/genética , Progressão da Doença , Humanos , MicroRNAs/genética , Osteossarcoma/patologia , Prognóstico , Taxa de Sobrevida , Transfecção
8.
Cancer Cell Int ; 19: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572059

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a breast cancer (BC) subtype that is characterized by its strong invasion and a high risk of metastasis. However, the specific mechanisms underlying these phenotypes are unclear. TUFT1 plays an important role in BC and impacts the proliferation and survival of BC cells. Recent studies have shown that TUFT1 mediates intracellular lysosome localization and vesicle transport by regulating Rab GTPase, but the relevance of this activity in TNBC is unknown. Therefore, our aim was to systematically study the role of TUFT1 in the metastasis and chemoresistance of TNBC. METHODS: We measured TUFT1, Rab5-GTP, and Rac1-GTP expression levels in samples of human TNBC by immunohistochemistry (IHC) and conducted univariate and multivariate analyses. shRNA-mediated knockdown and overexpression, combined with transwell assays, co-immunoprecipitation, a nude mouse xenograft tumor model, and GTP activity assays were used for further mechanistic studies. RESULTS: TUFT1 expression was positively correlated with Rab5-GTP and Rac1-GTP in the TNBC samples, and co-expression of TUFT1 and Rab5-GTP predicted poor prognosis in TNBC patients who were treated with chemotherapy. Mechanism studies showed that TUFT1 could activate Rab5 by binding to p85α, leading to activation of Rac1 through recruitment of Tiam1, and concurrent down-regulation of the NF-κB pathway and proapoptotic factors, ultimately promoting metastasis and chemoresistance in TNBC cells. CONCLUSIONS: Our findings suggest that the TUFT1/Rab5/Rac1 pathway may be a potential target for the effective treatment of TNBC.

9.
Cancer Cell Int ; 19: 323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827397

RESUMO

BACKGROUND: There is growing evidence of the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). The objective was to discuss whether exosomal lncRNA HNF1A-AS1 impacted drug resistance in CC via binding to microRNA-34b (miR-34b) and regulating TUFT1 expression. METHODS: The expression of HNF1A-AS1 in normal cervical epithelial cells, cisplatin (DDP)-sensitive cell line (HeLa/S) and DDP-resistant cell line (HeLa/DDP) cells were detected. HeLa/S and HeLa/DDP cells were interfered with HNF1A-AS1 to determine IC50, proliferation, colony formation and apoptosis of CC cells. The exosomes were isolated and identified. Subcellular localization of HNF1A-AS1, expression of miR-34b and TUFT1 in receptor cells were also verified. The binding site between HNF1A-AS1 and miR-34b, together with miR-34b and TUFT1 were confirmed. Tumorigenic ability of cells in nude mice was also detected. RESULTS: HNF1A-AS1 was upregulated in DDP-resistant cell line HeLa/DDP. Silencing HNF1A-AS1 suppressed CC cell proliferation and promoted its apoptosis. HNF1A-AS1 was found to act as a competing endogenous RNA (ceRNA) of miR-34b to promote the expression of TUFT1. Exosomes shuttled HNF1A-AS1 promoted the proliferation and drug resistance of CC cells and inhibited their apoptosis by upregulating the expression of TUFT1 and downregulating miR-34b. Furthermore, suppressed exosomal HNF1A-AS1 in combination with DDP inhibited tumor growth in nude mice. CONCLUSION: Our study provides evidence that CC-secreted exosomes carrying HNF1A-AS1 as a ceRNA of miR-34b to promote the expression of TUFT1, thereby promoting the DDP resistance in CC cells.

10.
J Mol Evol ; 84(4): 214-224, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28409196

RESUMO

Tuftelin (TUFT1) is an acidic, phosphorylated glycoprotein, initially discovered in developing enamel matrix. TUFT1 is expressed in many mineralized and non-mineralized tissues. We performed an evolutionary analysis of 82 mammalian TUFT1 sequences to identify residues and motifs that were conserved during 220 million years (Ma) of evolution. We showed that 168 residues (out of the 390 residues composing the human TUFT1 sequence) are under purifying selection. Our analyses identified several, new, putatively functional domains and confirmed previously described functional domains, such as the TIP39 interaction domain, which correlates with nuclear localization of the TUFT1 protein, that was demonstrated in several tissues. We also identified several sites under positive selection, which could indicate evolutionary changes possibly related to the functional diversification of TUFT1 during evolution in some lineages. We discovered that TUFT1 and MYZAP (myocardial zonula adherens protein) share a common ancestor that was duplicated circa 500 million years ago. Taken together, these findings expand our knowledge of TUFT1 evolution and provide new information that will be useful for further investigation of TUFT1 functions.


Assuntos
Proteínas do Esmalte Dentário/genética , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Evolução Biológica , Sequência Conservada/genética , Evolução Molecular , Humanos , Mamíferos/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência/métodos
11.
Clin Transl Oncol ; 26(8): 2020-2024, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38478261

RESUMO

OBJECTIVE: The primary goal of this study was to investigate the expressions of TUFT1 (Tuftelin) and Rac1-GTP in the cancerous tissues of individuals with triple-negative breast cancer (TNBC). Additionally, we aimed to explore the correlation between TUFT1 and Rac1-GTP expressions and examine the associations of TUFT1 and Rac1-GTP expressions with the clinical and pathological indicators of the patients. METHODS: Ninety-six patients diagnosed with TNBC, scheduled for surgery between May 2022 and November 2022, were enrolled in this study. Cancerous tissue specimens were collected from these patients, and immunohistochemistry was employed to evaluate the levels of TUFT1 and Rac1-GTP expressions in the cancerous tissues. Subsequent to data collection, a comprehensive analysis was conducted to examine the correlation between TUFT1 and Rac1-GTP expressions. Furthermore, we sought to assess the associations of TUFT1 and Rac1-GTP expressions with the clinical and pathological indicators of the patients. RESULTS: The TUFT1 protein was expressed in both the membrane and cytoplasm of TNBC cancer cells, with notably higher expression observed in the cytoplasm. Rac1-GTP was primarily expressed in the cytoplasm. There was a positive correlation between the levels of TUFT1 and Rac1-GTP expressions (χ2 = 9.816, P < 0.05). The levels of TUFT1 and Rac1-GTP protein expressions showed no correlation with patient age (χ2 = 2.590, 2.565, P > 0.05); however, they demonstrated a positive correlation with tumor size (χ2 = 5.592,5.118), histological grading (χ2 = 6.730, 5.443), and lymph node metastasis (χ2 = 8.221, 5.180) (all with a significance level of P < 0.05). CONCLUSION: A significant correlation was identified between the levels of TUFT1 and Rac1-GTP expressions in the cancerous tissues of patients with TNBC, suggesting a close association with the progression of TNBC. The two molecules play significant roles in facilitating an early diagnosis and treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Proteínas rac1 de Ligação ao GTP , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Metástase Linfática , Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica , Citoplasma/metabolismo
12.
J Genet Eng Biotechnol ; 21(1): 95, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801178

RESUMO

BACKGROUND: Tuftelin 1 (TUFT1) gene is important in the development and mineralization of dental enamel. The study aimed to identify potential functionally deleterious non-synonymous SNPs (nsSNPs) in the TUFT1 gene by using different in silico tools. The deleterious missense SNPs were identified from SIFT, PolyPhen-2, PROVEAN, SNPs & GO, PANTHER, and SNAP2. The stabilization, conservation, and three-dimensional modeling of mutant proteins were analyzed by I-Mutant 3.0, Consurf, and Project HOPE, respectively. The protein-protein interaction using STRING, GeneMANIA for gene-gene interaction, and DynaMut for evaluating the impact of the mutation on protein stability, conformation, and flexibility. RESULTS: Eight deleterious nsSNPs (E242A, R303W, K182N, K123N, R117W, H289Q, R203W, and Q107R) out of 304 were found to have high-risk damaging effects using six in silico tools. Among them, K182N and K123N alone had increased stability, whereas E242A, R303W, R117W, H289Q, Q107R, and R203W exhibited a decrease in protein stability, based on DDG values. Meanwhile, all the eight deleterious nsSNPs altered the size, charge, hydrophobicity, and spatial organization of the amino acids and predominantly had alpha helix domains. These deleterious variants were located in highly conserved regions except R203W. Protein-protein interaction predicted that TUFT1 interacted with ten proteins that are involved in enamel mineralization and odontogenesis. Gene-gene interaction network showed that TUFT1 is involved in physical interactions, gene co-localization, and pathway interactions. DynaMut ΔΔG values predicted that five nsSNPs were destabilizing the protein, ΔΔG ENCoM values showed a destabilizing effect for all mutants, and seven nsSNPs increased the molecular flexibility of TUFT1. CONCLUSION: Our study predicted eight functional SNPs that had detrimental effects on the structure and function of the TUFT1 gene. This will aid in the development of candidate deleterious markers as a potential target for disease diagnosis and therapeutic interventions.

13.
J Exp Clin Cancer Res ; 42(1): 306, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37986103

RESUMO

BACKGROUND: Liver metastasis is one of the most important reasons for high mortality of colorectal cancer (CRC). Growing evidence illustrates that lncRNAs play a critical role in CRC liver metastasis. Here we described a novel function and mechanisms of BACE1-AS promoting CRC liver metastasis. METHODS: qRT-PCR and in situ hybridization were performed to examine the BACE1-AS level in CRC. IGF2BP2 binding to m6A motifs in BACE1-AS was determined by RIP assay and S1m-tagged immunoprecipitation. Transwell assay and liver metastasis mice model experiments were performed to examine the metastasis capabilities of BACE1-AS knockout cells. Stemness-like properties was examined by tumor sphere assay and the expression of stemness biomarkers. Microarray data were acquired to analyze the signaling pathways involved in BACE1-AS promoting CRC metastasis. RESULTS: BACE1-AS is the most up-regulated in metastatic CRC associated with unfavorable prognosis. Sequence blast revealed two m6A motifs in BACE1-AS. IGF2BP2 binding to these two m6A motifs is required for BACE1-AS boost in metastatic CRC. m6A modified BACE1-AS drives CRC cells migration and invasion and liver metastasis both in vitro and in vivo. Moreover, BACE1-AS maintains the stemness-like properties of CRC cells. Mechanically, BACE1-AS promoted TUFT1 expression by ceRNA network through miR-214-3p. CRC patients with such ceRNA network suffer poorer prognosis than ceRNA-negative patients. Depletion of TUFT1 mimics BACE1-AS loss. BACE1-AS activated Wnt signaling pathway in a TUFT1 dependent manner. BACE1-AS/miR-214-3p/TUFT1/Wnt signaling regulatory axis is essential for CRC liver metastasis. Pharmacologic inhibition of Wnt signaling pathway repressed liver metastasis and stemness-like features in BACE1-AS over-expressed CRC cells. CONCLUSION: Our study demonstrated BACE1-AS as a novel target of IGF2BP2 through m6A modification. m6A modified BACE1-AS promotes CRC liver metastasis through TUFT1 dependent activation of Wnt signaling pathway. Thus, targeting BACE1-AS and its downstream Wnt signaling pathways may provide a new opportunity for metastatic CRC intervention and treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide , Neoplasias Colorretais , Proteínas do Esmalte Dentário , Neoplasias Hepáticas , RNA Antissenso , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Via de Sinalização Wnt , RNA Antissenso/metabolismo , Ácido Aspártico Endopeptidases/genética , Secretases da Proteína Precursora do Amiloide/genética , Neoplasias Hepáticas/secundário , Linhagem Celular Tumoral , Adenosina/análogos & derivados , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas do Esmalte Dentário/metabolismo
14.
Kaohsiung J Med Sci ; 38(12): 1155-1167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149758

RESUMO

Pancreatic cancer (PC) is a common malignant cancer characterized by high mortality and poor prognosis. LINC00690 was involved in the occurrence and progression of PC, but the underlying mechanisms require further investigation. The goal of this study was to figure out how LINC00960 mediates glycolysis in PC. LINC00960, miR-326-3p, and Tuftelin 1 (TUFT1) expression levels were detected in PC cell lines. LINC00960 and TUFT1 expression levels were increased in PC cells when compared with normal pancreatic cells, whereas miR-326-3p expression levels were decreased. The expression levels of LINC00690 affected glycolysis in PC, and inhibition of LINC00960 inhibited tumor growth in vivo. LINC00690 targeted and suppressed the expression of miR-326-3p. MiR-326-3p bound to TUFT1, and miR-326-3p inhibited AKT-mTOR pathway activation via TUFT1. In conclusion, the depletion of LINC00960 repressed cell proliferation and glycolysis in PC by mediating the miR-326-3p/TUFT1/AKT-mTOR axis. Thus, we present a novel mechanism underlying the progression of PC that suggests LINC00960 is a potential therapeutic target for this cancer.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , RNA Longo não Codificante/genética , Neoplasias Pancreáticas
15.
Reprod Sci ; 29(8): 2236-2250, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35075616

RESUMO

Most cervical cancer patients are prone to developing acquired cisplatin (DDP) resistance. Hsa_circ_0074269 (circ_0074269) plays a promoting role in cervical cancer, but whether circ_0074269 mediates cervical cancer resistance to DDP is unclear. Expression of circ_0074269 was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The half-maximal inhibitory concentration (IC50) value, viability, proliferation, colony formation, migration, and apoptosis of DDP-resistant cervical cancer cells were determined. The molecular mechanisms associated with circ_0074269 were predicted by bioinformatics analysis and confirmed by dual-luciferase reporter and RIP assays. Xenograft assay was conducted to validate the effect of circ_0074269 on DDP resistance in vivo. Exosomes were isolated by ultracentrifugation. Circ_0074269 was overexpressed in DDP-resistant cervical cancer samples and cells. Silencing of circ_0074269 elevated DDP sensitivity, repressed DDP-resistant cervical cancer cell proliferation, and induced DDP-resistant cervical cancer cell apoptosis in vivo and in vitro and curbed DDP-resistant cervical cancer cell migration in vitro. And circ_0074269 could regulate DDP resistance via regulating TUFT1 expression via sponging miR-485-5p. More strikingly, circ_0074269 was also overexpressed in exosomes from DDP-resistant cervical cancer cells, and circ_0074269 could be delivered via exosomes. Circ_0074269 facilitated DDP resistance via elevating TUFT1 expression via sponging miR-485-5p, proving novel evidence to offer circ_0074269 as a target for cervical cancer treatment.


Assuntos
Cisplatino , Proteínas do Esmalte Dentário , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , RNA Circular , Neoplasias do Colo do Útero , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Proteínas do Esmalte Dentário/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , MicroRNAs/genética , RNA Circular/genética , Regulação para Cima , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética
16.
Int J Biol Sci ; 16(13): 2296-2305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760198

RESUMO

Hepatocellular carcinoma (HCC), one of the main causes of cancer-related deaths globally, is characterized by rapid growth and high invasiveness. Accumulating evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in the growth and metastasis of HCC. Recently, lncRNA LINC01123 has been found to contribute to cell proliferation and aerobic glycolysis in lung cancer. However, the function of LINC01123 in HCC, as well as the underlying mechanism of its action, remain unclear. Here, we found that the expression of LINC01123 was clearly upregulated in HCC tissues compared to nontumor tissues. Furthermore, expression of LINC01123 in HCC cells was significantly higher than in LO2 cells. Importantly, the upregulated level of LINC01123 was related to unfavorable clinical features and poor prognosis of HCC. Next, we demonstrated that LINC01123 knockdown suppressed the proliferation, migration and invasion of HCC cells in vitro. Depletion of LINC01123 inhibited HCC xenograft growth in vivo. Conversely, ectopic expression of LINC01123 facilitated HCC cell proliferation and invasion. Mechanistically, LINC01123 acted as a molecular sponge for miR-34a-5p in HCC cells. Tuftelin1 (TUFT1) was identified as the target gene of miR-34a-5p. LINC01123 positively regulated TUFT1 level by targeting of miR-34a-5p in HCC cells. Notably, TUFT1 restoration can abolish miR-34a-5p-induced inhibitory effects on HCC cell proliferation, migration and invasion. In conclusion, LINC01123 was overexpressed in HCC and accelerated cancer cell proliferation and invasion by regulating the miR-34a-5p/TUFT1 axis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas do Esmalte Dentário/genética , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
17.
J Mol Neurosci ; 68(1): 135-143, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30903486

RESUMO

Nerve growth factor (NGF) promotes pleiotropic gene transcription-dependent biological effects, in neuronal and non-neuronal cells, including survival, proliferation, differentiation, neuroprotection, pain, and angiogenesis. It is hypothesized that during odontogenesis, NGF may be implicated in morphogenetic and mineralization events by affecting proliferation and/or differentiation of dental cells. Tuftelin belongs to the enamel associated teeth proteins and is thought to play a role in enamel mineralization. We previously reported that tuftelin transcript and protein, which are ubiquitously expressed in various tissues of embryos, adults, and tumors, were significantly upregulated during NGF-induced PC12 differentiation. To further confirm the involvement of tuftelin in the differentiation process, we established a tuftelin-knockdown neuronal PC12 cell model, using a non-cytotoxic siRNA directed towards sequences at the 3' UTR of the tuftelin gene. Using real-time PCR, we quantified tuftelin mRNA expression and found that tuftelin siRNA, but not scrambled siRNA or transfection reagents, efficiently depleted about 60% of NGF-induced tuftelin mRNA transcripts. The effect of tuftelin siRNA was quantified up to 6 days of NGF-induced differentiation. Using immunofluorescence and western blot analyses, we also found a direct correlation between reduction of 60-80% in tuftelin protein expression and inhibition of about 50-70% in NGF-induced differentiation of the cells, as was detected after 3-6 days of treatment. These results demonstrate an important role for tuftelin in NGF-induced differentiation of PC12 cells. Tuftelin could be a useful target for drug development in disease where neurotrophin therapy is required.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Neurogênese/genética , Animais , Proteínas do Esmalte Dentário/genética , Fator de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Células PC12 , Ratos
18.
Front Oncol ; 9: 617, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338333

RESUMO

Objectives: Triple negative breast cancer (TNBC) is a subtype of breast cancer with stronger invasion and metastasis, but its specific mechanism of action is still unclear. Tuft1 plays an important regulatory role in the survival of breast cancer cells; however, its role in regulating TNBC metastatic potential has not been well-characterized. Our aim was therefore to systematically study the mechanism of TUFT1 in the metastasis, stemness, and chemoresistance of TNBC and provide new predictors and targets for BC treatment. Methods: We used western blotting and IHC to measure TUFT1and Rac1-GTP expression levels in both human BC samples and cell lines. A combination of shRNA, migration/invasion assays, sphere formation assay, apoptosis assays, nude mouse xenograft tumor model, and GTP activity assays was used for further mechanistic studies. Results: We demonstrated that silencing TUFT1 in TNBC cells significantly inhibited cell metastasis and stemness in vitro. A nude mouse xenograft tumor model revealed that TUFT1 knockdown greatly decreased spontaneous lung metastasis of TNBC tumors. Mechanism studies showed that TUFT1 promoted tumor cell metastasis and stemness by up-regulating the Rac1/ß-catenin pathway. Moreover, mechanistic studies indicated that the lack of TUFT1 expression in TNBC cells conferred more sensitive to chemotherapy and increased cell apoptosis via down-regulating the Rac1/ß-catenin signaling pathway. Further, TUFT1 expression positively correlated with Rac1-GTP in TNBC samples, and co-expression of TUFT1 and Rac1-GTP predicted poor prognosis in TNBC patients who treated with chemotherapy. Conclusion: Our findings suggest that TUFT1/Rac1/ß-catenin pathway may provide a potential target for more effective treatment of TNBC.

19.
Am J Transl Res ; 10(12): 4376-4384, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662679

RESUMO

In this study, we aimed to investigate the biological functions of Tuftelin 1 (Tuft1) in thyroid carcinoma (TC) and determine its underlying molecular mechanism. We found that the expression of Tuft1 was significantly upregulated in TC tissues. Using TC tissue microarrays (n = 154), we found that Tuft1 expression was closely related with the overall survival (OS) and disease-free survival (DFS) of TC patients. Knockdown of Tuft1 in TPC-1 and SW579 cells suppressed the invasion and proliferation of TC cells and increased the apoptosis of TC cells. In vivo, knockdown of Tuft1 attenuated tumor growth and suppressed the phosphorylation of Akt, mTOR, and GSK3ß signaling. Addition of recombinant Tuft1 protein (rTuft1) to TC cells increased the phosphorylation of Akt, mTOR, and GSK3ß signaling. An mTOR inhibitor (Dactolisib) abrogated rTuft1 protein-induced TC cell invasion, proliferation, and apoptosis inhibition, whereas a GSK3ß inhibitor (CHIR-98014) only abrogated rTuft1 protein-induced proliferation and apoptosis inhibition. These results suggest that Tuft1 promotes TC cell invasion and proliferation, and suppresses apoptosis through the Akt-mTOR or Akt-GSK3ß signaling pathway. In the future, Tuft1 may serve as a potential therapeutic target for TC.

20.
Oncotarget ; 8(43): 74962-74974, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088838

RESUMO

Tuftelin 1 (TUFT1), which plays an important role in the initial stages of the mineralization of ectodermal enamel, is widely expressed in different embryonic and adult tissues and some tumor cells. However, since the roles of this gene have not been thoroughly investigated in tumors, its function in the development of breast cancer remains unclear. We proved both human specimens studies and cell line studies, that TUFT1 expression levels are increased in breast cancer samples, and the increased expression of TUFT1 was shown to be positively correlated with tumor size, histological grade, lymph node metastasis rate, and poor prognosis. Further in vitro studies showed that the inhibition of TUFT1 expression in T-47D and MDA-MB-231 breast cancer cells significantly affected cell proliferation, induced apoptosis, and led to G1-phase cell cycle arrest. Moreover, reduced TUFT1 expression restrained tumor growth compared with the control group in vivo. Furthermore, microarray and pathway analysis demonstrated that TUFT1 inhibition led to significant changes of several signaling pathways and semi-quantitative western blot analysis showed that a decrease in TUFT1 expression was accompanied by changes in MAPK signaling pathway components. The obtained results suggest that TUFT1 may represent a novel breast cancer marker and a potentially effective therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA