Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Anat ; 244(1): 75-95, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37559440

RESUMO

Trabecular bone architecture in the developing skeleton is a widely researched area of bone biomechanics; however, despite its significance in weight-bearing locomotion, the developing talus has received limited examination. This study investigates the talus with the purpose of identifying ontogenetic phases and developmental patterns that contribute to the growing understanding of the developing juvenile skeleton. Colour gradient mapping and radiographic absorptiometry were utilised to investigate 62 human tali from 38 individuals, ranging in age-at-death from 28 weeks intrauterine to 20 years of age. The perinatal talus exhibited a rudimentary pattern comparable to the structural organisation observed within the late adolescent talus. This early internal organisation is hypothesised to be related to the vascular pattern of the talus. After 2 years of age, the talus demonstrated refinement, where radiographic trajectories progressively developed into patterns consistent with adult trabecular organisation, which are linked to the forces associated with the bipedal gait, suggesting a strong influence of biomechanical forces on the development of the talus.


Assuntos
Tálus , Adulto , Adolescente , Humanos , Tálus/diagnóstico por imagem , Locomoção , Absorciometria de Fóton , Marcha , Fenômenos Biomecânicos
2.
Adv Exp Med Biol ; 1441: 77-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884705

RESUMO

The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, and conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects (CHDs).


Assuntos
Modelos Animais de Doenças , Cardiopatias Congênitas , Coração , Animais , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/patologia , Coração/embriologia , Coração/fisiopatologia , Coração/crescimento & desenvolvimento , Humanos , Camundongos , Morfogênese
3.
Dev Dyn ; 252(2): 247-262, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36057940

RESUMO

BACKGROUND: The developing zebrafish ventricle generates higher intraventricular pressure (IVP) with increasing stroke volume and cardiac output at different developmental stages to meet the metabolic demands of the rapidly growing embryo (Salehin et al. Ann Biomed Eng, 2021;49(9): 2080-2093). To understand the changing role of the developing embryonic heart, we studied its biomechanical characteristics during in vivo cardiac cycles. By combining changes in wall strains and IVP measurements, we assessed ventricular wall stiffness during diastolic filling and the ensuing systolic IVP-generation capacity during 3-, 4-, and 5-day post fertilization (dpf). We further examined the anisotropy of wall deformation, in different regions within the ventricle, throughout a complete cardiac cycle. RESULTS: We found the ventricular walls grow increasingly stiff during diastolic filling with a corresponding increase in IVP-generation capacity from 3- to 4- and 5-dpf groups. In addition, we found the corresponding increasing level of anisotropic wall deformation through cardiac cycles that favor the latitudinal direction, with the most pronounced found in the equatorial region of the ventricle. CONCLUSIONS: From 3- to 4- and 5-dpf groups, the ventricular wall myocardium undergoes increasing level of anisotropic deformation. This, in combination with the increasing wall stiffness and IVP-generation capacity, allows the developing heart to effectively pump blood to meet the rapidly growing embryo's needs.


Assuntos
Coração , Peixe-Zebra , Animais , Anisotropia , Ventrículos do Coração , Débito Cardíaco
4.
Am J Physiol Heart Circ Physiol ; 325(5): H1223-H1234, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712924

RESUMO

Isolated cardiac tissues allow a direct assessment of cardiac muscle function and enable precise control of experimental loading conditions. However, current experimental methods do not expose isolated tissues to the same contraction pattern and cardiovascular loads naturally experienced by the heart. In this study, we implement a computational model of systemic-pulmonary impedance that is solved in real time and imposed on contracting isolated rat muscle tissues. This systemic-pulmonary model represents the cardiovascular system as a lumped-parameter, closed-loop circuit. The tissues performed force-length work-loop contractions where the model output informed both the shortening and restretch phases of each work-loop. We compared the muscle mechanics and energetics associated with work-loops driven by the systemic-pulmonary model with that of a model-based loading method that only accounts for shortening. We obtained results that show simultaneous changes of afterload and preload or end-diastolic length of the muscle, as compared with the static, user-defined preload as in the conventional loading method. This feature allows assessment of muscle work output, heat output, and efficiency of contraction as functions of end-diastolic length. The results reveal the behavior of cardiac muscle as a pump source to achieve load-dependent work and efficiency outputs over a wider range of loads. This study offers potential applications of the model to investigate cardiac muscle response to hemodynamic coupling between systemic and pulmonary circulations in an in vitro setting.NEW & NOTEWORTHY We present the use of a "closed-loop" model of systemic and pulmonary circulations to apply, for the first time, real-time model-calculated preload and afterload to isolated cardiac muscle preparations. This method extends current experimental protocols where only afterload has been considered. The extension to include preload provides the opportunity to investigate ventricular muscle response to hemodynamic coupling and as a pump source across a wider range of cardiovascular loads.


Assuntos
Coração , Miocárdio , Ratos , Animais , Coração/fisiologia , Ventrículos do Coração , Hemodinâmica , Temperatura Alta , Contração Miocárdica/fisiologia
5.
Arch Orthop Trauma Surg ; 143(1): 213-223, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34226981

RESUMO

INTRODUCTION: The three-dimensional (3D) microstructure of the cortical and trabecular bone of the proximal ulna has not yet been described by means of high-resolution 3D imaging. An improved characterization can provide a better understanding of their relative contribution to resist impact load. The aim of this study is to describe the proximal ulna bone microstructure using micro-computed tomography (micro-CT) and relate it to gross morphology and function. MATERIALS AND METHODS: Five dry cadaveric human ulnae were scanned by micro-CT (17 µm/voxel, isotropic). Both qualitative and quantitative assessments were performed on sagittal image stacks. The cortical thickness of the trochlear notch and the trabecular bone microstructure were measured in the olecranon, bare area and coronoid. RESULTS: Groups of trabecular struts starting in the bare area, spanning towards the anterior and posterior side of the proximal ulna, were observed; within the coronoid, the trabeculae were orthogonal to the joint surface. Consistently among the ulnae, the coronoid showed the highest cortical thickness (1.66 ± 0.59 mm, p = 0.04) and the olecranon the lowest (0.33 ± 0.06 mm, p = 0.04). The bare area exhibited the highest bone volume fraction (BV/TV = 43.7 ± 22.4%), trabecular thickness (Tb.Th = 0.40 ± 0.09 mm) and lowest structure model index (SMI = - 0.28 ± 2.20, indicating plate-like structure), compared to the other regions (p = 0.04). CONCLUSIONS: Our microstructural results suggest that the bare area is the region where most of the loading of the proximal ulna is concentrated, whereas the coronoid, together with its anteromedial facet, is the most important bony stabilizer of the elbow joint. Studying the proximal ulna bone microstructure helps understanding its possible everyday mechanical loading conditions and potential fractures. LEVEL OF EVIDENCE: N.A.


Assuntos
Fraturas Ósseas , Olécrano , Humanos , Microtomografia por Raio-X/métodos , Osso Esponjoso/diagnóstico por imagem , Ulna/diagnóstico por imagem , Imageamento Tridimensional/métodos
6.
Dev Dyn ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400745

RESUMO

BACKGROUND: The ventricular trabeculae play a role, among others, in the impulse spreading in ectothermic hearts. Despite the morphological similarity with the early developing hearts of endotherms, this trabecular function in mammalian and avian embryos was poorly addressed. RESULTS: We simulated impulse propagation inside the looping ventricle and revealed delayed apical activation in the heart with inhibited trabecular growth. This finding was corroborated by direct imaging of the endocardial surface showing early activation within the trabeculae implying preferential spreading of depolarization along with them. Targeting two crucial pathways of trabecular formation (Neuregulin/ErbB and Nkx2.5), we showed that trabecular development is also essential for proper conduction patterning. Persistence of the slow isotropic conduction likely contributed to the pumping failure in the trabeculae-deficient hearts. CONCLUSIONS: Our results showed the essential role of trabeculae in intraventricular impulse spreading and conduction patterning in the early endothermic heart. Lack of trabeculae leads to the failure of conduction parameters differentiation resulting in primitive ventricular activation with consequent impact on the cardiac pumping function.

7.
Dev Dyn ; 251(6): 1004-1014, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34423892

RESUMO

BACKGROUND: During amphibian metamorphosis, the crucial moment lies in the rearrangement of the heart, reflecting the changes in circulatory demands. However, little is known about the exact shifts linked with this rearrangement. Here, we demonstrate such myocardial changes in axolotl (Ambystoma mexicanum) from the morphological and physiological point of view. RESULTS: Micro-CT and histological analysis showed changes in ventricular trabeculae organization, completion of the atrial septum and its connection to the atrioventricular valve. Based on Myosin Heavy Chain and Smooth Muscle Actin expression we distinguished metamorphosis-induced changes in myocardial differentiation at the ventricular trabeculae and atrioventricular canal. Using optical mapping, faster speed of conduction through the atrioventricular canal was demonstrated in metamorphic animals. No differences between the groups were observed in the heart rates, ventricular activation times, and activation patterns. CONCLUSIONS: Transition from aquatic to terrestrial life-style is reflected in the heart morphology and function. Rebuilding of the axolotl heart during metamorphosis was connected with reorganization of ventricular trabeculae, completion of the atrial septum and its connection to the atrioventricular valve, and acceleration of AV conduction.


Assuntos
Ambystoma mexicanum , Coração , Ambystoma mexicanum/fisiologia , Animais , Evolução Biológica , Metamorfose Biológica/fisiologia , Miocárdio
8.
Calcif Tissue Int ; 110(1): 65-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302494

RESUMO

Individuals with diabetes mellitus type 2 (T2DM) have an increased risk of hip fracture, especially if vascular complications are present. However, microstructural origins of increased bone fragility in T2DM are still controversial. DXA measurement of the contralateral hip and three-dimensional microCT analyses of femoral neck trabecular microarchitecture were performed in 32 individuals (26 women and 6 men, 78 ± 7 years). The specimens were divided to two groups: T2DM individuals with hip fracture (DMFx, n = 18) and healthy controls (CTL, n = 14). DMFx group consisted of individuals with vascular complications (DMFx_VD, n = 8) and those without vascular complications (DMFx_NVD, n = 10). T-score was significantly lower in DMFx_VD and DMFx_NVD than in controls (p < 0.001). BV/TV, Tb.N, Tb.Sp, SMI, and FD varied among DMFx_NVD, DMFx_VD, and CTL groups (p = 0.023, p = 0.004, p = 0.008, p = 0.001, p = 0.007, respectively). Specifically, BV/TV of DMFx_VD was significantly lower than that of DMFx_NVD group (p = 0.020); DMFx_NVD group had higher Tb.N and lower Tb.Sp compared with DMFx_VD (p = 0.006, p = 0.012, respectively) and CTL (p = 0.026, p = 0.035, respectively). DMFx group and healthy controls showed similar BV/TV, Tb.Th, Tb.N, Tb.Sp, Conn.D, DA, and FD (p = 0.771, p = 0.503, p = 0.285, p = 0.266, p = 0.208, p = 0.235, p = 0.688, respectively), while SMI was significantly higher in controls (p = 0.005). Two distinct phenotypes of bone fragility were identified in T2DM patients: patients with vascular complications showed impaired trabecular microarchitecture, whereas bone fragility in the group without vascular complications was independent on trabecular microarchitecture pattern. Such heterogeneity among T2DM patients may explain contradicting literature data and may set a basis for further studies to evaluate fracture risk related to T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas do Colo Femoral , Densidade Óssea , Diabetes Mellitus Tipo 2/complicações , Feminino , Fraturas do Colo Femoral/etiologia , Colo do Fêmur , Humanos , Masculino , Microtomografia por Raio-X
9.
Calcif Tissue Int ; 110(1): 57-64, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244838

RESUMO

We have recently revealed significant differences in microarchitectural properties (i.e. global and local morphometries) and mechanical properties between rheumatoid arthritis (RA), osteoarthritis (OA) and osteoporosis (OP) in cancellous bones. This study compared these properties with those of ageing controls by matching bone volume fraction (BV/TV), the most important determinant for bones' mechanical properties, to investigate whether these bones have similar properties and degenerative potentials. RA, OA and OP femoral heads were harvested from patients undergoing total hip replacement surgery. The selected patients were matched by similar cancellous bone BV/TV, with seven patients in each group. Four samples were prepared from each femoral head and scanned with micro-CT to quantify microarchitectural properties and compression tested to determine mechanical properties. In terms of global morphometry, no significant differences were observed between these diseased bones. In terms of local morphometry, the number of plates in the RA group was significantly greater than that of the OP and control groups. Plate volume density in the RA group was significantly greater than in the control group. Interestingly, the ultimate stresses in the three diseased groups were 77% to 195% lower than in the control group (p < 0.001). Degenerations of global morphometry of cancellous bones in these diseased femoral heads are similar but more severe than in ageing controls matched by BV/TV, as evidenced by pronounced reduction in bone strength. This phenomenon suggests that some local morphometric parameters, along with other factors, such as abnormal collagen, mineralisation, erosion and microdamage, may contribute to further compromising mechanical properties.


Assuntos
Artrite Reumatoide , Osteoartrite , Osteoporose , Envelhecimento , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Cabeça do Fêmur/diagnóstico por imagem , Humanos
10.
Biomed Eng Online ; 21(1): 68, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114576

RESUMO

BACKGROUND: Medial compartment knee osteoarthritis (KOA) accounts for most KOA cases, and increased trabecular bone volume fraction (BV/TV) is one of the pathological changes in the tibial plateau of KOA. How BV/TV changes before and after the menopause and its effects on medial compartment KOA are yet to be clarified. METHODS: Twenty femurs from twenty 12-week-old rats were included. The operated group underwent ovariectomy (to represent the osteoporosis condition), called the O group, and the non-operated group was the normal control, called the N group. Micro-CT scans of the femoral condyles were acquired 12 weeks after the surgery, and the volume of interest (VOI) of medial-, inter-, and lateral-condyle trabeculae were three-dimensional (3D) printed for uniaxial compression mechanical test and simulated by the finite element (FE) method. RESULTS: The results demonstrated that the O group indicated poorer trabecular architecture than the N group in three parts of the femoral condyle, especially in the intercondyle. Within the group, the BV/TV, trabecular thickness (Tb.Th), and trabecular number (Tb.N) ratios between the medial and lateral condyles were greater than 1 in both N and O groups. The medial condyle trabeculae's mechanical properties were higher than those of the lateral condyle, and this superiority appears to be broadened under osteoporotic conditions. FE modelling well reproduced these mechanical differentiations. CONCLUSIONS: According to Wolff's law, the higher BV/TV and mechanical properties of the medial femoral condyle may be due to inherent imbalanced loading on the knee component. Alterations in BV/TV and their corresponding mechanical properties may accompany KOA.


Assuntos
Osteoartrite do Joelho , Animais , Feminino , Análise de Elementos Finitos , Osteoartrite do Joelho/diagnóstico por imagem , Impressão Tridimensional , Ratos , Estresse Fisiológico , Microtomografia por Raio-X
11.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163054

RESUMO

To understand how pathology-induced changes in contractile protein isoforms modulate cardiac muscle function, it is necessary to quantify the temporal-mechanical properties of contractions that occur under various conditions. Pathological responses are much easier to study in animal model systems than in humans, but extrapolation between species presents numerous challenges. Employing computational approaches can help elucidate relationships that are difficult to test experimentally by translating the observations from rats and mice, as model organisms, to the human heart. Here, we use the spatially explicit MUSICO platform to model twitch contractions from rodent and human trabeculae collected in a single laboratory. This approach allowed us to identify the variations in kinetic characteristics of α- and ß-myosin isoforms across species and to quantify their effect on cardiac muscle contractile responses. The simulations showed how the twitch transient varied with the ratio of the two myosin isoforms. Particularly, the rate of tension rise was proportional to the fraction of α-myosin present, while the ß-isoform dominated the rate of relaxation unless α-myosin was >50%. Moreover, both the myosin isoform and the Ca2+ transient contributed to the twitch tension transient, allowing two levels of regulation of twitch contraction.


Assuntos
Cálcio/metabolismo , Coração/fisiologia , Miosinas/metabolismo , Animais , Simulação por Computador , Humanos , Masculino , Camundongos , Contração Miocárdica , Isoformas de Proteínas , Ratos
12.
Arch Orthop Trauma Surg ; 142(1): 165-174, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33170354

RESUMO

INTRODUCTION: A characterization of the internal bone microstructure of the radial head could provide a better understanding of commonly occurring fracture patterns frequently involving the (antero)lateral quadrant, for which a clear explanation is still lacking. The aim of this study is to describe the radial head bone microstructure using micro-computed tomography (micro-CT) and to relate it to gross morphology, function and possible fracture patterns. MATERIALS AND METHODS: Dry cadaveric human radii were scanned by micro-CT (17 µm/pixel, isotropic). The trabecular bone microstructure was quantified on axial image stacks in four quadrants: the anterolateral (AL), posterolateral (PL), posteromedial (PM) and anteromedial (AM) quadrant. RESULTS: The AL and PL quadrants displayed the significantly lowest bone volume fraction and trabecular number (BV/TV range 12.3-25.1%, Tb.N range 0.73-1.16 mm-1) and highest trabecular separation (Tb.Sp range 0.59-0.82 mm), compared to the PM and AM quadrants (BV/TV range 19.9-36.9%, Tb.N range 0.96-1.61 mm-1, Tb.Sp range 0.45-0.74 mm) (p = 0.03). CONCLUSIONS: Our microstructural results suggest that the lateral side is the "weaker side", exhibiting lower bone volume faction, less trabeculae and higher trabecular separation, compared to the medial side. As the forearm is pronated during most falls, the underlying bone microstructure could explain commonly observed fracture patterns of the radial head, particularly more often involving the AL quadrant. If screw fixation in radial head fractures is considered, surgeons should take advantage of the "stronger" bone microstructure of the medial side of the radial head, should the fracture line allow this.


Assuntos
Articulação do Cotovelo , Fraturas do Rádio , Parafusos Ósseos , Humanos , Rádio (Anatomia)/diagnóstico por imagem , Fraturas do Rádio/diagnóstico por imagem , Fraturas do Rádio/cirurgia , Microtomografia por Raio-X
13.
Am J Physiol Heart Circ Physiol ; 321(1): H162-H174, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34085842

RESUMO

Long-chain acylcarnitines (LCACs) are known to directly alter cardiac contractility and electrophysiology. However, the acute effect of LCACs on human cardiac function is unknown. We aimed to determine the effect of LCAC 18:1, which has been associated with cardiovascular disease, on the contractility and arrhythmia susceptibility of human atrial myocardium. Additionally, we aimed to assess how LCAC 18:1 alters Ca2+ influx and spontaneous Ca2+ release in vitro. Human right atrial trabeculae (n = 32) stimulated at 1 Hz were treated with LCAC 18:1 at a range of concentrations (1-25 µM) for a 45-min period. Exposure to the LCAC induced a dose-dependent positive inotropic effect on myocardial contractility (maximal 1.5-fold increase vs. control). At the 25 µM dose (n = 8), this was paralleled by an enhanced propensity for spontaneous contractions (50% increase). Furthermore, all LCAC 18:1 effects on myocardial function were reversed following LCAC 18:1 washout. In fluo-4-AM-loaded HEK293 cells, LCAC 18:1 dose dependently increased cytosolic Ca2+ influx relative to vehicle controls and the short-chain acylcarnitine C3. In HEK293 cells expressing ryanodine receptor (RyR2), this increased Ca2+ influx was linked to an increased propensity for RyR2-mediated spontaneous Ca2+ release events. Our study is the first to show that LCAC 18:1 directly and acutely alters human myocardial function and in vitro Ca2+ handling. The metabolite promotes proarrhythmic muscle contractions and increases contractility. The exploratory findings in vitro suggest that LCAC 18:1 increases proarrhythmic RyR2-mediated spontaneous Ca2+ release propensity. The direct effects of metabolites on human myocardial function are essential to understand cardiometabolic dysfunction.NEW & NOTEWORTHY For the first time, the fatty acid metabolite, long-chain acylcarnitine 18:1, is shown to acutely increase the arrhythmia susceptibility and contractility of human atrial myocardium. In vitro, this was linked to an influx of Ca2+ and an enhanced propensity for spontaneous RyR2-mediated Ca2+ release.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Carnitina/análogos & derivados , Átrios do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Carnitina/farmacologia , Feminino , Átrios do Coração/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo
14.
Arch Biochem Biophys ; 707: 108909, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015323

RESUMO

Rapid myocardial relaxation is essential in maintaining cardiac output, and impaired relaxation is an early indicator of diastolic dysfunction. While the biochemical modifiers of relaxation are well known to include calcium handling, thin filament activation, and myosin kinetics, biophysical and biomechanical modifiers can also alter relaxation. We have previously shown that the relaxation rate is increased by an increasing strain rate, not a reduction in afterload. The slope of the relaxation rate to strain rate relationship defines Mechanical Control of Relaxation (MCR). To investigate MCR further, we performed in vitro experiments and computational modeling of preload-adjustment using intact rat cardiac trabeculae. Trabeculae studies are often performed using isometric (fixed-end) muscles at optimal length (Lo, length producing maximal developed force). We determined that reducing muscle length from Lo increased MCR by 20%, meaning that reducing preload could substantially increase the sensitivity of the relaxation rate to the strain rate. We subsequently used computational modeling to predict mechanisms that might underlie this preload-dependence. Computational modeling was not able to fully replicate experimental data, but suggested that thin-filament properties are not sufficient to explain preload-dependence of MCR because the model required the thin-filament to become more activated at reduced preloads. The models suggested that myosin kinetics may underlie the increase in MCR at reduced preload, an effect that can be enhanced by force-dependence. Relaxation can be modified and enhanced by reduced preload. Computational modeling implicates myosin-based targets for treatment of diastolic dysfunction, but further model refinements are needed to fully replicate experimental data.


Assuntos
Modelos Biológicos , Miosinas/metabolismo , Estresse Mecânico , Fenômenos Biomecânicos , Cinética , Músculos/metabolismo , Músculos/fisiologia , Suporte de Carga
15.
Clin Anat ; 34(1): 40-50, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32519396

RESUMO

INTRODUCTION: The motion of the brain relative to the skull is influenced by the architecture of the subarachnoid space (SAS), and in particular, by the arachnoid trabeculae. In previous studies of these structures, specific shapes were identified. However, the work presented here shows much finer detail of the SAS geometries using SEM and TEM. MATERIALS AND METHODS: These images were acquired by maintaining the SAS structure of a rat using glutaraldehyde formaldehyde to strengthen the tissues via crosslinking with the biological proteins. RESULTS: The results showed the detailed shape of five dominant arachnoid trabeculae structures: single strands, branched strands, tree like shapes, sheets, and trabecular networks. Each of these architectures would provide a different response when exposed to a tensile load and would provide different levels of resistance to the flow of the cerebrospinal fluid (CSF) within the SAS. CONCLUSION: This very detailed level of geometric information will therefore allow more accurate finite element models of the SAS to be developed.


Assuntos
Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/diagnóstico por imagem , Animais , Meninges/anatomia & histologia , Meninges/diagnóstico por imagem , Microscopia Eletrônica , Ratos , Ratos Sprague-Dawley
16.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801669

RESUMO

Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO-NP and PbO-NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling ß-MHC. The type of CdO-NP + PbO-NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb-NP and CdO-NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.


Assuntos
Compostos de Cádmio/toxicidade , Coração/efeitos dos fármacos , Chumbo/toxicidade , Nanopartículas Metálicas/toxicidade , Nanotecnologia/métodos , Óxidos/toxicidade , Músculos Papilares/efeitos dos fármacos , Animais , Cardiotoxicidade , Fragmentação do DNA , Injeções Intraperitoneais , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina , Miosinas/química , Isoformas de Proteínas , Ratos , Testes de Toxicidade Subcrônica
17.
Eur J Orthop Surg Traumatol ; 31(7): 1515-1521, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33660047

RESUMO

PURPOSE: Total hip arthroplasties (THAs) are rising worldwide, as the functional request of patients who undergo this procedure. The trabeculae oriented pattern (TOP) is a modern cup, which follows the philosophy of the tissue sparing surgery (TSS). Focusing on clinical and radiological results and complications, the authors aim to highlight the outcomes of the TOP at a long-term follow-up (FU). METHODS: A retrospective analysis was completed on THA performed with the TOP cup between 1997 and 2015. Five hundred and eighty-eight patients sustained surgery, for a total of 662 cup implanted. Four hundred and sixty patients (524 hips) were examined. Mean FU was 12 ± 4.9 years (range 5-22). Clinical (HHS, OHS and VAS) and radiological data were obtained. Every complication, reoperation or revision was recorded and analyzed. RESULTS: Clinical evaluation revealed a HHS of 87.1 ± 13.8 an OHS of 41.3 ± 5.4, and a VAS of 1.2 ± 1.1. Acetabular osteolysis was observed in 53 hips. Overall survival rate of the cup was 90.5% (50 revisions), the main causes of cup substitution being aseptic loosening (AL) of the cup combined with the stem (26), of the cup only (13 cases) and periprosthetic joint infection (7 cases). CONCLUSION: TOP cup has demonstrated a good overall survivorship at a long-term FU, even compared with other coated cups, providing excellent clinical result with low rate of complications. Its association with a neck sparing stem permits a physiologic load transmission, reducing the stress shielding effect that could cause early implant mobilization.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Artroplastia de Quadril/efeitos adversos , Seguimentos , Humanos , Desenho de Prótese , Falha de Prótese , Reoperação , Estudos Retrospectivos
18.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(1): 6-10, 2021 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-33522168

RESUMO

Osteoporosis is one of the common metabolic diseases, which can easily lead to osteoporotic fractures. Accurate prediction of bone biomechanical properties is of great significance for the early prevention and diagnosis of osteoporosis. Bone mineral density measurement is currently used clinically as the gold standard for assessing bone strength and diagnosing osteoporosis, but studies have shown that bone mineral density can only explain 60% to 70% of bone strength changes, and trabecular bone microstructure is an important factor affecting bone strength. In order to establish the connection between trabecular bone microstructure and bone strength, this paper proposes a prediction method of trabecular bone modulus based on SE-DenseVoxNet. This method takes three-dimensional binary images of trabecular bone as input and predicts its elastic modulus in the z-axis direction. Experiments show that the error and bias between the predicted value of the method and the true value of the sample are small and have good consistency.


Assuntos
Osso Esponjoso , Fenômenos Biomecânicos , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Módulo de Elasticidade , Humanos , Osteoporose/diagnóstico por imagem
19.
Am J Phys Anthropol ; 171(2): 219-241, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31762017

RESUMO

OBJECTIVES: The dexterity of fossil hominins is often inferred by assessing the comparative manual anatomy and behaviors of extant hominids, with a focus on the thumb. The aim of this study is to test whether trabecular structure is consistent with what is currently known about habitually loaded thumb postures across extant hominids. MATERIALS AND METHODS: We analyze first metacarpal (Mc1) subarticular trabecular architecture in humans (Homo sapiens, n = 10), bonobos (Pan paniscus, n = 10), chimpanzees (Pan troglodytes, n = 11), as well as for the first time, gorillas (Gorilla gorilla gorilla, n = 10) and orangutans (Pongo sp., n = 1, Pongo abelii, n = 3 and Pongo pygmaeus, n = 5). Using a combination of subarticular and whole-epiphysis approaches, we test for significant differences in relative trabecular bone volume (RBV/TV) and degree of anisotropy (DA) between species. RESULTS: Humans have significantly greater RBV/TV on the radiopalmar aspects of both the proximal and distal Mc1 subarticular surfaces and greater DA throughout the Mc1 head than other hominids. Nonhuman great apes have greatest RBV/TV on the ulnar aspect of the Mc1 head and the palmar aspect of the Mc1 base. Gorillas possessed significantly lower DA in the Mc1 head than any other taxon in our sample. DISCUSSION: These results are consistent with abduction of the thumb during forceful "pad-to-pad" precision grips in humans and, in nonhuman great apes, a habitually adducted thumb that is typically used in precision and power grips. This comparative context will help infer habitual manipulative and locomotor grips in fossil hominins.


Assuntos
Osso Esponjoso/anatomia & histologia , Hominidae/anatomia & histologia , Ossos Metacarpais/anatomia & histologia , Polegar/anatomia & histologia , Animais , Feminino , Humanos , Masculino
20.
Eur Heart J Suppl ; 22(Suppl L): L6-L10, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33654460

RESUMO

Left ventricular non-compaction (LVNC) is defined by the triad: prominent trabecular anatomy, thin compacted layer, and deep inter-trabecular recesses. No person, sick or healthy, demonstrates identical anatomy of the trabeculae; their configuration represents a sort of individual dynamic 'cardiac fingerprinting'. LVNC can be observed in healthy subjects with normal left ventricular (LV) size and function, in athletes, in pregnant women, as well as in patients with haematological disorders, neuromuscular diseases, and chronic renal failure; it can be acquired and potentially reversible. When LVNC is observed in patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy, restrictive cardiomyopathy, or arrhythmogenic cardiomyopathy, the risk exists of misnaming the cardiomyopathy as 'LVNC cardiomyopathy' rather than properly describe, i.e. a 'DCM associated with LVNC'. In rare infantile CMPs (the paradigm is tafazzinopathy or Barth syndrome), the non-compaction (NC) is intrinsically part of the cardiac phenotype. The LVNC is also common in congenital heart disease (CHD) as well as in chromosomal disorders with systemic manifestations. The high prevalence of LVNC in healthy athletes, its possible reversibility or regression, and the increasing detection in healthy subjects suggest a cautious use of the term 'LVNC cardiomyopathy', which describes the morphology, but not the functional profile of the cardiac disease. Genetic testing, when positive, usually reflects the genetic causes of an underlying cardiomyopathy rather than that of the NC, which often does not segregate with CMP phenotype in families. Therefore, when associated with LV dilation and dysfunction, hypertrophy, or CHD, the leading diagnosis is cardiomyopathy or CHD followed by the descriptor LVNC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA