Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.504
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 2, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200466

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative cleavage of different types of polysaccharides have potential to be used in various industries. However, AA13 family LPMOs which specifically catalyze starch substrates have relatively less members than AA9 and AA10 families to limit their application range. Amylase has been used in enzymatic desizing treatment of cotton fabric for semicentury which urgently need for new assistant enzymes to improve reaction efficiency and reduce cost so as to promote their application in the textile industry. RESULTS: A total of 380 unannotated new genes which probably encode AA13 family LPMOs were discovered by the Hidden Markov model scanning in this study. Ten of them have been successfully heterologous overexpressed. AlLPMO13 with the highest activity has been purified and determined its optimum pH and temperature as pH 5.0 and 50 °C. It also showed various oxidative activities on different substrates (modified corn starch > amylose > amylopectin > corn starch). The results of enzymatic textile desizing application showed that the best combination of amylase (5 g/L), AlLPMO13 (5 mg/L), and H2O2 (3 g/L) made the desizing level and the capillary effects increased by 3 grades and more than 20%, respectively, compared with the results treated by only amylase. CONCLUSION: The Hidden Markov model constructed basing on 34 AA13 family LPMOs was proved to be a valid bioinformatics tool for discovering novel starch-active LPMOs. The novel enzyme AlLPMO13 has strong development potential in the enzymatic textile industry both concerning on economy and on application effect.


Assuntos
Peróxido de Hidrogênio , Amido , Humanos , Polissacarídeos , Amilases , Biologia Computacional , Oxigenases de Função Mista/genética , Têxteis
2.
Small ; 20(33): e2310032, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38566533

RESUMO

Wearable pressure sensors have attracted great interest due to their potential applications in healthcare monitoring and human-machine interaction. However, it is still a critical challenge to simultaneously achieve high sensitivity, low detection limit, fast response, and outstanding breathability for wearable electronics due to the difficulty in constructing microstructure on a porous substrate. Inspired by the spinosum microstructure of human skin for highly-sensitive tactile perception, a biomimetic flexible pressure sensor is designed and fabricated by assembling MXene-based sensing electrode and MXene-based interdigitated electrode. The product biomimetic sensor exhibits good flexibility and suitable air permeability (165.6 mm s-1), comparable to the typical air permeable garments. Benefiting from the two-stage amplification effect of the bionic intermittent structure, the product bionic sensor exhibits an ultrahigh sensitivity (1368.9 kPa-1), ultrafast response (20 ms), low detection limit (1 Pa), and high-linearity response (R2 = 0.997) across the entire sensing range. Moreover, the pressure sensor can detect a wide range of human motion in real-time through intimate skin contact, providing essential data for biomedical monitoring and personal medical diagnosis. This principle lays a foundation for the development of human skin-like high-sensitivity, fast-response tactile sensors.


Assuntos
Pressão , Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Eletrônica , Eletrodos
3.
Small ; 20(15): e2308194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009488

RESUMO

Passive heating textiles (PHTs) have drawn increasing attention due to the advantages of energy-conservation heating. However, the heating capabilities of current PHTs are typically static and non-tunable, presenting poor adaptation to dynamic winter. Herein, a novel Janus textile with tunable heating modes is developed by constructing a customized structure with asymmetric optical properties. This Janus textile is created by coating one side of a cotton fabric with silver nanowires (AgNWs) and then applying transition metal carbides/nitrides (MXene) to the other side. The MXene side exhibits high solar absorptivity and low mid-infrared emissivity, while the AgNWs side has moderate solar absorptivity and mid-infrared emissivity. This structure ensures that the solar and radiative heating temperatures of the MXene side are 16 °C and 1.7 °C higher than those of the AgNWs side. This distinction allows for on-demand, accurate adjustments in solar and radiative heating capabilities by flipping the textile according to ambient temperature. Furthermore, this innovative design also features desired electric heating, thermal camouflage, self-cleaning and antibacterial properties, electromagnetic interference shielding, durability, and wearability. The Janus textile enables precise thermoregulation of the human body to adapt to variable cold weather, making it essential for optimal personal thermal management and climate change mitigation.

4.
Small ; 20(23): e2308404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148325

RESUMO

Whereas thermal comfort and healthcare management during long-term wear are essentially required for wearable system, simultaneously achieving them remains challenge. Herein, a highly comfortable and breathable smart textile for personal healthcare and thermal management is developed, via assembling stimuli-responsive core-sheath dual network that silver nanowires(AgNWs) core interlocked graphene sheath induced by MXene. Small MXene nanosheets with abundant groups is proposed as a novel "dispersant" to graphene according to "like dissolves like" theory, while simultaneously acting as "cross-linker" between AgNWs and graphene networks by filling the voids between them. The core-sheath heterogeneous interlocked conductive fiber induced by MXene "cross-linking" exhibits a reliable response to various mechanical/electrical/light stimuli, even under large mechanical deformations(100%). The core-sheath conductive fiber-enabled smart textile can adapt to movements of human body seamlessly, and convert these mechanical deformations into character signals for accurate healthcare monitoring with rapid response(440 ms). Moreover, smart textile with excellent Joule heating and photothermal effect exhibits instant thermal energy harvesting/storage during the stimuli-response process, which can be developed as self-powered thermal management and dynamic camouflage when integrated with phase change and thermochromic layer. The smart fibers/textiles with core-sheath heterogeneous interlocked structures hold great promise in personalized healthcare and thermal management.


Assuntos
Condutividade Elétrica , Têxteis , Humanos , Nanofios/química , Prata/química , Medicina de Precisão/métodos , Dispositivos Eletrônicos Vestíveis , Temperatura , Grafite/química
5.
Small ; : e2403249, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934358

RESUMO

Sweat passive-cooling textiles with asymmetric wettabilities on different sides offer an effective and low-energy consumption solution to personal thermal management in extreme thermal environments. However, the sweat-wicking and the cooling abilities decrease when the textile is contaminated by low-surface tension oily liquid fouling. The integration of anti-oily liquid fouling and sweat-wicking abilities on textile involves resolving the contradiction between hydrophilic and oleophobic properties and seeking eco-friendly short-chain fluorides to reduce the surface energy. Herein, a sustainable oily liquid-proof passive cooling (SOC) textile for personal thermal management is proposed. The SOC textile is obtained by applying a fluoride-free hydrophobic coating layer to one side of the high thermal conductive superoleophobic/superhydrophilic basal textile, which is fabricated using eco-friendly short-chain fluoride. The SOC textile preserves the anti-oily liquid fouling property even after 2000 abrasion cycles. Experimental test revealed that the SOC textile exhibits a cooling effect of ≈5 °C compared with the cotton textile, and the up to 70% reduction in sweating rate under the constant metabolic heat production rates. The configuration of the SOC textile would inspire the future design of intelligent textiles for personal thermal management, and the proposed strategy have implications for fabrication of eco-friendly oil-water separation materials.

6.
Electrophoresis ; 45(13-14): 1182-1197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837242

RESUMO

Electric field-driven microfluidics, known as electrofluidics, is a novel attractive analytical tool when it is integrated with low-cost textile substrate. Textile-based electrofluidics, primarily explored on yarn substrates, is in its early stages, with few studies on 3D structures. Further, textile structures have rarely been used in cellular analysis as a low-cost alternative. Herein, we investigated novel 3D textile structures and develop optimal electrophoretic designs and conditions that are favourable for direct 3D cell culture integration, developing an integrated cell culture textile-based electrofluidic platform that was optimised to balance electrokinetic performance and cell viability requirements. Significantly, there were contrasting electrolyte compositional conditions that were required to satisfy cell viability and electrophoretic mobility requiring the development of and electrolyte that satisfied the minimum requirements of both these components within the one platform. Human dermal fibroblast cell cultures were successfully integrated with gelatine methacryloyl (GelMA) hydrogel-coated electrofluidic platform and studied under different electric fields using 5 mM TRIS/HEPES/300 mM glucose. Higher analyte mobility was observed on 2.5% GelMA-coated textile which also facilitated excellent cell attachment, viability and proliferation. Cell viability also increased by decreasing the magnitude and time duration of applied electric field with good cell viability at field of up to 20 V cm-1.


Assuntos
Técnicas de Cultura de Células , Sobrevivência Celular , Fibroblastos , Técnicas Analíticas Microfluídicas , Têxteis , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Fibroblastos/citologia , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Células Cultivadas
7.
Electrophoresis ; 45(13-14): 1171-1181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837441

RESUMO

The integration of microfluidics with electric field control, commonly referred to as electrofluidics, has led to new opportunities for biomedical analysis. The requirement for closed microcapillary channels in microfluidics, typically formed via complex microlithographic fabrication approaches, limits the direct accessibility to the separation processes during conventional electrofluidic devices. Textile structures provide an alternative and low-cost approach to overcome these limitations via providing open and surface-accessible capillary channels. Herein, we investigate the potential of different 3D textile structures for electrofluidics. In this study, 12 polyester yarns were braided around nylon monofilament cores of different diameters to produce functional 3D core-shell textile structures. Capillary electrophoresis performances of these 3D core-shell textile structures both before and after removing the nylon core were evaluated in terms of mobility and bandwidth of a fluorescence marker compound. It was shown that the fibre arrangement and density govern the inherent capillary formation within these textile structures which also impacts upon the solute analyte mobility and separation bandwidth during electrophoretic studies. Core-shell textile structures with a 0.47 mm nylon core exhibited the highest fluorescein mobility and presented a narrower separation bandwidth. This optimal textile structure was readily converted to different geometries via a simple heat-setting of the central nylon core. This approach can be used to fabricate an array of miniaturized devices that possess many of the basic functionalities required in electrofluidics while maintaining open surface access that is otherwise impractical in classical approaches.


Assuntos
Eletroforese Capilar , Têxteis , Têxteis/análise , Eletroforese Capilar/métodos , Eletroforese Capilar/instrumentação , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Nylons/química
8.
Biotechnol Bioeng ; 121(9): 2820-2832, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38859566

RESUMO

The widespread adoption of fast fashion has led to a significant waste problem associated with discarded textiles. Using proteins to color textiles can serve as a sustainable alternative to chemical dyes as well as reduce the demand for new raw materials. Here, we explore the use of chromogenic fusion proteins, consisting of a chromoprotein and a carbohydrate-binding module (CBM), as coloring agents for cellulose-based textiles such as cotton. We examined the color properties of chromoproteins AeBlue, SpisPink and Ultramarine alone and fused to CBM under various conditions. AeBlue, SpisPink and Ultramarine exhibited visible color between pH 4-9 and temperatures ranging from 4 to 45℃. Fusing CBM Clos from Clostridium thermocellum and CBM Ch2 from Trichoderma reesei to the chromoproteins had no effect on the chromoprotein color properties. Furthermore, binding assays showed that chromoprotein fusions did not affect binding of CBMs to cellulosic materials. Cotton samples bound with Ultramarine-Clos exhibited visible purple color that faded progressively over time as the samples dried. Applying 10% 8000 polyethylene glycol to cotton samples markedly preserved the color over extended periods. Overall, this work highlights the potential of chromoprotein-CBM fusions for textile dying which could be applied as a color maintenance technology or for reversible coloring of textiles for events or work wear, contributing to sustainable practices and introducing new creative opportunities for the industry.


Assuntos
Corantes , Proteínas Recombinantes de Fusão , Têxteis , Corantes/química , Corantes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Clostridium thermocellum/química , Celulose/química , Celulose/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
9.
Chem Rec ; 24(3): e202300361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362667

RESUMO

Smart textile fabrics have been widely investigated and used in flexible wearable electronics because of their unique structure, flexibility and breathability, which are highly desirable with integrated multifunctionality. Recent years have witnessed the rapid development of textile fiber-based flexible wearable devices. However, the pristine textile fibers still can't meet the high standards for practical flexible wearable devices, which calls for the development of some effective modification strategies. In this review, we summarize the recent advances in the flexible wearable devices based on the textile fibers, putting special emphasis on the design and modifications of textile fibers. In addition, the applications of textile fibers in various fields and the critical role of textile fibers are also systematically discussed, which include the supercapacitors, sensors, triboelectric nanogenerators, thermoelectrics, and other self-powered electronic devices. Finally, the main challenges that should be overcome and some effective solutions are also manifested, which will guide the future development of more effective textile fiber-based flexible wearable devices.

10.
Malar J ; 23(1): 277, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267082

RESUMO

BACKGROUND: A quasi-experimental comparative trial will be designed in Burkina Faso. The study will compare the use and preferences for two groups types of insecticide-treated nets textile: polyester-based and polyethylene-based, according to their use and preferences in selected health districts. These health districts will be selected in three eco-climate zones (Sahelian, dry savannah and wet savannah) in the country. These findings will inform decisions on future net procurements for national malaria control programme in 2025. METHODS: Quantitative surveys and qualitative data collection will be carried out to gather information on the type of net textile most commonly used and preferred by the community. They will be performed between the end of the dry season and the early rainy season. The quantitative surveys involved household interviews with households and individuals' questionnaires, while the qualitative data collection involved in-depth individual interviews and focus group discussions to explore and clarify some key evaluation criteria. A total of 9450 insecticide-treated nets were surveyed for quantitative survey purposes. For the qualitative study, 48 in-depth individual interviews and 12 focus group discussions were carried out. A mixed model approach combining the results from quantitative surveys and qualitative studies will be used for decision-making on the type of insecticide-treated net preference. CONCLUSION: This methodological approach will be used by the National Malaria Control Programme to conduct this study on determinants of net use in Burkina Faso in order to provide robust evidence across diverse settings. This mixed-methods approach for data collection and analysis could be used in other countries to provide evidence that would help to increase the uptake of insecticide-treated nets, the main vector control tool in Africa.


Assuntos
Características da Família , Mosquiteiros Tratados com Inseticida , Malária , Controle de Mosquitos , Burkina Faso , Malária/prevenção & controle , Humanos , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Polietileno , Poliésteres , Tomada de Decisões , Têxteis , Inquéritos e Questionários
11.
Microb Cell Fact ; 23(1): 106, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600576

RESUMO

BACKGROUND: The textile industry has several negative impacts, mainly because it is based on a linear business model that depletes natural resources and produces excessive amounts of waste. Globally, about 75% of textile waste is disposed of in landfills and only 25% is reused or recycled, while less than 1% is recycled back into new garments. In this study, we explored the valorisation of cotton fabric waste from an apparel textile manufacturing company as valuable biomass to produce lactic acid, a versatile chemical building block. RESULTS: Post-industrial cotton patches were pre-treated with the aim of developing a methodology applicable to the industrial site involved. First, a mechanical shredding machine reduced the fabric into individual fibres of maximum 35 mm in length. Afterwards, an alkaline treatment was performed, using NaOH at different concentrations, including a 16% (w/v) NaOH enriched waste stream from the mercerisation of cotton fabrics. The combination of chemo-mechanical pre-treatment and enzymatic hydrolysis led to the maximum recovery yield of 90.46 ± 3.46%, corresponding to 74.96 ± 2.76 g/L of glucose released, which represents a novel valorisation of two different side products (NaOH enriched wastewater and cotton textile waste) of the textile industry. The Saccharomyces cerevisiae strain CEN.PK m850, engineered for redirecting the natural alcoholic fermentation towards a homolactic fermentation, was then used to valorise the glucose-enriched hydrolysate into lactic acid. Overall, the process produced 53.04 g/L ± 0.34 of L-lactic acid, with a yield of 82.7%, being the first example of second-generation biomass valorised with this yeast strain, to the best of our knowledge. Remarkably, the fermentation performances were comparable with the ones obtained in the control medium. CONCLUSION: This study validates the exploitation of cotton post-industrial waste as a possible feedstock for the production of commodity chemicals in microbial cell-based biorefineries. The presented strategy demonstrates the possibility of implementing a circular bioeconomy approach in manufacturing textile industries.


Assuntos
Resíduos Industriais , Saccharomyces cerevisiae , Fermentação , Ácido Láctico , Hidrólise , Hidróxido de Sódio , Têxteis , Glucose
12.
Environ Sci Technol ; 58(9): 4031-4045, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381002

RESUMO

The absence of standardized procedures to assess microfiber pollution released during laundering, alongside textile complexities, has caused incomparability and inconsistency between published methodologies, data formats, and presentation of findings. Yet, this information needs to be clear and succinct to engage producers and consumers in reducing microfiber pollution through solutions, such as eco-design. This review analyses source directed interventions through design and manufacturing parameters that can prevent or reduce microfiber shedding from knit fabrics during washing. Contradicting results are critically evaluated and future research agendas, alongside potential areas for voluntary and involuntary sustainable incentives are summarized. To do this, a systematic review was carried out, using the PRISMA approach to verify which fabrics had been investigated in terms of microfiber shedding. Using selected keywords, a total number of 32 articles were included in this review after applying carefully developed inclusion and exclusion criteria. The influence of fabric parameters such as fiber polymer, length of fibers and yarn twist alongside fabric construction parameters such as gauge of knit and knit structure are critically evaluated within the systematically selected studies. This review highlights the agreed upon fabric parameters and constructions that can be implemented to reduce microfiber pollution released from knit textiles. The complexities and inconsistencies within the findings are streamlined to highlight the necessary future research agendas. This information is critical to facilitate the adoption of cross-industry collaboration to achieve pollution reduction strategies and policies. We call for more systematic studies to assess the relationship between individual textile parameters and their influence on microfiber shedding. Additionally, studies should work toward standardization to increase comparability between studies and created more comprehensive guidelines for policy development and voluntary actions for the textile and apparel industry to participate in addressing more sustainable practises through eco-design.


Assuntos
Lavanderia , Plásticos , Têxteis , Poliésteres/química , Poluição Ambiental
13.
Environ Sci Technol ; 58(40): 17970-17978, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39324330

RESUMO

Textile printing and dyeing wastewater is a substantial source of highly toxic halogenated pollutants because of the chlorination decolorization. However, information on the occurrence and fate of the highly toxic halogenated byproducts, which are produced by chlorination decolorization of the textile printing and dyeing wastewater, is very limited. In this study, the occurrence of six categories of halogenated byproducts (haloacetic acids (HAAs), haloacetonitriles (HANs), N-nitrosamines (NAs), trihalomethanes, halogenated ketones, and halonitromethanes) was investigated along the full-scale treatment processes of textile printing and dyeing wastewater treatment plants. Furthermore, the ecological risk of the halogenated byproducts was evaluated. The results showed that the total concentration of halogenated byproducts increased significantly after chlorination. Large amounts of HAAs (average 122.1 µg/L), HANs (average 80.9 µg/L), THMs (average 48.3 µg/L), and NAs (average 2314.3 ng/L) were found in the chlorinated textile wastewater, and the results showed that the generations of HANs and NAs were positively correlated with the BIX and ß/α index, indicating that the HANs and NAs might form from the microbial metabolites. In addition, HAAs and HANs exhibited high ecological risk quotients (>1), suggesting their high potential ecological risk. The results also demonstrated that most halogenated byproducts could be effectively removed by reverse osmosis treatment processes except NAs, with a lower removal rate of 18%. This study is believed to provide an important theoretical basis for controlling and reducing the ecological risks of halogenated byproducts in textile printing and dyeing wastewater effluents.


Assuntos
Halogenação , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/química , Medição de Risco , Indústria Têxtil , Impressão , Corantes/química , Têxteis
14.
Macromol Rapid Commun ; : e2400536, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254587

RESUMO

The rising awareness of fire safety among consumers has driven the demand for fire retardants (FRs) that are both cost-effective and efficient across various industries, particularly in textiles. Traditional FRs often compromise fabric softness, resulting in undesirable tactile texture and stiffness changes. While the external addition of softeners can mitigate the stiffness, it may introduce issues such as a greasy texture and increased flammability. This study introduces ethanolamine polyphosphate (EAPP), an innovative organic polyphosphate, as an effective fire retardant that preserves the softness of textiles. Comprehensive evaluations are conducted on EAPP-treated textiles, revealing significant improvements in fire retardancy without compromising fabric quality. EAPP treatment (15 wt.% aqueous solutions) increases the limiting oxygen index (LOI) of pure cotton textiles from 17% to 36% and significantly reduces the peak heat release rate (pHRR) and total smoke rate (TSR) as measured by cone calorimetry. Unlike conventional FR products that form FR-salt crystal particles on the fabric surface after drying, EAPP forms a smooth FR protective layer on the fabric, enhancing mechanical fastness and maintaining tactile qualities. These findings highlight EAPP's potential as a non-washing durable, spray-on fire retardant solution for textiles, combining safety with user comfort.

15.
Biomed Eng Online ; 23(1): 51, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835079

RESUMO

BACKGROUND: Functional electrical stimulation (FES) is a rehabilitation technique that enables functional improvements in patients with motor control impairments. This study presents an original design and prototyping method for a smart sleeve for FES applications. The article explains how to integrate a carbon-based dry electrode into a textile structure and ensure an electrical connection between the electrodes and the stimulator for effective delivery of the FES. It also describes the materials and the step-by-step manufacturing processes. RESULTS: The carbon-based dry electrode is integrated into the textile substrate by a thermal compression molding process on an embroidered conductive matrix. This matrix is composed of textile silver-plated conductive yarns and is linked to the stimulator. Besides ensuring the electrical connection, the matrix improves the fixation between the textile substrate and the electrode. The stimulation intensity, the perceived comfort and the muscle torque generated by the smart FES sleeve were compared to hydrogel electrodes. The results show a better average comfort and a higher average stimulation intensity with the smart FES sleeve, while there were no significant differences for the muscle torque generated. CONCLUSIONS: The integration of the proposed dry electrodes into a textile is a viable solution. The wearable FES system does not negatively impact the electrodes' performance, and tends to improve it. Additionally, the proposed prototyping method is applicable to an entire garment in order to target all muscles. Moreover, the process is feasible for industrial production and commercialization since all materials and processes used are already available on the market.


Assuntos
Eletrodos , Têxteis , Humanos , Estimulação Elétrica/instrumentação , Desenho de Equipamento , Masculino , Adulto , Condutividade Elétrica , Carbono/química , Torque
16.
Environ Res ; 241: 117628, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956756

RESUMO

In this study, phycoremediation of textile wastewater (TWW) by freshwater cyanobacterial strains such as sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was evaluated, and lipids were simultaneously extracted from biomass for biodiesel production. Onset of the study, Phormidium sp. and Oscillatoria sp. F01 has better growth rates, increased biomass production, high chlorophyll content, and efficient nutrient utilization in TWW compared to Oscillatoria sp. F02. Phormidium sp. showed 1.41 g/L dry weight, followed by Oscillatoria sp. F01 with 1.39 g/L and Oscillatoria sp. F02 with 1.02 g/L biomass. Both strains demonstrated their capability to elevate the pH level while reducing TDS and eliminating/reducing several nutrients such as nitrates, nitrites, phosphates, sulphates, sulphides, chlorides, calcium, sodium, and magnesium. Further, the total lipids extracted from the TWW-grown Phormidium sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was estimated to be 8.20, 13.70 and 11.20 %, respectively, on day 21, which was higher than the lipid content obtained from control cultures. Further, biodiesel produced from the lipids of all strains showed higher levels of C12:0, C16:0, C16:1, C18:1, C18:2, and C18:3 among all the fatty acids. Therefore, they can potentially offer a valuable source of lipids and diverse fatty acids for high-quality biodiesel production. This integrated system not only offers a solution for TWW treatment but also provides a feedstock for renewable fuel production simultaneously.


Assuntos
Cianobactérias , Microalgas , Oscillatoria , Águas Residuárias , Phormidium , Biocombustíveis/microbiologia , Biomassa , Ácidos Graxos , Nutrientes
17.
Environ Res ; 249: 118398, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331155

RESUMO

One of the common causes of water pollution is the presence of toxic dye-based effluents, which can pose a serious threat to the ecosystem and human health. The application of Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization has been widely investigated due to their efficient removal and eco-friendly treatments. This review attempts to create an awareness of different forms and methods of using Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization through a systematic approach. Overall, some suggestions on classification of dyes and related environmental/health problems, and treatment methods are discussed. Besides, the mechanisms of dye removal by S. cerevisiae including biosorption, bioaccumulation, and biodegradation and cell immobilization methods such as adsorption, covalent binding, encapsulation, entrapment, and self-aggregation are discussed. This review would help to inspire the exploration of more creative methods for applications and modification of S. cerevisiae and its further practical applications.


Assuntos
Biodegradação Ambiental , Corantes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Corantes/metabolismo , Corantes/química , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Descoloração da Água/métodos
18.
Environ Res ; 255: 119089, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788787

RESUMO

Water pollution due to dyes in the textile industry is a serious environmental problem. During the finishing stage, Congo red (CR) dye, water-soluble, is released into wastewater, polluting the water body. This study explores the effectiveness of utilizing a composite composed of Safi raw clay and chitosan to remove an anionic dye from synthetic wastewater. The chitosan was extracted from crab shells. Its removal performance was compared to that of natural clay. Both the composite and raw clay were used to remove target pollutant. The effects of the chitosan load in the composite, size particles, initial dye concentration, contact time, pH, and temperature on the dye's elimination were tested in batch modes. The composite with 30% (w/w) of chitosan exhibited the highest dye removal. At pH 2, an adsorption capacity of 84.74 mg/g was achieved, indicating that the grafting of the polymer onto clay surface enhances its efficacity and stability in acidic environments. This finding was supported by characterization data obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) analyses. Under optimized conditions of 20 mg dose, pH 2, 30 min of reaction time, and 20 mg/L of dye concentration, about 92% of dye removal was achieved. The Langmuir isotherm model represents dye adsorption by the composite, while dye removal was controlled by pseudo-second-order model. Thermodynamic data of the adsorption (ΔH = +8.82 kJ/mol; ΔG <0) suggested that the dye adsorption was spontaneous and endothermic. The findings provide insights into the dye elimination by the adsorbent, indicating that the removal occurred via attractive colombic forces, as confirmed by density functional theory (DFT) analysis. Overall, the composite of natural clays and chitosan waste is a promising and innovative adsorbent for treating wastewater containing recalcitrant dyes.


Assuntos
Quitosana , Argila , Corantes , Vermelho Congo , Poluentes Químicos da Água , Vermelho Congo/química , Quitosana/química , Argila/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Corantes/química , Adsorção , Águas Residuárias/química , Purificação da Água/métodos , Silicatos de Alumínio/química , Concentração de Íons de Hidrogênio
19.
Environ Res ; 259: 119569, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972343

RESUMO

Textile industries contribute to water pollution through synthetic dye discharge. This study explores the use of natural bio-coagulants to remove acid dyes from wastewater, investigating factors like pH, coagulant dose, dye concentration, contact time, and temperature for optimal results. The optimum pH and coagulants capabilities of (CAAPP, CAAPH, CBAGL, CBAPP and CBAPH) were 3 (49.6 mg/g), 3 (42.5 mg/g), 3 (38.9 mg/g), 4 (35.7 mg/g), 4 (34.1 mg/g), and 4 (29.4 mg/g) respectively, while treating of selected BRF-221 dyes from water solution. The acidic range (3-4) was found to have the best pH for the maximal coagulation, and the optimal dose were found to be 0.05 g/50 mL. The equilibrium was attained within 45-60 min for all coagulants. After 60 min of shaking, the maximum coagulation capacities (21.9, 21.02, 16.5, 27.9, 25.3, and 23.4 mg/g) of several coagulant composites (CAAGL, CAAPP, CAAPH, CBAGL, CBAPP, CBAPH) were determined. The initial BRF-221 dye concentration in the range of 10-200 mg/L was considered as optimum for gaiting maximum elimination of dye using different coagulants. At a dye value of 100 mg/L of BRF-221, maximal coagulation capacities CAAGL (179.19 mg/g), CAAPP (166.06 mg/g), CAAPH (141.60 mg/g), and CBAGL (126.49 mg/g), CBAPP (113.9 mg/g), CBAPH (93.08 mg/g) were attained. The study found 35 °C to be the optimal temperature for maximum acid dye removal using bio-coagulants. Increasing temperature reduced coagulation capacity, indicating an exothermic process. Freundlich and Langmuir isotherms showed suitability for pseudo-first-order and pseudo-second-order kinetics in biosorption. Thermodynamic parameters were assessed for process feasibility. Effective coagulants demonstrated sensitivity to electrolyte variations. In column studies, adjusting parameters achieved maximum coagulation efficiency for removing BRF-221 dyes. The study successfully applied optimal parameters to remove real textile effluents at a practical scale. SEM, FT-IR, BET and XRD characterized coagulants, providing insights into stability and morphology.


Assuntos
Compostos de Alúmen , Bentonita , Corantes , Poluentes Químicos da Água , Purificação da Água , Compostos de Alúmen/química , Bentonita/química , Poluentes Químicos da Água/química , Adsorção , Purificação da Água/métodos , Corantes/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Silicatos de Alumínio/química , Floculação , Argila/química
20.
Environ Res ; 245: 118041, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160973

RESUMO

In recent years, there has been a growing focus on treating textile wastewater due to its escalating threat to aquatic ecosystems and exposed communities. The present study investigates the adsorption efficacy of biopolymer functionalized nanoscale zero-valent iron (CS@nZVI) composite for the treatment of textile wastewater using the RSM-CCD model. The structure and morphology of CS@nZVI were characterized using XRD, FTIR, FESEM, and EDX. CS@nZVI was then evaluated for its adsorption potential in removing COD, color, and other physico-chemical parameters from textile wastewater. The results showed the high efficacy of CS@nZVI for COD and color removal from textile wastewater. Under optimal conditions (pH 6, contact time 60 min, and 1.84 g CS@nZVI), COD removal reached a maximum of 85.53%, and decolorization efficiency was found to be 89.73%. The coefficient of determination R2 (0.98) and AIC (269.75) values suggested quadratic model as the best-fitted model for optimizing the process parameters for COD removal. Additionally, the physico-chemical parameters were found to be within permissible limits after treatment with CS@nZVI. The influence of coexisting ions on COD removal followed the order PO43- > SO42- > Cl- >Na+ > Ca2+. The kinetics data fitted well with the pseudo-first-order reaction, indicating physisorption as the primary mechanism. The thermodynamic study revealed the endothermic nature of the removal process. Reusability tests demonstrated that great regeneration capacity of spent CS@nZVIafter five consecutive cycles. Furthermore, toxicological studies showed reduced toxicity in treated samples, leading to improved growth of Vigna radiata L. These findings suggest that CS@nZVI bionanocomposites could serve as an efficient, cost-effective, and eco-friendly remediation agent for the treatment of textile effluents, presenting significant prospects for commercial applications.


Assuntos
Quitosana , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Quitosana/química , Ecossistema , Poluentes Químicos da Água/análise , Têxteis , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA